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A POSITIVITY CONJECTURE FOR JACK POLYNOMIALS

Michel Lassalle

Abstract. We present a positivity conjecture for the coefficients of the development of

Jack polynomials in terms of power sums. This extends Stanley’s ex-conjecture about
normalized characters of the symmetric group. We prove this conjecture for partitions

having a rectangular shape.

1. Introduction

A finite weakly decreasing sequence of positive integers λ = (λ1, ..., λr) is called a
partition with length l(λ) = r and weight |λ| =

∑
i λi. Let n be a fixed positive integer

and Sn the group of permutations of n letters. The irreducible representations of Sn

are labelled by partitions with weight n. Let χλ denote the corresponding character.
By identification of the cycle decomposition of a permutation with a partition, any

partition ρ with weight n defines a conjugacy class of Sn. Let µ be a partition with
weight k ≤ n, and (µ, 1n−k) the partition obtained by adding n − k parts 1. The
normalized character χ̂λ

µ,1n−k is defined by

χ̂λ
µ,1n−k =

n!
(n− k)!

χλ
µ,1n−k

χλ
1n

,

where χλ
ρ is the value of χλ on the conjugacy classs ρ, and χλ

1n = dim λ is the dimension
of the irreducible representation λ.

Let p = (p1, . . . , pm) and q = (q1, . . . , qm), with q1 ≥ · · · ≥ qm, be two sequences of
m positive integers. We denote −q = (−q1, . . . ,−qm) and p× q the partition which
is the union of m rectangles of sizes pi × qi, namely

p× q = ( q1, . . . , q1︸ ︷︷ ︸
p1 times

, q2, . . . , q2︸ ︷︷ ︸
p2 times

, . . .).

The following result was conjectured by Stanley [17] and proved by Féray [1], under
a more precise statement which was also conjectured by Stanley [18].

Theorem. For λ = p× q the normalized character (−1)k χ̂λ
µ,1n−k is a polynomial in

the indeterminates (p,−q) with nonnegative integer coefficients.

The purpose of this paper is to present a conjectured extension of this property, in
the framework of Jack polynomials.

The family of Jack polynomials Jλ(α) is indexed by partitions. It forms a basis
of the algebra of symmetric functions with rational coefficients in some positive real
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parameter α. We consider the transition matrix between this basis and the classical
basis of power sums pρ. Namely we write

Jλ(α) =
∑

|ρ|=|λ|

θλ
ρ (α) pρ.

Let µ be a partition of weight k = |µ| ≤ |λ| = n. Using multiplicities, we denote
µ = (1m1(µ), 2m2(µ), . . .) and zµ =

∏
i≥1 imi(µ)mi(µ)!. We consider the quantity

ϑλ
µ(α) = zµ θλ

µ,1n−k(α)

for which we conjecture the following positivity property.

Conjecture 1. Let λ = p×q and µ a partition with m1(µ) = 0 and k = |µ| ≤ |λ| = n.

(i) The quantity ϑλ
µ(α) is a polynomial in the indeterminates (p, q) and β = α−1,

with integer coefficients.
(ii) The coefficients of the polynomial (−1)k ϑλ

µ(α) in the indeterminates
(p,−q, β) are nonnegative integers.

(iii) At least one of these coefficients is 1.

Here two remarks are needed. Firstly, Stanley’s ex-conjecture corresponds to the
case α = 1 of our conjecture. This is a consequence of the Frobenius formula for the
Schur functions sλ. Actually we have (see [11, Examples 1.1.1 and 1.7.6] and [16, p.
78])

sλ =
∑

ρ

z−1
ρ χλ

ρ pρ and Jλ(1) =
n!

dim λ
sλ.

This yields

zρ θλ
ρ (1) = n!

χλ
ρ

dim λ
,

and for ρ = (µ, 1n−k),

(1.1) χ̂λ
µ,1n−k =

(
n− k + m1(µ)

m1(µ)

)
ϑλ

µ(1).

Secondly, expanding the Jack polynomials in terms of the “augmented” monomial
symmetric functions, which are integral combinations of the power sums [11, p.110],
and using the results of [4], it is not difficult to see that ϑλ

µ(α) is a polynomial in α,
hence in β. It is also easy to prove that it is a polynomial in (p, q).

We have checked our conjecture for m ≤ 3 and for any partition µ with m1(µ) = 0
and |µ| − l(µ) ≤ 8. These data are available on a web page [10]. For m = 2 after
substitution of −q to q, the first values are as follows :

ϑλ
2 (α) = p1q

2
1 + p2q

2
2 + 2p1p2q2 + p2

1q1 + p2
2q2

+β(p1q1 + p2q2 + p1q
2
1 + p2q

2
2),

−ϑλ
3 (α) = p1q1 + p2q2 + p1q

3
1 + p2q

3
2 + p3

1q1 + p3
2q2

+3p2
1p2q2 + 3p1p

2
2q2 + 3p1p2q

2
2 + 3p1p2q1q2 + 3p2

1q
2
1 + 3p2

2q
2
2

+β (p1q1 + p2q2 + 3p1q
2
1 + 3p2q

2
2 + 3p2

1q1 + 3p2
2q2 + 6p1p2q2

+3p2
1q

2
1 + 3p2

2q
2
2 + 3p1p2q

2
2 + 2p1q

3
1 + 2p2q

3
2 + 3p1p2q1q2)

+β2 (2p1q1 + 2p2q2 + 3p1q
2
1 + 3p2q

2
2 + p1q

3
1 + p2q

3
2).
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In this paper we present a general method to obtain linear identities between the
coefficients θλ

ρ . We apply this method in the simplest case m = 1, i.e. for λ = p× q,
the rectangular shape formed by p parts equal to q.

In this situation, we prove that (−1)k ϑλ
µ(α) is a polynomial in (p,−q, β), with

nonnegative rational coefficients. The proof is much more cumbersome and lengthy
than in the case α = 1, studied in [17, 15].

We use induction on the weight |µ| = k. An explicit recurrence formula generates
(−1)k ϑλ

µ(α) as a polynomial in (p,−q, α, β), with nonnegative rational coefficients.
However in spite of empirical evidence, we are in lack of an argument proving that
these rational numbers are actually integers.

