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CONFORMAL EQUIVALENCE BETWEEN CERTAIN
GEOMETRIES IN DIMENSION 6 AND 7

Richard Cleyton and Stefan Ivanov

Abstract. For G2-manifolds the Fernández-Gray class X1 + X4 is shown to consist
of the union of the class X4 of G2-manifolds locally conformal to parallel G2-structures

and that of conformal transformations of nearly parallel or weak holonomy G2-manifolds
of type X1. The analogous conclusion is obtained for Gray-Hervella class W1 + W4

of real 6-dimensional almost Hermitian manifolds: this sort of geometry consists of

locally conformally Kähler manifolds of class W4 and conformal transformations of nearly
Kähler manifolds in class W1. A corollary of this is that a compact SU(3)-space in class

W1 + W4 or G2-space of the kind X1 + X4 has constant scalar curvature if only if it is

either a standard sphere or a nearly parallel G2 or nearly Kähler manifold, respectively.
The properties of the Riemannian curvature of the spaces under consideration are also

explored.

1. Introduction

Reductions of the bundle of orthonormal frames over a Riemannian manifold to a
principal G-bundle may be classified by the G-invariant components of the intrinsic
torsion.

This idea was originally due to Gray and collaborators [11, 18] for the special
instances of G2-manifolds and almost Hermitian manifolds. It has been further refined
and explored by, for instance, Bryant [6], Farinola, Falcitelli & Salamon [10], Mart́ın
Cabrera [25, 24], Mart́ın Cabrera, Monar & Swann [26], Chiossi & Salamon [8].

ForG2- and almost Hermitian structures alike, the intrinsic torsion has 4 irreducible
components. There are thus potentially 16 torsion classes for these two kinds of
geometries.

In [26], Mart́ın Cabrera, Monar & Swann showed that apart from one instance,
X1 + X2 in our notation, every single class of G2-structures may be realized on a
compact homogeneous space. For the one exception an easy calculation shows that
any G2 structure with torsion X1 +X2 must have either X1 = 0 or X2 = 0.

In section 3 we show that something similar holds for the class X1 + X4. Namely
that the latter essentially is generated by the classes X1 and X4. It is well known that
G2-structures in this class are locally conformally equivalent to nearly parallel ones.
We will show that this equivalence is only really local when the G2-structure lies in
the subclass X4 of locally conformally parallel structures. The structure of compact
locally conformally parallel G2-manifolds has been recently described in [21, 31]. In
contrast to this, we will show that if the X1 component is non-zero at some point,
it is non-zero everywhere. This is the key point in proving that a global conformal
change exists.
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Differently from the G2 case, it was only recently pointed out by Butruille [7] that
a 6-dimensional almost Hermitian manifold in the Gray-Hervella class W1 + W4 is
locally conformal to a nearly Kähler manifold. In section 5, we present a different and
simpler proof of this fact for completeness. Based on this the analogous statements to
those given for G2-structures are shown to hold for 6-dimensional almost Hermitian
geometry, too. In particular, any almost Hermitian 6-manifold in the class (W1 +
W4) \ W4 has trivial canonical bundle. The geometries W4 for SU(3)- and X4 for
G2-manifolds are both special instances of G-structures with vectorial torsion. This
notion was studied in [1]. The almost Hermitian manifolds and G2-structures studied
in this paper all fit in the wider framework of G-structures with three-form torsion,
see [13, 2].

The aim of this note is to establish

Theorem 1. Let (M, g, φ) be a compact 7-dimensional manifold locally conformally
equivalent to a nearly parallel G2-manifold. Then (M, g, φ) has constant scalar cur-
vature if and only if (M, g) is either nearly parallel or conformally equivalent to the
standard 7-sphere with its unique nearly parallel G2 structure.

Theorem 2. Let (M, g, J) be a compact 6-dimensional manifold locally conformally
equivalent to a nearly Kähler manifold. Then (M, g, J) has constant scalar curvature
if and only if (M, g) is either nearly parallel or conformally equivalent to the 6-sphere
with its unique nearly Kähler structure.

