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HYPERPLANE SECTIONS OF LEGENDRIAN SUBVARIETIES

Jaros law Buczyński

Abstract. We prove that a general hyperplane section of a smooth Legendrian subva-

riety in a projective space admits Legendrian embedding into another projective space.

This gives numerous new examples of smooth Legendrian subvarieties, some of which
have positive Kodaira dimension.

1. Introduction and statement of results

The main object of our studies are Legendrian subvarieties in projective space.

Definition. Let ω be a symplectic form on V = C2n+2. A subvariety X ⊂ P(V ) is
Legendrian, if for each smooth point of its affine cone X̂ the tangent space to X̂ ⊂ V
at this point is Lagrangian, i.e., maximal isotropic with respect to ω.

Prior to this paper, one of the problems regarding smooth Legendrian subvarieties
of P2n+1 has been the lack of examples. It has been hoped, that in higher dimensions
there is only a few of examples, mainly some homogeneous varieties, so called subad-
joint varieties (see [6], [2], [8]). Strong restrictions on topology of smooth Legendrian
varieties have been found and studied by Landsberg and Manivel.

In this article we prove:

Theorem 1.1. Let X ⊂ P(V ) be an irreducible Legendrian subvariety, which is
smooth or has only isolated singularities. Then a general hyperplane section of X
admits a Legendrian embedding into a projective space of an appropriate dimension
via a specific subsystem of the linear system O(1).

More generally, assume X ⊂ P(V ) is an irreducible Legendrian subvariety with
singular locus of dimension k and H ⊂ P(V ) is a general hyperplane. Then there
exists a variety X̃H whose singular locus has dimension at most k − 1 and which
has an open subset isomorphic to the smooth locus of X ∩H such that X̃H admits a
Legendrian embedding.

The specific linear system and construction of X̃H is described in section 2.1 and
there we prove that the resulting variety is Legendrian. The proof that for a general
section the result has the required smoothness property is presented in section 2.2.

This simple observation has quite strong consequences. Many researchers, includ-
ing Landsberg, Manivel, Wísniewski, Hwang and the author of this article, believed
that the structure of smooth Legendrian subvarieties in projective space had to be
somehow rigid at least in higher dimensions. So far the only non-rational examples
were known in dimensions 1 (see [1, thm G]) and 2 (see [6, §4]) and these were also
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the only known to come in families. Now applying our theorem to the subadjoint
varieties we get many more examples with various properties:

Example 1.2. The following smooth varieties and families of smooth varieties admit
Legendrian embedding:

(a) a family of K3 surfaces of genus 9;
(b) three different types of surfaces of general type;
(c) some Calabi-Yau 3-folds, some Calabi-Yau 5-folds and some Calabi-Yau 9-

folds;
(d) some varieties of general type in every of dimensions 3, 4 (two families for

every dimension), 5,6,7 and 8 (one family per dimension).
(e) some Fano varieties, like the blow up of a quadric Qn in a codimension 2 hy-

perplane section Qn−2, a family of Del Pezzo surfaces of degree 4 and others;
(f) infinitely many non-isomorphic, non-homogeneous Legedrian varieties in ev-

ery dimension arising as a codimension k linear section of P1 ×Qn+k.

Example (a) agrees with the prediction of [6, §2.3]. Examples (b) and (d) give
a partial answer to the question of a possible Kodaira dimension of a Legendrian
variety (also see [6, §2.3]). Example (f) is a contradiction to the naive expectation
that Legendrian variety in a sufficiently high dimension must be homogeneous.

We also note that previous examples of the author also arise in this way. Example
(e) for n = 2 is described in [4, ex. 3.4]. Hyperplane sections of Gr(3, 6), GrL(3, 6), S6

are studied in more details in [3]. Also non-homogeneous examples of other authors,
Bryant [1], Landsberg and Manivel [6] can be reconstructed by theorem 1.1 from some
varieties with only isolated singularities (see section 3).

All the varieties arising from theorem 1.1 and our construction in subsection 2.1
are embedded by a non-complete linear system. Therefore a natural question arises:
what are the smooth Legendrian varieties whose Legendrian embedding is linearly
normal. Another question is whether the construction can be inverted. So for a given
Legendrian, but not linearly normal embedding of some variety X̃, can we find a
bigger Legendrian variety X, such that X̃ is a projection of a hyperplane section of
X?

Building upon ideas of Bryant, Landsberg and Manivel we suggest a construction
that provides some (but far from perfect) answer for the second question in section
3. In particular we represent the example of Landsberg and Manivel as a hyperplane
section of a 3-fold with only isolated singularities and the examples of Bryant as
hyperplane sections of surfaces with at most isolated singularities.