After substitution of −q to q, the first values are

ϑλ
2 (α) = pq(αq + p + β),

−ϑλ
3 (α) = pq(αq + p + β)(αq + p + 2β) + αpq(pq + 1),

ϑλ
4 (α) = pq

(
(αq + p + β)(αq + p + 2β) + α(pq + 1)

)
(αq + p + 3β)

+2αpq(pq + 2)(αq + p + β),

ϑλ
22(α) = 2pq(αq + p + β)(αq + p + 2β) + 2αpq(pq + 1)

+pq(pq + 2)(αq + p + β)2.

We conjecture that such a property keeps true in the general case.

Conjecture 2. Let λ = p × q and µ a partition with m1(µ) = 0 and k = |µ| ≤
|λ| = n. The quantity (−1)k ϑλ

µ(α) has some “natural” expression as a polynomial in
(p,−q, α, β) with nonnegative integer coefficients.

Actually our results suggest the existence of some mysterious (α, β)-scheme, under-
lying the classical theory of Jack polynomials, where β would play a role as important
as α. However we have no conjectured expression, nor any combinatorial interpre-
tation, giving the quantity (−1)k ϑλ

µ(α) as a polynomial in (α, β), with nonnegative
integer coefficients.

The paper is organized as follows. In Section 2 we introduce our notations and recall
general facts about (shifted) symmetric functions and (shifted) Jack polynomials. In
Section 3, starting from the generalized binomial formula, we define an isomorphism
between symmetric and shifted symmetric functions. In Sections 4 and 5 we use this
method to obtain several linear identities between the θλ

ρ . Section 6 is devoted to the
case m = 1. Finally Section 7 compares our proof with those previously given for
α = 1 [17, 15].

2. (Shifted) Jack polynomials

The standard reference for symmetric functions and Jack polynomials are [11,
Section 6.10] and [16]. Although the theory of symmetric functions goes back to the
early 19th century, the notion of “shifted symmetric” functions is quite recent. We
refer to [3, 12, 13, 14] and to other references given there.

2.1. Symmetric functions. Let x = {x1, x2, x3, . . .} be an infinite set of indeter-
minates, and S the corresponding algebra of symmetric functions with coefficients in
Q. Let Q[α] be the field of rational functions in some indeterminate α (which may
be considered as a positive real number), and S = S ⊗Q[α] the algebra of symmetric
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functions with coefficients in Q[α]. The parameter α being kept fixed, for clarity of
display, we shall omit its dependence in any notation below.

A partition λ = (λ1, ..., λr) is a finite weakly decreasing sequence of nonnegative
integers, called parts. The number l(λ) of positive parts is called the length of λ, and
|λ| =

∑r
i=1 λi the weight of λ. For any integer i ≥ 1, mi(λ) = card{j : λj = i} is

the multiplicity of the part i in λ. Clearly l(λ) =
∑

i mi(λ) and |λ| =
∑

i imi(λ). We
also write λ = (1m1(λ), 2m2(λ), 3m3(λ), . . .) and set

zλ =
∏
i≥1

imi(λ)mi(λ)!.

Being given two partitions, we write µ ⊆ λ if µi ≤ λi for any i. We denote λ′ the
partition conjugate to λ, whose parts are given by mi(λ′) = λi − λi+1. We have
λ′i =

∑
j≥i mj(λ).

We define

hλ =
∏

(i,j)∈λ

(
λ′j − i + 1 + α(λi − j)

)
,

h′λ =
∏

(i,j)∈λ

(
λ′j − i + α(λi − j + 1)

)
,

(u)λ =
∏

(i,j)∈λ

(u + j − 1− (i− 1)/α) .

The last quantity is a generalization of the “raising” factorial, in terms of the “α-
contents” j − 1− (i− 1)/α.

The power sum symmetric functions are defined by pk(x) =
∑

i≥1 xk
i . They form

an algebraic basis of S. A linear basis is given by the symmetric functions

pλ =
l(λ)∏
i=1

pλi =
∏
i≥1

pi
mi(λ).

The algebra S may be endowed with a scalar product < , > for which we have two
orthogonal bases, both indexed by partitions :

(i) the basis of power sum symmetric functions, with

< pλ, pµ >= δλµ αl(λ)zλ,

(ii) the basis of (suitably normalized) Jack symmetric functions, with

< Jλ, Jµ >= δλµ hλh′λ.

We write θλ
ρ for the transition matrix between these two orthogonal bases, namely

Jλ =
∑

|ρ|=|λ|

θλ
ρ pρ.

If we restrict to a finite set of N indeterminates x = (x1, . . . , xN ), we have

(2.1) Jλ(1N ) := Jλ(1, . . . , 1) = α|λ| (N/α)λ.

Denoting jλ = hλh′λ, we introduce

J]
λ =

Jλ

jλ
, J?

λ =
Jλ

Jλ(1N )
.
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The first relation defines the basis dual of Jλ with respect to the scalar product < , >.
In contrast with J?

λ, it does not depend on N . We have

N∏
i,j=1

(1− xiyj)−1/α =
∑

λ

Jλ(x) J]
λ(y).

2.2. Shifted symmetric functions. A polynomial in N indeterminates
x = (x1, . . . , xN ) with coefficients in Q[α] is said to be “shifted symmetric” if it
is symmetric in the N “shifted variables” xi − i/α.

Dealing with an infinite set of indeterminates x = {x1, x2, x3, . . .}, in analogy with
symmetric functions, a “shifted symmetric function” f is a family {fi, i ≥ 1} with
the two following properties :

(i) fi is shifted symmetric in (x1, x2, . . . , xi),
(ii) fi+1(x1, x2, . . . , xi, 0) = fi(x1, x2, . . . , xi).

This defines S∗, the algebra of shifted symmetric functions with coefficients in Q[α].
A typical example is provided by the “shifted power sums”

p?
k(x) =

∑
i≥1

(
[xi − (i− 1)/α]k − [−(i− 1)/α]k

)
,

with [x]k = x(x − 1) · · · (x − k + 1). These shifted symmetric functions generate S∗

algebraically.
Any element f ∈ S∗ may be evaluated at any sequence x = (x1, x2, . . .) with

finitely many non zero terms, hence at any partition λ. Moreover by analyticity, f is
entirely determined by its restriction f(λ) to partitions. This identification is usually
performed and S∗ is considered as a function algebra on the set of partitions.