In the last section we characterize complete Einstein G2 and SU(3) manifolds in
the strict class X1 + X4 and W1 + W4, respectively. The phrases ‘strict class’ is used
here to indicate that the G-structure is not in any sub-class of the one given. So a
G2-structure strictly in class X1 must, in particular, have non-trivial intrinsic torsion.

The results obtained in this paper are direct consequences of the following. The
G-structures under consideration are described by the existence of certain fundamental
differential forms ω1, . . . , ωp, whose exterior derivatives determine the corresponding
intrinsic torsion in full. First order identities on the G-invariant components of the
intrinsic torsion descend from the closure of dωi. These equations in general have
non-trivial consequences as is seen by the examples considered here.

The relations coming from the second derivatives of the forms may also be seen as
consequences of the first Bianchi identity, see for instance [27, 6].

Acknowledgements. The authors wish to thank Andrew Swann, Ilka Agricola and
Thomas Friedrich for helpful conversations and Simon Chiossi for many helpful com-
ments. The first named author was supported by the Junior Research Group “Special
Geometries in Mathematical Physics”, of the Volkswagen foundation and the SFB 647
“Space–Time–Matter”, of the DFG. The authors wish to thank UC Riverside for hos-
pitality and Yat Sun Poon for support during the initial stage of this project.

2. A lemma

The key to obtaining the results is the observation
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Lemma 3. Let M be a connected manifold equipped with a differentiable function
φ 6≡ 0 and a one-form α such that

dα = 0,
dφ+ φα = 0.

(2.1)

Then φ is nowhere zero and α = −d log |φ|.

Proof. Let φ and α be a function and one-form as in equation (2.1). By Poincaré’s
Lemma we may choose a covering Ui of M and functions fi : Ui → R such that
α|Ui= dfi. Then equation (2.1) implies that the product φ exp(fi) is constant over
each Ui. Therefore, if φ(p) 6= 0 at some point p in, say U0, then φ 6= 0 over all U0

and therefore also on each Uj that overlaps U0. The conclusion now follows from
connectedness. �

3. The G2 case

A G2-manifold is a 7-dimensional manifold M equipped with a special, so-called
fundamental three-form φ, required to satisfy the following non-degeneracy condition

(3.1) iXφ ∧ iY φ ∧ φ = 6g(X,Y ) vol(g),

for some Riemannian metric g and orientation onM . The notation iXφmeans interior
product of the vector fieldX with the three-form φ. It is well known that the covariant
derivative of the fundamental three-form is determined by the exterior derivatives of φ
and its Hodge dual ∗φ. Using the representation theory of G2 on the exterior algebra
one may write these differentials as

dφ = τ0∗φ+ 3τ1 ∧ φ+ ∗τ3,
d∗φ = 4τ1 ∧ ∗φ+ τ2 ∧ φ,

for suitable forms τp ∈ Ωp. In terms of the G2 invariant splittings of the exterior
algebra, τ0 ∈ Ω0

1, τ1 ∈ Ω1
7, τ2 ∈ Ω2

14, τ3 ∈ Ω3
27. The notation Ωp

d indicates the space
of p-forms taking values in the d-dimensional G2 irreducible subspace Λp

d ⊂ Λp. The
one-form τ1 is also known as the Lee form of the G2 manifold. The forms τ0, τ1, τ2, τ3
correspond to the Fernández-Gray classes [11] as follows

τ0 ↔ X1, τ2 ↔ X2, τ3 ↔ X3, τ1 ↔ X4.

When we speak of the intrinsic torsion τ of a G2 structure we mean the form of mixed
degree τ = τ0 + τ1 + τ2 + τ3 fixed by the fundamental three-form as above.

In particular, G2-manifolds in the class X1 are characterized by the conditions
τ1 = τ2 = τ3 = 0 and are called nearly parallel G2-manifolds. It is well known that
these spaces are Einstein with positive scalar curvature. From this it follows that τ0
is constant [14].