Legendrian varieties arise as varieties of tangent directions to minimal rational
curves on contact manifolds (see [2, §2] and references therein for a brief review on
the subject). Having many examples of smooth Legendrian varieties (as well as fam-
ilies of such), can we construct a new example of a contact manifold, whose variety
of tangent directions to minimal rational curves is one of the Legendrian varieties (or
is in the given family)? It is unlikely that the answer is positive, but if not, then
what are the obstructions, i.e., what conditions should we request for the Legendrian
variety to make the reconstruction of contact manifold possible?
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2. Hyperplane section

2.1. Construction. The construction is as follows. Let H ∈ P(V ∗) be a hyperplane
in V . By

h := H⊥ω ⊂ V

we denote the ω-perpendicular to H subspace of V , which in this case is a line con-
tained in H. We think of h both as a point in the projective space P(V ) and a line
in V . We define

π : P(H)\{h} −→ P(H/h)
to be the projection map and for a given Legendrian subvariety X ⊂ P(V ) we let
X̃H := π(X ∩H).

We have a natural symplectic structure ω′ on H/h determined by ω. Also X̃H is
always isotropic (i.e., the tangent bundle to X̃H is contained in the contact distri-
bution) as the projection map H −→ H/h preserves the two 2-forms ω|H , ω′ and
moreover, every map of algebraic varieties is generically a submersion onto the image.

Also unless X is a cone with vertex h (so the choice of H is very special), the
dimension dim X̃H = dim(X ∩H) = dim X − 1 so that X is Legendrian.

Note that so far we have not used any smoothness condition on X.

2.2. Proof of smoothness. Hence to prove theorem 1.1 it is enough to prove that
for a general H ∈ P(V ∗), the map π gives an isomorphism of the smooth locus of
X ∩H onto its image, an open subset in X̃H .

For a variety Y ⊂ Pm we denote by σ(Y ) ⊂ Pm its secant variety, i.e., closure of
the union of all projective lines through y1 and y2, where (y1, y2) vary through pairs
of different points of Y .

Lemma 2.1. Let Y ⊂ Pm, choose such a point y ∈ Pm that y /∈ σ(Y ) and let
π : Pm\{y} −→ Pm−1 be the projection map.

(a) If Y is smooth then π gives an isomorphism of Y and π(Y ).
(b) In general, π is 1 to 1 and π is an isomorphism of the smooth part of Y onto

its image. In particular the dimension of singular locus of Y is greater or
equal to the dimension of singular locus of π(Y ).

Proof. See [5, prop. IV.3.4 and exercise IV.3.11(a)]. We only note, that if Y is
smooth, then the secant variety σ(Y ) contains all the embedded tangent spaces of Y .
They arise when y2 approaches y1. �

Now we can prove theorem 1.1:

Proof. By the lemma and the construction in subsection 2.1 it is enough to prove that
there exists h ∈ P(V ) s.t. h /∈ σ(X ∩ h⊥ω ).

Given two different points x1 and x2 in a projective space we denote by 〈x1, x2〉
the projective line through x1 and x2. Let:

σ̃(X) ⊂ X ×X × P(V ), σ̃(X) := {(x1, x2, p)| p ∈ 〈x1, x2〉}
so that σ̃(X) is the incidence variety for the secant variety of X. Obviously,
dim(σ̃(X)) = 2 dim X + 1 = dim(P(V )). Also we let:

κ(X) ⊂ σ̃(X), κ(X) := {(x1, x2, h)| h ∈ 〈x1, x2〉 and x1, x2 ∈ h⊥ω}.
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so that the image of the projection of κ(X) onto the last coordinate is the locus
of ’bad’ points. More precisely, for a point h ∈ P(V ) there exist (x1, x2) such that
(x1, x2, h) ∈ κ(X) if and only if h ∈ σ(X ∩ h⊥ω ).

We claim that the image of κ(X) under the projection is not whole the P(V ). To
see that note, that the condition defining κ(X), i.e., h ∈ 〈x1, x2〉, x1, x2 ∈ h⊥ω is
equivalent to h ∈ 〈x1, x2〉 and 〈x1, x2〉 is an isotropic subspace of V . Now either X is
a linear subspace and then both the claim and the theorem are obvious or there exist
two points x1, x2 ∈ X such that ω(x̂1, x̂2) 6= 0 where by x̂i we mean some non-zero
point in the line xi ⊂ V . Therefore κ(X) is strictly contained in σ̃(X) and

dim(κ(X)) < dim(σ̃(X)) = dim P(V ),

so the image of κ(X) under the projection cannot be equal to P(V )1. �

Corollary 2.2. Let X ⊂ P(V ) be an irreducible Legendrian subvariety whose singular
locus has dimension at most k−1. If H ⊂ P(V ) is a general coisotropic linear subspace
of codimension k, then X̃H := X ∩H is smooth and admits a Legendrian embedding
via an appropriate subsystem of linear system O eX(1).