For any partition µ there exists a shifted symmetric function J†µ such that

(i) degree J†µ = |µ|,
(ii) J†µ(λ) = 0 except if µ ⊆ λ, and J†µ(µ) 6= 0.

It is a very remarkable fact that in this definition, the overdetermined system of linear
conditions (ii) may be replaced by the weaker conditions

(iii) J†µ(λ) = 0 except if |µ| ≤ |λ|, and J†µ(µ) 6= 0.

The function J†µ is called the “shifted Jack polynomial” associated with µ. It is unique
up to the value of J†µ(µ).

A map S∗ → S can be defined, which associates to any shifted symmetric function
f ∈ S∗ its “leading symmetric term” denoted [f ]. By definition [f ] is the highest
degree term of f , which is necessarily symmetric.

It is another very remarkable fact that Jack polynomials are the leading symmetric
terms of shifted Jack polynomials. More precisely we have[

J†µ

J†µ(µ)

]
= α|µ|J]

µ.

Hence the family {J†µ/J†µ(µ)} forms a basis of the algebra S∗.
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2.3. Generalized binomial formula. Jack polynomials allow us to write the fol-
lowing generalization of the classical binomial formula

(2.2) J?
λ(1 + x1, . . . , 1 + xN ) =

∑
µ⊆λ

(
λ

µ

)
J?

µ(x1, . . . , xN ),

which was first studied independently in [2, 6].
The generalized binomial coefficients thus introduced may be given the following

alternative definition

(2.3) exp(p1)J]
µ =

∑
λ⊇µ

α|λ|−|µ|
(

λ

µ

)
J]

λ.

The equivalence of both properties was proved in [7], as the limit of a more general
result, obtained in the framework of Macdonald polynomials. This second definition
has the advantage of being independent of N .

It was first observed in [12] that the generalized binomial coefficient
(
λ
µ

)
is merely

the shifted Jack polynomial J†µ(λ) suitably normalized:

(2.4)
J†µ(λ)

J†µ(µ)
=

(
λ

µ

)
.

This property is actually a special case of a more general correspondence, that we
shall make explicit in the next section.

3. Symmetric vs shifted symmetric

Given any symmetric function f ∈ S, we write

(3.1) exp(p1)f =
∑

λ

α|λ|f#(λ)J]
λ,

i.e. we develop the inhomogeneous symmetric left-hand side in terms of the Jack
polynomials basis.

Then the results recalled in Section 2 can be rephrased as follows.

Theorem. The coefficient f#(λ) is a shifted symmetric function of λ. The map
f → f# is an isomorphism of S onto S∗. If f is homogeneous, one has [f#] = f .

A direct proof would be possible, but it is out of the scope of this paper. Here we
shall only mention that relations (2.3) and (2.4) imply(

α|µ|J]
µ

)#

=
J†µ

J†µ(µ)
,

from which follows

f# =
∑

µ

α−|µ| < f, Jµ >
J†µ

J†µ(µ)
.

Observe that if f is not homogeneous, [f#] is its highest degree term.
We now give some examples and properties of this isomorphism.



A POSITIVITY CONJECTURE FOR JACK POLYNOMIALS 667

Proposition 1. Let f ∈ S be a symmetric function, homogeneous of degree k. For
any positive integer r, we have

(i)
(

pr
1

r!
f

)#

(λ) =
(
|λ| − k

r

)
f#(λ),

(ii)
(
|λ| − k

r − k

)
f#(λ) =

∑
|ρ|=r

(
λ

ρ

)
f#(ρ).

Proof. By the definition (3.1) for any s ≥ 0 we have

ps
1

s!
f =

∑
|λ|=k+s

α|λ|f#(λ)J]
λ.

Hence

exp(p1)
pr
1

r!
f =

∑
s≥0

∑
|λ|=k+r+s

(r + s)!
r!s!

α|λ|f#(λ)J]
λ,

and (i). On the other hand, we have

exp(p1)
pr
1

r!
f =

∑
ρ

α|ρ|f#(ρ)
pr
1

r!
J]

ρ

=
∑

ρ

α|ρ|f#(ρ)
∑

|λ|=|ρ|+r

αr

(
λ

ρ

)
J]

λ,

where the second equality is a straightforward consequence of (2.3). In other words,(
pr
1

r!
f

)#

(λ) =
∑

|ρ|=|λ|−r

(
λ

ρ

)
f#(ρ).

Comparing with (i), we obtain (ii). �

In particular writing (ii) with f = α|µ|J]
µ yields(

|λ| − |µ|
r − |µ|

)(
λ

µ

)
=

∑
|ρ|=r

(
λ

ρ

)(
ρ

µ

)
.

We are interested in the isomorphism f → f# because of the following important
example.

Proposition 2. Let µ be a partition with weight |µ| = k. For any partition λ with
|λ| = n ≥ k, we have

(3.2) αk−l(µ)(pµ)#(λ) =
(

n− k + m1(µ)
m1(µ)

)
zµ θλ

µ,1n−k .

Thus ϑλ
µ = zµθλ

µ,1n−k is a shifted symmetric function of λ.
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Proof. For any partition ρ, by orthogonality of the power sums we have

< Jλ, pρ >= αl(ρ) zρ θλ
ρ .

Hence by orthogonality of the Jack polynomials,

pρ = αl(ρ) zρ

∑
|λ|=n

θλ
ρ J]

λ.

By the definition (3.1) for ρ = (µ, 1n−k) this implies

(pµ)#(λ) = αl(µ)−k zµ,1n−k

(n− k)!
θλ

µ,1n−k .

�

Corollary. Let µ be a partition with weight |µ| = k. For any partition λ with |λ| =
n ≥ k and any r ≥ 0, we have

(3.3)
(

n− k + m1(µ)
n− r

)
θλ

µ,1n−k =
∑
|ρ|=r

(
λ

ρ

)
θρ

µ,1r−k .