A G2-manifold in the Fernández-Gray class X1 + X4 satisfies τ2 = τ3 = 0. The
structure equations for this case reduce to

dφ = τ0∗φ+ 3τ1 ∧ φ,
d∗φ = 4τ1 ∧ ∗φ,

from which one infers

(3.2)
d2φ = (dτ0 + τ0τ1) ∧ ∗φ+ 3dτ1 ∧ φ,

d2∗φ = 4dτ1 ∧ ∗φ.
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The latter equation implies that the component (dτ1)7 ∈ Ω2
7 vanishes. Using this

in the first equation, one deduces that the complementary component (dτ1)14 ∈ Ω2
14

also vanishes. Thus we recover the fact (see [24]) that G2 structures in this class
are, locally, conformal to a nearly parallel structure. Observe that equations (3.2)
furthermore give us dτ0 + τ0τ1 = 0. Now our Lemma 3 applies with φ = τ0 and
α = τ1. The connectedness of M leads to the conclusion in the form of this

Theorem 4. Suppose M is a 7-dimensional manifold with a G2-structure φ in the
Fernández-Gray class X1 + X4. Then φ is either of class X4, in which case (M,φ) is
locally conformal to a parallel G2-manifold, or (M,φ) is conformal to a nearly parallel
G2-manifold.

4. The 6-dimensional almost Hermitian case

An almost Hermitian manifold is a Riemannian manifold (M2m, g) equipped with
an orthogonal almost complex structure J . The metric and the almost complex
structure then define the fundamental two-form of the almost Hermitian structure:

ω(X,Y ) := g(JX, Y ).

As opposed to the G2 case above and the case of SU(3) below, the components of
the intrinsic torsion of a Hermitian structure cannot all be identified with differential
forms [30]. Instead, the intrinsic torsion is detected by dω along with the Nijenhuis
tensor NJ .

From now on m is taken to be at least 3.

4.1. The Nijenhuis Tensor. For an almost complex structure J the Nijenhuis
tensor measures the failure of the eigenspaces of J in the complexified tangent space
to be involutive. Let π′(X) = 1

2 (X − iJX) and π′′ = 1
2 (X + iJX) be the projections

to the i-eigenspace T ′ and the −i-eigenspace T ′′, respectively. We set

NJ(X,Y ) :=π′[π′′X,π′′Y ] + π′′[π′X,π′Y ]

=
1
4

([X,Y ]− [JX, JY ] + J [JX, Y ] + J [X, JY ]) .

Using the metric we obtain an algebraically equivalent 3-tensor

NJ(X,Y ;Z) = g(NJ(X,Y ), Z),

with the property NJ(JX, Y ;Z) = NJ(X, JY ;Z) = NJ(X,Y ; JZ). Equivalently,

NJ ∈
q
Λ2,0 ⊗ Λ1,0

y
.

See for instance [10] for an explanation of the notation.
The space

q
Λ3,0

y
is a subspace of

q
Λ2,0 ⊗ Λ1,0

y
in the natural way. The projectionq

Λ2,0 ⊗ Λ1,0
y
→

q
Λ3,0

y
is given simply by skew-symmetrization. Write V for the

orthogonal complement of
q
Λ3,0

y
in

q
Λ2,0 ⊗ Λ1,0

y
. Then we may split the Nijenhuis

tensor accordingly
NJ = N3,0

J +NV
J .

One may now deduce that

(4.1) (dω)3,0(X,Y, Z) = 3g(N3,0
J (X,Y ), JZ) = 3N3,0

J (X,Y, JZ).

Here we use sub- and superscripts to indicate projections of form. For instance, dω3,0

is the projection of dω in Λ3 to the subspace
q
Λ3,0

y
.
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The structure equations for an almost Hermitian manifold now can be written

(4.2) dω = −3J(1)N
3,0
J + 2σ1 ∧ ω + σ3, NJ = N3,0

J +NV
J .