�

We sketch some proofs for examples 1.2:

Proof. K3 surfaces of (a) arise as codimension 4 linear sections of Lagrangian Grass-
mannian GrL(3, 6). Since the canonical divisor KGrL(3,6) = OGrL(3,6)(−4) (in other
words GrL(3, 6) is Fano of index 4), by the adjunction formula, the canonical divisor
of the section is indeed trivial. On the other hand, by [6, prop. 9] it must have
genus 9. Although we take quite special (coisotropic) sections, they fall into the 19
dimensional family of Mukai genus 9 K3-surfaces [7] and they form a 13 dimensional
subfamily.

The other families of surfaces as in (b) arise as sections of the other exceptional
subadjoint varieties: Gr(3, 6), S6 and E7. Since they are all Fano of index 6, 10 and
18 respectively and their dimensions are 9, 15 and 27 hence taking successive linear
sections we get to Calabi-Yau manifolds as stated in (c) and further the canonical
divisor is very ample, so we have examples of general type as stated in (b) and (d).

The Fano varieties arise as intermediate steps, before coming down to the level of
Calabi-Yau manifolds. Also P1×Qn is a subadjoint variety and its hyperplane section
is the blow up of a quadric Qn in a codimension 2 hyperplane section. The Del Pezzo
surfaces are the hyperplane sections of the blow up of Q3 in a conic curve. �

3. Extending Legendrian varieties

Our motivation is the example of Landsberg and Manivel [6, §4], a Legendrian
embedding of a Kummer K3 surface blown up in 12 point. It can be seen, that this
embedding is given by a codimension 1 linear system. We want to find a Legendrian
3-fold in P7 whose hyperplane section is this example. Unfortunately, we are not

1The inequality on the dimenisons, although simple, is essential for the proof. An analogous

construction for Lagrangian subvarieties in symplectic manifolds is known as symplecic reduction,
but does not produce smooth Lagrangian subvarieties.
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able to find a smooth 3-fold with these properties, but we get one with only isolated
singularities.

We recall the setup for the construction of the example. Let W be a vector space of
dimension n+1. Let Z be any subvariety in Pn = P(W ) and let Z∗ ⊂ P̌n = P(W ∗) be
its dual variety in the dual projective space. Also let Z] ⊂ P(T ∗Pn) ⊂ Pn× P̌n be the
conormal variety, i.e., the closure of the union of projectivised conormal spaces over
smooth points of Z. Landsberg and Manivel study in details an explicit birational
map ϕ := ϕH0,p0 : P(T ∗Pn) 99K P2n−1 which depends on a hyperplane H0 in Pn and
on a point p0 ∈ H0. After Bryant [1] they observe that ϕ(Z) (if only makes sense)
is always a Legendrian subvariety, but usually singular. Next they study conditions
under which ϕ(Z) is smooth. In particular they prove that the conditions are satisfied
when Z is a Kummer quartic surface in P3 in general position with respect to p0 and
H0 and this gives rise to their example.

We want to modify the above construction just a little bit to obtain our 3-fold.
Instead of considering Z] as a subvariety in

P(W ) × P(W ∗) = (W \ {0}) × (W ∗ \ {0})/C∗ × C∗,

we consider a subvariety X in

P2n+1 = P(W ⊕W ∗) = (W ×W ∗) \ {0}/C∗

such that the underlying affine cone of X in W × W ∗ is the same as the underlying
affine pencil of Z]. In other words, we take X to be the closure of preimage of Z]

under the natural projection map:

p : P(W ⊕W ∗) 99K P(W ) × P(W ∗).

Theorem 3.1. Let X ⊂ P(W ⊕W ∗) be a subvariety constructed as above from any
irreducible subvariety Z ⊂ P(W ). Then:

(i) X is a Legendrian subvariety contained in the quadric p−1 (P(T ∗P(W ))).
(ii) Choose H to be a hyperplane section of P(W ⊕ W ∗) which does not contain

P(W ) nor P(W ∗). Set H0 := P(W )∩H and p0 to be the point in P(W ) dual to
P(W ∗)∩H and assume H is chosen in such a way that p0 ∈ H0. So we have
two Legendrian subvarieties in P2n−1: one is the closure of ϕH0,p0(Z]) as in
the construction of [6, §4] and the other (as in subsection 2.1) is the image
under projection from H⊥ω of X ∩H. Then the two constructions agree, i.e.,
ϕH0,p0(Z]) is a component of the image of X ∩H.