Proof. Follows from Proposition 1 (ii) written for f = αk−l(µ)pµ. �

Observe that for λ = p× q, Proposition 2 implies that ϑλ
µ is a polynomial in (p, q)

with coefficients in Q[α], since it is a shifted symmetric function of λ = p× q.
For α = 1 Proposition 2 is connected with Stanley’s ex-conjecture. Indeed equation

(1.1) writes as

χ̂λ
µ,1n−k =

(
n− k + m1(µ)

m1(µ)

)
ϑλ

µ = (pµ)#(λ).

Therefore it might seem better to remove the restriction m1(µ) = 0 in our conjectures.
Instead of ϑλ

µ, they should be written for the quantities(
n− k + m1(µ)

m1(µ)

)
ϑλ

µ = αk−l(µ)(pµ)#(λ).

However this extension would only bring a trivial factor. Actually for m1(µ) 6= 0, if
we denote by µ̃ the partition obtained by removing the parts 1 of µ, we have obviously
θλ

µ,1n−k = θλ
µ̃,1n−k+m1(µ) . Hence ϑλ

µ = m1(µ)!ϑλ
µ̃ and(

n− k + m1(µ)
m1(µ)

)
ϑλ

µ = (n− k + 1) · · · (n− k + m1(µ))ϑλ
µ̃.

Since n =
∑m

i=1 piqi, the integrality and positivity properties of the first product are
obvious. Therefore there is no loss of generality in restricting to the study of ϑλ

µ̃.
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4. Linear identities

4.1. Our method. Let C and D be two linear operators acting on S. We denote
by {D,C}n the n-th nested commutator

{D,C}n = [[· · · [D,C] · · · , C], C],

with {D,C}0 = D and {D,C}1 = [D,C] = DC − CD. Then we have the classical
formula (often misnamed as the Baker-Campbell-Hausdorff formula)

e−tCDetC =
∑
n≥0

tn

n!
{D,C}n.

This formula is an easy consequence of the following property

{D,C}n =
n∑

r=0

(−1)n−r

(
n

r

)
Cn−rDCr,

which is immediately proved by induction. Therefore, denoting also by pk the multi-
plication operator acting on S by f → pkf , we have

(4.1) D(exp(p1)f) = exp(p1)
( ∑

n≥0

1
n!
{D, p1}n f

)
.

Let us assume that the action of D on Jack polynomials is explicitly known, i.e.

DJ]
ρ =

∑
σ

aρσJ]
σ.

We may apply D to (3.1), which yields

D(exp(p1)f) =
∑

λ

α|λ|f#(λ)DJ]
λ =

∑
λ,ρ

α|λ|f#(λ) aλρJ
]
ρ.

By comparison with (4.1), we obtain the following linear identity between shifted
symmetric functions∑

n≥0

1
n!

(
{D, p1}n f

)#(λ) =
∑

ρ

α|ρ|−|λ|aρλf#(ρ).

If moreover the action of D is explicitly known on the power sums, by specializing f =
α|µ|−l(µ)pµ and using (3.2), we shall obtain a linear identity between some coefficients
θλ

ρ . Many examples are given below.

4.2. Pieri formula. For any partition λ and any integer 1 ≤ i ≤ l(λ)+1, we denote
by λ(i) the partition µ (if it exists) such that µj = λj for j 6= i and µi = λi + 1.
Similarly for any integer 1 ≤ i ≤ l(λ), we denote by λ(i) the partition ν (if it exists)
such that νj = λj for j 6= i and νi = λi − 1.

Jack polynomials satisfy the following generalization of Pieri formula [11, 16]:

p1 Jλ =
l(λ)+1∑

i=1

ci(λ) Jλ(i) .
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The Pieri coefficients ci(λ) have the following analytic expression [5], see also [7, Prop.
5, p.299]:

ci(λ) =
1

αλi + l(λ)− i + 2

l(λ)+1∏
j=1
j 6=i

α(λi − λj) + j − i + 1
α(λi − λj) + j − i

.

In [7, p.300] (see also [6]) we have proved that these coefficients are connected with
the generalized binomial coefficients by

(4.2) ci(λ) = α

(
λ(i)

λ

)
jλ

jλ(i)
, α

(
λ

λ(i)

)
= ci(λ(i))

jλ

jλ(i)

,

and that we have

α

(
λ

λ(i)

)
= (αλi + l(λ)− i)

l(λ)∏
j=1
j 6=i

α(λi − λj) + j − i− 1
α(λi − λj) + j − i

.

The method of Section 4.1 is very easy to apply for D = p1 or D = ∂/∂p1, since
in these cases we have [D, p1] = 0 or 1, respectively. We write D⊥ for the adjoint of
any linear operator D with respect to the scalar product < , >.

Proposition 3. For any symmetric function f ∈ S we have

(i) (p1f)#(λ) =
l(λ)∑
i=1

(
λ

λ(i)

)
f#(λ(i)),

(ii)
(

∂

∂p1
f

)#

(λ) + f#(λ) =
l(λ)+1∑

i=1

ci(λ) f#(λ(i)).

If f is homogeneous of degree k, (i) is equal to (|λ| − k)f#(λ).

Proof. To prove (i) we may apply p1 to (3.1), which yields

p1exp(p1)f =
∑

λ

α|λ|f#(λ)
l(λ)+1∑

i=1

ci(λ)
jλ(i)

jλ
J]

λ(i)

=
∑

µ

α|µ|−1 J]
µ

l(µ)∑
i=1

f#(µ(i)) ci(µ(i))
jµ

jµ(i)

,

where the second equality is obtained by setting µ = λ(i). Using (4.2), we get

exp(p1)p1f =
∑

µ

α|µ|J]
µ

l(µ)∑
i=1

(
µ

µ(i)

)
f#(µ(i)).

To prove (ii) observe that p⊥1 = α∂/∂p1. This can be proved by the same argument
as in [11, p.76]: by linearity, it is enough to check the fact on power sums. But in [7,
Prop. 11, p.306] we have shown that

p⊥1 Jλ = α

l(λ)∑
i=1

(
λ

λ(i)

)
Jλ(i) .
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Applying ∂/∂p1 to (3.1) we thus obtain
∂

∂p1
(exp(p1)f) = exp(p1)

∂

∂p1
f + exp(p1)f

=
∑

λ

α|λ|f#(λ)
l(λ)∑
i=1

(
λ

λ(i)

)
jλ(i)

jλ
J]

λ(i)

=
∑

µ

α|µ|+1 J]
µ

l(µ)+1∑
i=1

(
µ(i)

µ

)
jµ

jµ(i)
f#(µ(i))

=
∑

µ

α|µ|J]
µ

l(µ)+1∑
i=1

ci(µ) f#(µ(i)).