The first equation here employs the conventions (J(1)α)(X,Y, . . . ) := −α(JX, Y, . . . ),
see [25]. This action of the complex structure J on differential forms is, generally
speaking, distinct from the usual action given by (Jα)(X1, . . . , Xp) :=
(−1)pα(JX1, . . . , JXp).

The Gray-Hervella classes of an almost Hermitian manifold are in the following
correspondence with the components in (4.2)

N3,0
J ↔ W1, NV

J ↔ W2, σ3 ↔ W3, σ1 ↔ W4.

Almost Hermitian manifolds in the class W1, called nearly Kähler manifolds, are
characterized by the conditions NV

J = σ1 = σ3 = 0 or equivalently, by demanding
that the covariant derivative of the almost complex structure with respect to the Levi-
Civita connection be skew-symmetric, (∇g

XJ)X = 0 [15]. For an arbitrary one-form
the relation

(dθ)(X,Y )−(dθ)(JX, JY )−d(Jθ)(JX, Y )+Jd(Jθ)(JX, Y ) = 4g(NJ(X,Y ), J(Jθ)#)

holds. Writing dθ2,0 = 1
2 (dθ − Jdθ) for the projection of dθ to

q
Λ2,0

y
we have

Lemma 5. Suppose (g, J) is an almost Hermitian structure in class W1 + W3 + W4.
Let θ be a one-form and write θ′ := Jθ. Then

(dθ)2,0 + J(1)(dθ′)2,0 = 2
3θ
′ y (dω)3,0

4.2. SU(3)-structures. A 6-dimensional manifold with an SU(3)-structure comes
equipped with data (g, J, ω, ψ+, ψ−) invariant with respect to the action of SU(3).
Here g is a Riemannian metric, J is an almost complex structure, ω the fundamental
two-form and ψ+ and ψ− are three-forms such that Ψ := ψ+ + iψ− is a complex
(3, 0)-form. These invariant tensors are not independent, in fact the triple (ω, ψ+, ψ−)
with ψ++iψ− decomposable and compatible with ω by means of the equations below,
defines both g and J , see [20]. Clearly the triple (g, ψ+, ψ−) will do the same. We
choose a normalization with the following relations

(4.3)

ω(X, JY ) = g(X,Y ),
ω ∧ ψ+ = 0 = ω ∧ ψ−,

3ψ+ ∧ ψ− = 2ω3 = 12 volg,
∗ω = 1

2ω
2, ∗ψ+ = ψ−, Jψ+ = −ψ−.

4.2.1. Torsion classes and structure equations. Under the action of SU(3), Λ3,0 = C
and V ⊗ C ∼= Λ1,1

0 . This means that V ∼= 2 su(3) and
q
Λ3,0

y ∼= 2R. Moreover, for
an SU(3)-structure (ω, ψ±), the components of the Nijenhuis tensor can be computed
from components of (dω, dψ±). In fact, there are algebraic correspondences (see [8])

N3,0
J ↔ (dω)3,0 ↔

(
(dψ+)0,0, (dψ−)0,0

)
,

NV
J ↔

(
(dψ+)2,2

0 , (dψ−)2,2
0

)
.

The first arrow is given by equation (4.1). The notation here means the following. A
generic four-form η has a component in Λ2,2 = Λ2,0 ∧ Λ0,2. In dimension 6, Λ2,2 has
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two subspaces, the primitive part Λ2,2
0 (isomorphic to su(3)⊗C) and the real span of

ω2 = ω ∧ ω. The respective components of η are then η2,2
0 and η0,0.

The SU(3)-structure function ∇gΨ is completely determined by the exterior deriv-
atives of the three forms ω, ψ+ and ψ−. These may be written as

dω = 3
(
σ+

0 ψ+ − σ−0 ψ−
)

+ 2σ+
1 ∧ ω + σ3,

dψ+ = −2σ−0 ω
2 + 3σ+

1 ∧ ψ+ − σ−1 ∧ ψ− + σ+
2 ∧ ω,(4.4)

dψ− = −2σ+
0 ω

2 + 3σ+
1 ∧ ψ− + σ−1 ∧ ψ+ + σ−2 ∧ ω.