(iii) X is singular at the following points: on X ∩P(W ) at singular points of Z ⊂
P(W ), on X ∩P(W ∗) at the singular points of Z∗ and outside P(W )∪P(W ∗)
at the preimage under p of the singular points of the conormal variety Z].

Proof. Part (i) is an easy verification - simply the affine tangent space to X at a
general point [w,α] ∈ X ⊂ P(W ⊕W ∗) is the sum T[w]Ẑ ⊕N∗

[w](Ẑ ⊂ W ).

For part (ii), we choose coordinates x0, x1, . . . , xn on W and dual coordinates
y0, y1, . . . , yn on W ∗ such that in the induced coordinates on V the hyperplane H
has the equation x0 − yn = 0. Now restrict to the affine piece x0 = yn = 1 on both
H and P(W ) × P(W ∗). We see explicitely, that the projection map H → P2n−1,

[1, x1, . . . , xn, y0, . . . , yn−1, 1] 7→ [y1, . . . , yn−1, y0 − xn, x1, . . . , xn−1, 1]
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agrees with the map ϕ from [6, §4].

To find singularities of X on X ∩ P(W ) as in part (iii) note that X ⊂ P(W ⊕W ∗)
is invariant under the following action of C∗:

t · [w,α] := [tw, t−1α].

In particular points of X ∩P(W ) are fixed points of the action. So let [w, 0] ∈ X and
then T[w,0]X decomposes into the eigenspaces of the action:

(3.2) T[w,0]X = T[w,0](X ∩ P(W )) ⊕ T[w,0](X ∩ Fw)

where Fw is the fibre of the projection: ρ : (P(W ⊕ W ∗)\P(W ∗)) → P(W ), Fw :=
ρ−1([w]). Clearly the image of X under the projection ρ is Z, so the dimension of
a general fibre of ρ|X : X → Z is equal to dim X − dim Z = dim P(W ) − dim Z =
codimPW Z. Therefore, since the dimension of the fibre can only grow at special
points, we have:

(3.3) dim T[w,0](X ∩ Fw) ≥ dim(X ∩ Fw) ≥ codimP(W ) Z

Also d[w,0](ρ|X) : T[w,0]X → T[w]Z maps T[w,0](X ∩ Fw) to 0 and T[w,0](X ∩ P(W ))
onto T[w]Z. Therefore:

(3.4) dim T[w,0](X ∩ P(W )) ≥ dim T[w]Z ≥ dim Z.

Now assume [w, 0] is a smooth point of X. Then adding (3.3) and (3.4) we get:

dim X = dim T[w,0]X =

by (3.2)
= dim T[w,0](X ∩ Fw) + dim T[w,0](X ∩ P(W )) ≥

≥ codimP(W ) Z + dim Z = dim P(W ).

By (i) the very left side is equal to the very right side, so in (3.3) and (3.4) all the
inequalities are in fact equalities. In particular dim T[w]Z = dim Z, so [w] is a smooth
point of Z.

Conversely, assume [w] is a smooth point of Z, then the tangent space

T[w,0]X = T[w]Z ⊕N∗
[w](Z ⊂ P(W )),

therefore clearly [w, 0] is a smooth point of X.
Exactly the same argument shows that X is singular at a point [0, α] ∈ X ∩P(W ∗)

if and only if Z∗ is singular at [α].
For the last part of (iii) it is enough to note that p is a locally trivial C∗-bundle

when restricted to P(W ⊕W ∗)\ (P(W ) ∪ P(W ∗)). �

Corollary 3.5. Given a Legendrian subvariety Z̃ ⊂ P2n−1 we can take Z# :=
φ−1

H0,p0
(Z̃) to construct a Legendrian subvariety in P(T ∗Pn). Such a variety must

be a conormal variety to some variety Z ⊂ Pn. Let X ⊂ P2n+1 be the Legendrian
variety constructed above. By theorem 3.1 (ii), a component of a hyperplane section
of X can be projected onto Z̃.

Unfortunately, in the setup of the theorem almost always X is singular.
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Example 3.6. If Z is a Kummer quartic surface in P3 then X is a 3-fold with 32
isolated singular points. Therefore by theorem 1.1 a general hyperplane section of X is
smooth and admits a Legendrian embedding. By theorem 3.1 the example of Landsberg
and Manivel is a special case of this hyperplane section. Even though the condition
p0 ∈ H0 is a closed condition, it intersects the generality conditions of theorem 1.1
and therefore this hyperplane section consist of a unique smooth component that is
projected isomorphically onto Z̃.

Example 3.7. Similarly, if Z is a curve in P2 satisfying generality conditions of
Bryant [1, thm G], then X is a surface with only isolated singularities and its hyper-
plane section projects isomorphically onto Bryant Legendrian curve.
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