Again the last equalities are obtained by setting µ = λ(i) and applying (4.2). �

The same argument, a change µ = λ(i) or µ = λ(i) followed by use of (4.2), will
be tacitly used in all proofs of this section. Another elementary application of our
method is given by the differential operator E0 =

∑N
i=1 ∂/∂xi, which is dependent on

the number of variables N .

Proposition 4. For any symmetric function f ∈ S we have

(E0f)#(λ) + Nf#(λ) =
l(λ)+1∑

i=1

ci(λ) (N + αλi − i + 1) f#(λ(i)).

Proof. Applying E0 to the generalized binomial formula (2.2), we obtain easily

E0J
?
λ =

l(λ)∑
i=1

(
λ

λ(i)

)
J?

λ(i)
.

Hence
E0(exp(p1)f) = exp(p1)E0f + Nexp(p1)f

=
∑

λ

α|λ|f#(λ)
l(λ)∑
i=1

(
λ

λ(i)

)
jλ(i)

jλ

Jλ(1N )
Jλ(i)(1N )

J]
λ(i)

=
∑

λ

α|λ|J]
λ

l(λ)+1∑
i=1

ci(λ)
Jλ(i)(1N )
Jλ(1N )

f#(λ(i)).

By (2.1) we have Jλ(i)(1N )/Jλ(1N ) = N + αλi − i + 1. �

4.3. Other examples. For any integer k ≥ 0 we introduce the differential operators

Ek =
N∑

i=1

xk
i

∂

∂xi
,

Dk =
N∑

i=1

xk
i

∂2

∂x2
i

+
2
α

N∑
i,j=1
i 6=j

xk
i

xi − xj

∂

∂xi
.
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For k 6= 0, Ek is independent of N . It is not difficult to check that

D0 = [E0, D1],

D1 =
1
2
[E0, D2],

E2 =
∑
k≥1

k pk+1
∂

∂pk
=

1
2
[D2, p1]−

1
α

(N − 1)p1,

E⊥
2 =

∑
k≥1

(k + 1)pk
∂

∂pk+1
= E0 −N

∂

∂p1
.

If we write
d1(λ) =

∑
(i,j)∈λ

(
j − 1− (i− 1)/α

)
for the sum of the α-contents of λ, it is well known [16, p.84] that the Jack polynomials
are eigenfunctions of D2, namely

D2Jλ = 2
(
d1(λ) + |λ|(N − 1)/α

)
Jλ.

This implies

D1J
?
λ =

l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1 + (N − i)/α

)
J?

λ(i)
,

E2Jλ =
l(λ)+1∑

i=1

ci(λ)
(
λi − (i− 1)/α

)
Jλ(i) ,

E⊥
2 Jλ = α

l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1− (i− 1)/α

)
Jλ(i) .

We now apply the method of Section 4.1 to E2 and D1.

Proposition 5. For any symmetric function f ∈ S we have

(E2f)#(λ) + (p2f)#(λ) =
l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1− (i− 1)/α

)
f#(λ(i)).

Proof. Using [E2, p1] = p2, we have

E2(exp(p1)f) = exp(p1)(E2f + p2f)

=
∑

λ

α|λ|f#(λ)
l(λ)+1∑

i=1

ci(λ)
(
λi − (i− 1)/α

) jλ(i)

jλ
J]

λ(i)

=
∑

λ

α|λ|J]
λ

l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1− (i− 1)/α

)
f#(λ(i)).

�



A POSITIVITY CONJECTURE FOR JACK POLYNOMIALS 673

Proposition 6. For any symmetric function f ∈ S we have((
D1 + 2E1 + p1 + N(N − 1)/α

)
f
)#

(λ) =

α

l(λ)+1∑
i=1

ci(λ)
(
λi + (N − i)/α

) (
λi + (N − i + 1)/α

)
f#(λ(i)).

Proof. We use [D1, p1] = 2E1 + N(N − 1)/α, hence [[D1, p1], p1] = 2p1. We have

D1(exp(p1)f) = exp(p1)(D1f + 2E1f + p1f + N(N − 1)f/α)

=
∑

λ

α|λ|f#(λ)
l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1 + (N − i)/α

) Jλ(1N )
Jλ(i)(1N )

jλ(i)

jλ
J]

λ(i)

=
∑

λ

α|λ|J]
λ

l(λ)+1∑
i=1

ci(λ)
(
λi + (N − i)/α

) Jλ(i)(1N )
Jλ(1N )

f#(λ(i)).

�

4.4. Generalization. The previous results may be extended as follows. Let ∆0 =
p1, ∇0 = E0 and for any k > 0 define

∆k =
1
2
[D2,∆k−1], ∇k =

1
2
[∇k−1, D2].

Clearly we have
∆1 = E2 + (N − 1)p1/α, ∇1 = D1.

Both families are in correspondence through D → D⊥. Starting from

E⊥
0 = E2 + Np1/α,

we readily obtain
∇⊥

k = ∆k+1 + ∆k/α.

The operators ∆k and ∇k are respectively increasing and decreasing degree by 1. We
have

∆kJλ =
l(λ)+1∑

i=1

ci(λ)
(
λi + (N − i)/α

)k
Jλ(i) ,

∇kJ?
λ =

l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1 + (N − i)/α

)k
J?

λ(i)
,

which are easy consequences of d1(λ(i))− d1(λ) = λi − (i− 1)/α.
In this section we have applied our method to the operators ∆k and ∇k with

k = 0, 1. The case k = 2 is also easy to handle. For instance, we have

∆2 = D3 + E2 + (N − 1)2p1/α2,

[∆2, p1] = 2E3 + (2N − 3)p2/α + p2
1/α + p2,

[[∆2, p1], p1] = 2p3.

For higher values of k, the computations become very messy.
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The operator D2 is degree preserving and must be treated separately. Defining

D†
2 = D2 − 2(N − 1)E1/α,

we have obviously D†
2Jλ = 2d1(λ)Jλ. Hence D†

2 is independent of N .