Here σ±p are p-forms and σ3 is a three-form. They correspond roughly to the classes
W+

1 , W−
1 , W4, W5, W+

2 , W−
2 , and W3 of [8], respectively (see also [4]). These

determine the Gray-Hervella classes of the underlying almost Hermitian structure in
the obvious way.

4.2.2. A transformation. Set λ := σ+
0 + iσ−0 and Λ := |λ|. In neighbourhoods with

λ non-vanishing an argument ϕ := arg(λ) := arctan
(

σ−0
σ+
0

)
may be chosen. We then

set

ω̃ := Λ2ω,

ψ̃+ := Λ2
(
σ+

0 ψ+ − σ−0 ψ−
)
,

ψ̃− := Λ2
(
σ−0 ψ+ + σ+

0 ψ−
)
.

This gives the somewhat simpler structure equations

dω̃ := 3ψ̃+ + 2σ̃+
1 ∧ ω + σ̃3,

dψ̃+ := 3σ̃+
1 ∧ ψ̃+ − σ̃−1 ∧ ψ̃− + σ̃+

2 ∧ ω̃,

dψ̃− := −2ω̃2 + 3σ̃+
1 ∧ ψ̃− + σ̃−1 ∧ ψ̃− + σ̃−2 ∧ ω̃.

where

σ̃+
1 := σ+

1 + Λ−1dΛ, σ̃−1 := σ−1 − dϕ,

σ̃+
2 := σ+

0 σ
+
2 − σ−0 σ

−
2 , σ̃−2 := σ−0 σ

+
2 + σ+

0 σ
−
2 ,

σ̃3 := Λ2σ3.

In particular, the structure equations of a nearly Kähler 6-manifold can always be
put on the form [19, 29]

dω = 3ψ+, dψ− = −2ω2.

It is well known that these spaces are Einstein with positive scalar curvature [16].

Remark 6. The Lee form of an almost Hermitian manifold is, up to scale, the co-
differential δgω of the fundamental two-form. This means that, again up to scale, σ+

1

is the Lee-form. A pointwise conformal change of the metric ḡ = e2fg acts on the
forms ω, ψ± by ω̄ = e2fω, ψ̄± = e3fψ±. Therefore, the conformally changed torsion
component σ+

1 becomes σ̄+
1 = σ+

1 + df while all other torsion components merely
rescale. So σ−1 does not really correspond to the class W5 but rather to “3W4 +2W5”.
This choice for the one-forms was introduced by Mart́ın Cabrera [25].
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5. Locally conformally nearly Kähler 6-folds

For a 6-dimensional almost Hermitian manifold in the class W1 + W4 a (possibly
local) choice of trivialization (ψ+, ψ−) allows us to write the structure equations (4.2),
(4.4) as

dω = 3
(
σ+

0 ψ+ − σ−0 ψ−
)

+ 2σ+
1 ∧ ω,

dψ+ = −2σ−0 ω
2 + 3σ+

1 ∧ ψ+ − σ−1 ∧ ψ−,(5.1)

dψ− = −2σ+
0 ω

2 + 3σ+
1 ∧ ψ− + σ−1 ∧ ψ+.

Differentiating each equation yields

0 = 3(dσ+
0 + σ+

0 σ
+
1 − σ−0 σ

−
1 )ψ+ − 3(dσ−0 + σ−0 σ

+
1 + σ+

0 σ
−
1 )ψ− + 2dσ+

1 ω,(5.2)

0 = −2(dσ−0 + σ−0 σ
+
1 + σ+

0 σ
−
1 )ω2 + 3dσ+

1 ψ+ − dσ−1 ψ−,(5.3)

0 = −2(dσ+
0 + σ+

0 σ
+
1 − σ−0 σ

−
1 )ω2 + 3dσ+

1 ψ− + dσ−1 ψ+.(5.4)

These have the following immediate consequences. Equation (5.2) shows that dσ+
1 is

a (2, 0) + (0, 2) form as a linear combination of one-forms contracted with ψ+ and
ψ−. Using standard identities such as J(σ ∧ ψ+) = σ ∧ ψ− for an arbitrary two-form
σ and J(σ ∧ ω) = σ ∧ ω for a (1, 1)-form, as well as ∗(θ ∧ ψ−) = θ y ψ+ = (Jθ) y ψ−
for a one-form θ, leads to the equivalent set of equations:

dσ+
0 + σ+

0 σ
+
1 − σ−0 σ

−
1 = J(dσ−0 + σ−0 σ

+
1 + σ+

0 σ
−
1 ),(5.5)

dσ+
1 = 3(dσ−0 + σ−0 σ

+
1 + σ+

0 σ
−
1 ) y ψ+,(5.6)

(dσ−1 )2,0 = 7(dσ−0 + σ−0 σ
+
1 + σ+

0 σ
−
1 ) y ψ−.(5.7)

Lemma 7. Suppose (M6, ω, J) is an almost Hermitian manifold in the class W1+W4.
Then the Lee form is closed if and only if (ω, J) is either globally conformal to a nearly
Kähler structure (ω′, J ′) on M or locally conformally equivalent to a Kähler structure.

Proof. Suppose dσ+
1 = 0. Locally, we pick a smooth trivialisation (ψ+, ψ−) of

q
Λ3,0

y
.

Then, locally, equations (5.6) and (5.5) show that

dσ+
0 + σ+

0 σ
+
1 − σ−0 σ

−
1 = 0,

dσ−0 + σ−0 σ
+
1 + σ+

0 σ
−
1 = 0,

whence

d
(
(σ+

0 )2 + (σ−0 )2
)

+ ((σ+
0 )2 + (σ−0 )2)(2σ+

1 ) = 0.

However,
φ := (σ+

0 )2 + (σ−0 )2 = 1
9

∥∥dω3,0
∥∥2

is a globally well-defined, smooth function, and α := 2σ+
1 is closed. So Lemma 3

applies and we conclude that
∥∥dω3,0

∥∥ is either non-zero everywhere, or it vanishes at
all points. �

Remark 8. Almost Hermitian manifolds in the class W1 +W3 +W4 are characterized
by NV

J = 0, i.e. the Nijenhuis tensor is totally skew-symmetric. This amounts to
the existence of a linear connection preserving the almost Hermitian structure with
totally skew-symmetric torsion [13]. This is in particular true for almost Hermitian
structures in the class W1 + W4. Another is the class of so-called quasi-integrable
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structures, see [5]. The properties of this in stark contrast to the situation for the
W1 +W4 structures studied here. In fact, for quasi-integrable complex structures the
Nijenhuis tensor either vanishes identically or the zero locus of NJ is of co-dimension
at least 2 [5].

Theorem 9. Let M be a 6-dimensional manifold with an almost Hermitian structure
(ω, J) in the Gray-Hervella class W1 + W4. Then either (ω, J) is locally conformally
equivalent to Kähler structure on M , or (ω, J) is a conformal transformation of a
nearly Kähler structure.

Proof. Write M as a disjoint union M0 ∪M1 where

M0 :=
{
x ∈M : (dω)3,0 = 0

}
, M1 :=

{
x ∈M : (dω)3,0 6= 0

}
.

On the open submanifold M1 there is a canonical choice of trivialization of
q
Λ3,0

y

given by taking ψ+ = (dω)3,0. After a suitable transformation (as in section 4.2.2)
we obtain the structure equations

dω̃ = 3ψ̃+ + 2σ̃+
1 ∧ ω̃,

dψ̃+ = 3σ̃+
1 ∧ ψ̃+ − σ̃−1 ∧ ψ̃−,(5.8)

dψ̃− = −2ω̃2 + 3σ̃+
1 ∧ ψ̃− + σ̃−1 ∧ ψ̃+.