Proposition 7. For any symmetric function f ∈ S we have((
D†

2 + 2E2 + p2

)
f
)#

(λ) = 2d1(λ) f#(λ).

Proof. Consequence of [D†
2, p1] = 2E2 and [[D†

2, p1], p1] = 2p2. �

For completeness, we mention that using p2 = [E2, p1] and D0 = [E0, D1], the
operators p2, D0, and p⊥2 = α2∂/∂p2 (which are respectively increasing and decreasing
degree by 2) can also be managed very easily. This is left to the reader.

5. Specialization to power sums

We now specialize the results of Section 4 for f = pµ with |µ| = k and m1(µ) = 0.
Then Proposition 2 reads

(pµ)#(λ) = αl(µ)−k ϑλ
µ.

5.1. A lemma. The following result is proved by an easy induction on N .

Lemma. For any integer r ≥ 2, we have

2
N∑

i,j=1
i 6=j

xr
i

xi − xj
=

r−2∑
i=1

pi pr−i−1 + (2N − r)pr−1.

By explicit computation we obtain a corollary which will be central for our purpose.

Proposition 8. Denote β = α− 1. For any integer j ≥ 0, we have

Djpµ = pµ

( ∑
r,s

rsmr(µ)(ms(µ)− δrs)
pr+s+j−2

prps
+

2N − j

α

∑
r

rmr(µ)
pr+j−2

pr

+
β

α

∑
r

r(r − 1)mr(µ)
pr+j−2

pr
+

1
α

∑
r

rmr(µ)
r+j−3∑

i=1

pi pr−i+j−2

pr

)
.

For clarity of display, the following notations will be useful. We write µ∪ (s) when
adding a part s to a partition µ, and µ \ (s) when substracting s. For any integer
r ≥ 2 we define (if they exist)

µ↓(r) = µ \ (r) ∪ (r − 1), µ↑(r) = µ \ (r) ∪ (r + 1).

We have |µ↓(r)| = k − 1, |µ↑(r)| = k + 1, l(µ↓(r)) = l(µ↑(r)) = l(µ).
Let |λ| = n. Recall that if ν = µ∪ (1) is a partition having one part 1, Proposition

1 (i) yields

(5.1) (pν)#(λ) = (n− |µ|) (pµ)#(λ).

And if ν = µ ∪ (1, 1) has two parts 1, we have

(5.2) (pν)#(λ) = (n− |µ|)(n− |µ| − 1) (pµ)#(λ).
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5.2. Raising degree. We first consider the cases of operators raising degree, i.e. p1

and E2. Proposition 3 (i) implies

(5.3) (n− k)ϑλ
µ =

l(λ)∑
i=1

(
λ

λ(i)

)
ϑ

λ(i)
µ .

Observe that it is merely (3.3) written for r = n− 1.
An easy computation gives

E2pµ =
∑

r

rmr(µ) pµ↑(r) ,

so that Proposition 5 yields

(5.4) ϑλ
µ,2 +

∑
r

rmr(µ) ϑλ
µ↑(r)

= α

l(λ)∑
i=1

(
λ

λ(i)

) (
λi − 1− (i− 1)/α

)
ϑ

λ(i)
µ .

5.3. The operator E0. We have easily

E0pµ =
∑

r

rmr(µ)pµ↓(r) .

Specializing Proposition 4, and identifying coefficients of N on both sides of the
identity, we get

(5.5) ϑλ
µ =

l(λ)+1∑
i=1

ci(λ) ϑλ(i)

µ ,

which may be also obtained from Proposition 3 (ii).
If we identify terms in N0, we obtain

(5.6)
?∑
r

rmr(µ) ϑλ
µ↓(r)

=
l(λ)+1∑

i=1

ci(λ)
(
λi − (i− 1)/α

)
ϑλ(i)

µ .

Here for clarity of display, the symbol
∑? is used to recall that for r = 2 the partition

µ↓(2) has one part 1. Therefore because of (5.1), ϑλ
µ↓(2)

must be replaced by (n− k +
2) ϑλ

µ\(2).

5.4. The operator D1. For any integers r, s ≥ 1 we define (if they exist)

µ↓(rs) = µ \ (r, s) ∪ (r + s− 1), µ↑(rs) = µ \ (r + s + 1) ∪ (r, s).

We have |µ↓(rs)| = |µ↑(rs)| = k − 1, l(µ↓(rs)) = l(µ) − 1 and l(µ↑(rs)) = l(µ) + 1.
Writing Proposition 8 for j = 1 we readily obtain

D1pµ =
∑
r,s

rsmr(µ)(ms(µ)− δrs)pµ↓(rs) +
2N − 1

α

∑
r

rmr(µ)pµ↓(r)

+
β

α

∑
r

r(r − 1)mr(µ)pµ↓(r) +
1
α

∑
r

rmr(µ)
r−2∑
i=1

pµ↑(i,r−i−1) .
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Using (5.1) and E1pµ = kpµ, the identity of Proposition 6 writes as

∑
r,s

rsmr(µ)(ms(µ)− δrs)ϑλ
µ↓(rs)

+ (2N − 1)
?∑
r

rmr(µ) ϑλ
µ↓(r)

+β
?∑
r

r(r−1)mr(µ) ϑλ
µ↓(r)

+α
?∑
r

rmr(µ)
r−2∑
i=1

ϑλ
µ↑(i,r−i−1)

+
(
n+k+N(N −1)/α

)
ϑλ

µ

= α

l(λ)+1∑
i=1

ci(λ)
(
λi + (N − i)/α

) (
λi + (N − i + 1)/α

)
ϑλ(i)

µ .

As before, the symbol
∑? is used to recall the occurrence of parts 1 :

(i) The partitions µ↓(2) and µ↑(1,r−2) (r ≥ 4) have one part 1. Therefore due to
(5.1), ϑλ

µ↓(2)
must be replaced by (n− k + 2)ϑλ

µ\(2) and ϑλ
µ↑(1,r−2)

by (n− k +
2) ϑλ

µ\(r)∪(r−2).
(ii) The partition µ↑(1,1) has two parts 1. Because of (5.2), ϑλ

µ↑(1,1)
must be

replaced by (n− k + 3)(n− k + 2) ϑλ
µ\(3).