Equations (5.5), (5.6) and (5.7) then become

σ̃+
1 = Jσ̃−1 ,

dσ̃+
1 = 3σ̃−1 y ψ̃+,(5.9)

(dσ̃−1 )2,0 = 7σ̃−1 y ψ̃−.

Using Lemma 5 with θ = σ̃+
1 , θ

′ = σ̃−1 , and the identity J(1)(σ y ψ±) = (Jσ) y ψ± =
∓σ y ψ∓ valid for all one-forms σ, we get

dσ̃+
1 − J(1)(dσ̃−1 )2,0 = −2σ̃+

1 y ψ̃− = −2σ̃−1 y ψ̃+.

This is only compatible with the relations (5.9) if σ̃−1 yψ̃+ = 0. Therefore σ̃+
1 = σ̃−1 = 0

and the original one-forms σ±1 are, in fact, exact on M1. Moreover, on the interior of
M0, dω = 2σ+

1 ∧ ω, so dσ+
1 |int(M0)= 0 also holds.

So the set of points at which dσ+
1 6= 0, which clearly is open, is the common

boundary of two open sets in M , at least one of which is non-empty. Therefore
dσ+

1 = 0 on all of M and Lemma 7 completes the proof. �

6. Proof of Theorem 1 and Theorem 2

Theorem 4 and Theorem 9 show that the Riemannian manifold (M, g) is globally
conformal to an Einstein space of positive scalar curvature. Further, if the scalar
curvature is constant then the Obata Theorem ( see [28] or the more recent proof in
[23]) tells us that the conformal transformation making the metric Einstein is trivial,
or else (M, g) is the standard sphere. The two theorems also show that the conformal
change takes the G structure to a nearly Kähler structure (in dimension 6) or nearly
parallel structure (for dimension 7). On spheres such structures are unique up to
isometry, see [12] �
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7. Curvature classification

The Riemannian curvature tensor of a nearly Kähler 6-manifolds or a nearly par-
allel G2-manifold is especially simple. In fact, viewing curvature tensors as bundle
endomorphisms R : Λ2 → Λ2, the curvature splits as

(7.1) Rg = Rg +
sg

2n(n− 1)
IdΛ2 .

where Rg, formally, is the curvature tensor of a space with holonomy algebra g and n
is the dimension of the underlying space, see [29]. This formula is reminiscent of the
curvature formula for a Riemannian manifold with holonomy Sp(n)Sp(1) of [30]. In
the cases of concern, g and n are equal to su(3) and 6 for nearly Kähler and g2 and 7
for nearly parallel G2. In either situation the tensor Rg takes values in a G-irreducible
subspace of the space of algebraic Weyl tensors, i.e., algebraic curvature tensors with
vanishing Ricci contraction. Standard identities [3] now make it possible to deduce
the form of the curvature tensor for an almost Hermitian or G2 space of type W1+W4,
or X1 + X4, respectively. Further details may be found in [9].

Theorem 10. (a) Suppose (M,φ) is a G2 manifold of strict type X1 + X4 such that
the associated metric g is complete and Einstein. Then (M, g) is isometric to
either the sphere, the hyperbolic space or the euclidean space equipped with a
constant curvature metric.

(b) Suppose (M,ω, J) is an almost Hermitian 6-manifold of strict type W1 +W4 such
that the associated metric g is complete and Einstein. Then (M, g) is isometric
to either the sphere, hyperbolic space or euclidean space equipped with a constant
curvature metric.

Proof. Theorem 4 and Theorem 9 show that under the given assumptions the metrics
in either case must be both Einstein and conformally Einstein. Up to isometry and
homothety, there are only five Riemannian manifolds such that the metric is complete
and Einstein and a conformal change of the metric is also Einstein, see the Main
Theorem of [22]. Of these only the ones listed under item a and b have positive scalar
curvature after the conformal change. �

Corollary 11. Let M be a G2 manifold or almost Hermitian 6-manifold of strict type
X1 +X4 or W1 +W4, respectively with complete metric. Assume that the Riemannian
curvature of M is of the form (7.1). Then M has constant sectional curvature and
in particular Rg = 0.
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