Clearly if we identify the coefficients of N2 on both sides, we recover (5.5). Then
if we identify the coefficients of N , we recover (5.6). Finally the remaining terms give∑

r,s

rsmr(µ)(ms(µ)− δrs) ϑλ
µ↓(rs)

+β
?∑
r

r(r − 1)mr(µ)ϑλ
µ↓(r)

+ α
?∑
r

rmr(µ)
r−2∑
i=1

ϑλ
µ↑(i,r−i−1)

(5.7)

= −(n + k) ϑλ
µ + α

l(λ)+1∑
i=1

ci(λ)
(
λi − (i− 1)/α

)2
ϑλ(i)

µ .

All coefficients ϑλ
ρ appearing in the left-hand side correspond to partitions |ρ| =

k − 1. Below this property will be crucial for our purpose.

5.5. The operator D2. For completeness we give an analogous result for D2, though
we shall not use it.

For any integers r, s ≥ 1 we define (if they exist)

µ⇓(rs) = µ \ (r, s) ∪ (r + s), µ⇑(rs) = µ \ (r + s) ∪ (r, s).

We have |µ⇓(rs)| = |µ⇑(rs)| = k, l(µ⇓(rs)) = l(µ)− 1 and l(µ⇑(rs)) = l(µ) + 1. Writing
Proposition 8 for j = 2, we easily obtain(

D†
2 −

β

α

∑
r

r(r − 1)mr(µ)
)
pµ =

∑
r,s

rsmr(µ)(ms(µ)− δrs)pµ⇓(rs) +
1
α

∑
r

rmr(µ)
r−1∑
i=1

pµ⇑(i,r−i) .
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Then Proposition 7, specialized for f = pµ, writes as

∑
r,s

rsmr(µ)(ms(µ)− δrs)ϑλ
µ⇓(rs)

+ α
◦∑
r

rmr(µ)
r−1∑
i=1

ϑλ
µ⇑(i,r−i)

+ 2
∑

r

rmr(µ) ϑλ
µ↑(r)

+ ϑλ
µ,2 =

(
2αd1(λ)− β

∑
r

r(r − 1)mr(µ)
)
ϑλ

µ.

Again the symbol
∑◦ is used to specify some particular cases :

(i) For r ≥ 3 the partition µ⇑(1,r−1) has one part 1. By (5.1), ϑλ
µ⇑(1,r−1)

must be
replaced by (n− k + 1) ϑλ

µ\(r)∪(r−1).
(ii) The partition µ⇑(1,1) has two parts 1. Due to (5.2), ϑλ

µ⇑(1,1)
must be replaced

by (n− k + 2)(n− k + 1) ϑλ
µ\(2).

The simplest case is given by µ = (2), i.e.

2(αd1(λ)− β)ϑλ
2 = 2αn(n− 1) + 4ϑλ

3 + ϑλ
22.

As another example, for µ = (3, 2) the identity writes as

(2αd1(λ)− 8β) ϑλ
32 = 12ϑλ

5 + 2α(n− 3)(n− 4)ϑλ
3 + 6α(n− 4)ϑλ

22 + 6ϑλ
42 + 4ϑλ

33 + ϑλ
322.

6. Rectangular shape

We are now in a position to prove the following weak version of our conjecture for
m = 1, i.e. when λ = p× q, the rectangular shape formed by p parts equal to q.

Theorem 1. Let λ = p × q and µ a partition with m1(µ) = 0 and |µ| = k ≤ |λ| =
pq. The quantity (−1)k ϑλ

µ is a polynomial in the indeterminates (p,−q, β), with
nonnegative rational coefficients.

Proof. We shall use induction on the weight |µ| = k. The property is verified for
k = 2. Actually it is well known (see [11, p.384], [16, p.106] or [8, p.68]) that

2θλ
2,1n−2 = 2αd1(λ) = pq(αq − p− β).

Obviously there are only two partitions λ(i), corresponding respectively to i = 1
and i = p + 1. We have

λ(1) = (q + 1, q, . . . , q), λ(p+1) = (q, . . . , q, 1),

c1(λ) =
p

p + αq
, cp+1(λ) =

αq

p + αq
.

We consider the linear system formed by (5.5), (5.6) and (5.7). Firstly we evaluate
the quantities ϑλ(1)

µ and ϑλ(p+1)

µ by solving (5.5) and (5.6). This easily yields

ϑλ(1)

µ = ϑλ
µ +

α

p

?∑
r

rmr(µ) ϑλ
µ↓(r)

ϑλ(p+1)

µ = ϑλ
µ −

1
q

?∑
r

rmr(µ) ϑλ
µ↓(r)

.

(6.1)
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Secondly we insert both values in (5.7). The sum in the right-hand side writes

αq2c1(λ) ϑλ(1)

µ + p2cp+1(λ) ϑλ(p+1)

µ /α = pq ϑλ
µ + (αq − p)

?∑
r

rmr(µ) ϑλ
µ↓(r)

,

so that finally (5.7) becomes

(6.2)
∑
r,s

rsmr(µ)(ms(µ)− δrs) ϑλ
µ↓(rs)

+ β
?∑
r

r(r − 1)mr(µ) ϑλ
µ↓(r)

+ (p− αq)
?∑
r

rmr(µ) ϑλ
µ↓(r)

+ α
?∑
r

rmr(µ)
r−2∑
i=1

ϑλ
µ↑(i,r−i−1)

= −k ϑλ
µ.

This is an inductive formula expressing k ϑλ
µ as an integral combination of ϑλ

ρ

with |ρ| = k − 1. Multiplying both sides by (−1)k−1, we obtain that (−1)kϑλ
µ is a

polynomial in the indeterminates (p,−q, β), with nonnegative rational coefficients.
Observe that the partitions with parts 1 create no difficulty since their contributions

are respectively −(−pq+k−2) ϑλ
µ\(2) for µ↓(2), −(−pq+k−2) ϑλ

µ\(r)∪(r−2) for µ↑(1,r−2),
and (−pq + k − 2)(−pq + k − 3) ϑλ

µ\(3) for µ↑(1,1). �

We emphasize that the previous argument does not allow to conclude that the
coefficients of ϑλ

µ are integers. It remains to prove that the coefficients of k ϑλ
µ are

divisible by k. The recurrence (6.2) shows empirical evidence of this fact, but we are
in lack of a proof.

Below are the first steps of our recurrence, for k ≤ 6.

−ϑλ
2 = pq(p− αq + β),

−ϑλ
3 = ϑλ

2 (p− αq + 2β) + αpq(pq − 1),

−ϑλ
4 = ϑλ

3 (p− αq + 3β) + 2α(pq − 2)ϑλ
2 ,

−ϑλ
22 = 2ϑλ

3 + (p− αq + β)(pq − 2)ϑλ
2 ,

−ϑλ
5 = ϑλ

4 (p− αq + 4β) + 2α(pq − 3)ϑλ
3 + αϑλ

22,

−5ϑλ
32 = 12ϑλ

4 + 2(p− αq + β)(pq − 3)ϑλ
3

+3(p− αq + 2β)ϑλ
22 + 3α(pq − 2)(pq − 3)ϑλ

2 ,

−ϑλ
6 = ϑλ

5 (p− αq + 5β) + 2α(pq − 4)ϑλ
4 + 2αϑλ

32,

−6ϑλ
42 = 16ϑλ

5 + 2(p− αq + β)(pq − 4)ϑλ
4

+4(p− αq + 3β)ϑλ
32 + 8α(pq − 4)ϑλ

22,

−ϑλ
33 = 3ϑλ

5 + (p− αq + 2β)ϑλ
32 + α(pq − 3)(pq − 4)ϑλ

3 ,

−ϑλ
222 = 4ϑλ

32 + (p− αq + β)(pq − 4)ϑλ
22.

Proposition 9. Let Λ be a partition obtained by adding or substracting one node
to the rectangular shape λ = p × q. The quantity (−1)k ϑΛ

µ is a polynomial in the
indeterminates (p,−q, β), with nonnegative rational coefficients.

Proof. From the recurrence formula (6.2), it is clear that any ϑλ
µ is divisible by pq.

Thus by (6.1), the assertion is true for both partitions λ(1) = (q + 1, q, . . . , q) and
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λ(p+1) = (q, . . . , q, 1). Obviously there is only one partition λ(i), corresponding to
i = p. Then we have λ(p) = (q, . . . , q, q − 1) and

(
λ

λ(p)

)
= pq. Therefore (5.3) writes

(pq − k)ϑλ
µ = pq ϑ

λ(p)
µ .

Hence the statement for λ(p). �

7. Another formulation

It is worth showing why the proofs given for α = 1 [15, 17] are difficult to extend
when α is arbitrary. This will also produce a non trivial result.

The proof given in [15] starts from the following formula, proved in [13, (15.21)]:

χ̂λ
µ,1n−k =

∑
|ρ|=k

s†ρ(λ) χρ
µ.

Here s†ρ is an appropriate normalization of the shifted Schur function, i.e. the shifted
Jack polynomial corresponding to α = 1. Hence s†ρ(λ) is, up to some normalization,
the generalized binomial coefficient

(
λ
ρ

)
for α = 1.

Due to (1.1) this can be rewritten under the form(
n− k + m1(µ)

m1(µ)

)
θλ

µ,1n−k =
∑
|ρ|=k

(
λ

ρ

)
θρ

µ.

It is a remarkable fact that this property keeps true when α is arbitrary. Actually it
is exactly (3.3) written for r = k.

Moreover for λ = p× q the binomial coefficients
(
λ
ρ

)
are explicitly known for any ρ.

They have been computed, in the more general context of Macdonald polynomials,
in [7, Theorem 11, p.313]. As a limit case [7, p.321] we have(

p× q

ρ

)
= (−α)|ρ|(−q)ρ J]

ρ(1
p) = (−1)|ρ|α2|ρ| (−q)ρ

(p/α)ρ

jρ
,

the last equality being a consequence of (2.1).
Thus for λ = p× q we have(

pq − k + m1(µ)
m1(µ)

)
θp×q

µ,1pq−k = (−1)kα2k
∑
|ρ|=k

(p/α)ρ (−q)ρ

θρ
µ

jρ
.

Finally Theorem 1 appears equivalent to the following result, which seems difficult to
prove directly (the case m1(µ) 6= 0 is handled by the argument given at the end of
Section 3).

Theorem 2. Let p, q be two indeterminates. For any partition µ the quantity

α2|µ|−1 zµ

∑
|ρ|=|µ|

(p)ρ(q)ρ

θρ
µ

jρ

is a polynomial in (p, q, β) with nonnegative rational coefficients.
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We conjecture (i) the integrality of these coefficients, (ii) the existence of some
natural expression as a polynomial in (p, q, α, β). However we have no conjectured
combinatorial interpretation for such an expression.

As an example, for µ = (3, 2) we have

6α9
∑
|ρ|=5

(p)ρ(q)ρ
θρ
32

jρ
= pq

(
(p4q+4p3q2 +4p2q3 +pq4)α4 +(4p3q+9p2q2 +4pq3)α3β

+ 5(p2q + pq2)α2β2 + 2pqαβ3 + (6p3 + 31p2q + 31pq2 + 6q3)α3

+ (30p2 + 79pq + 30q2)α2β + 48(p + q)αβ2 + 24β3 + 18(p + q)α2 + 24αβ
)
.

8. Final remarks

We conclude by two remarks. Firstly our results for λ = p×q suggest the existence
of some pattern underlying the theory of Jack polynomials, with α and β = α − 1
playing similar roles. Actually the recurrence formula (6.2) gives an expression of
(−1)kϑλ

µ as a “positive” polynomial in both α and β.
As mentioned in the introduction, we conjecture that this property is general,

i.e. that for any λ = p × q the quantity (−1)kϑλ
µ has some natural expression as a

polynomial in (α, β, p,−q) with nonnegative integer coefficients.
Secondly in this article β = α − 1 was of course never considered as being in-

dependent of α. However in a subsequent paper [9], we have given an algorithm
allowing to define the quantities ϑλ

µ when (α, β) are two independent parameters. It
would be interesting to investigate this more general situation. This might lead to a
two-parameters (α, β)-extension of Jack polynomials.
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