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THE SHARP CONSTANT IN THE HARDY-SOBOLEV-MAZ’YA
INEQUALITY IN THE THREE DIMENSIONAL UPPER

HALF-SPACE

Rafael D. Benguria, Rupert L. Frank, and Michael Loss

Abstract. It is shown that the sharp constant in the Hardy-Sobolev-Maz’ya inequality
on the upper half space H3 ⊂ R3 is given by the Sobolev constant. This is achieved by

a duality argument relating the problem to a Hardy-Littlewood-Sobolev type inequality
whose sharp constant is determined as well.

1. Introduction

The present work is concerned with a particular case of the Hardy-Sobolev-Maz’ya
inequality

(1)
∫

Hn

[
|∇f(x)|2 − 1

4y2
|f(x)|2

]
dx ≥ Cn

(∫
Hn

|f(x)|
2n

n−2 dx
)n−2

n

.

Here f is a function that lives in the half space

(2) Hn := {x = (x, y) : x ∈ Rn−1, y > 0}
in a sense to be defined later. For the moment the reader may assume that f is
compactly supported in Hn. It is quite easy to see that the left side of (1) is positive;
this is Hardy’s inequality. That (1) holds for a strictly positive constant Cn if n ≥ 3
was proved by Maz’ya [9] (Section 2.1.6., Corollary 3). In what follows, Cn denotes
the sharp constant in the above inequality. It was shown in recent work by Tertikas
and Tintarev [10] among other things, that an optimizer for the sharp constant Cn

exists provided the dimension n ≥ 4. Using a trial function they show that Cn < Sn

where Sn is the Sobolev constant and then use a concentration compactness argument
to establish the existence of an optimizer. Except for the fact that Cn < Sn for n ≥ 4
nothing is known about the value of Cn.

The inequality (1) has a number of equivalent formulations. For once it is equivalent
to the inequality

(3)
∫

Bn

|∇g(Ω)|2dΩ−
∫

Bn

1
(1− |Ω|2)2

|g(Ω)|2dΩ ≥ Cn

(∫
Bn

|g(Ω)|
2n

n−2 dΩ
)n−2

n

where Bn is the unit ball in Rn. To see this, set

(4) f(x, y) =
(

2
(1 + y)2 + x2

)n−2
2

g(B(x, y)) ,
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where B is the Möbius transformation that maps the upper half space Hn to the unit
ball Bn, i.e.,

(5) Ω = B(x, y) =

(
2x, 1− x2 − y2

)
(1 + y)2 + x2

.

Inserting (4) into (1), a straightforward computation involving some integration by
parts yields (3). Clearly, this inequality is invariant under rotations. Note that these
two representations, the one on the half space and the one on the unit ball show
the invariance of the inequality under all Möbius transformations that preserve the
upper half space. By restricting these transformations to the bounding hyperplane
one obtains the Möbius group of Rn−1, i.e., the group generated by the Euclidean
transformations that preserve this hyperplane together with scaling and inversion
about the unit sphere. Thus, the Möbius group that preserves the upper half space
and the Möbius group of Rn−1 are isomorphic. This indicates that the term containing
the expression (1− |Ω|2)−2 has some intrinsic geometric meaning.

Another natural way to rewrite the problem (1) is via stereographic projection
from the unit ball to the hyperboloid Pn. Once more, set

(6) g(Ω) =
(

2
1− |Ω|2

)n−2
2

k(P (u))

where

(7) P (u) =

(
2Ω, 1 + |Ω|2

)
1− |Ω|2

.

It is easy to check that P maps the unit ball to the upper branch of the hyperboloid
u2 − v2 = −1, where u = (u, v), u ∈ Rn and v ∈ R. Inserting (6) into (3) yields the
equivalent inequality

(8)
∫

Pn

|∇k(u)|2dVol− (n− 1)2

4

∫
Pn

|k(u)|2dVol ≥ Cn

(∫
Pn

|k(u)|
2n

n−2 dVol
)n−2

n

.

The metric used here on Pn is the one induced by the Euclidean space Rn+1. Note
that (n− 1)2/4 is the infimum of the spectrum of the hyperbolic Laplacian −∆Pn .

As mentioned before, the half space problem has been investigated in [10], but in
its formulation on the hyperbolic space it has also been investigated before (see [6]
and references in there) although under a different point of view. There, one asks
whether there exists a constant Bn such that the inequality

(9)
∫

Pn

|∇k(u)|2dVol ≥ Sn

(∫
Pn

|k(u)|
2n

n−2 dVol
)n−2

n

+ Bn

∫
Pn

|k(u)|2dVol

holds. Here, Sn is the Sobolev constant,

(10)
n(n− 2)

4
|Sn| 2n

where |Sn| is the volume of the n-dimensional unit sphere in Rn+1. For n > 3 the
sharp constant Bn = n(n−2)

4 (see [6]). Note that n(n−2)
4 < (n−1)2

4 . In this language,
the problem investigated in [10] is different, i.e., replace Bn by the optimal constant
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and then find the sharp constant Cn that will replace Sn. Certainly Cn ≤ Sn, in fact
Cn < Sn for n > 3. Note that, in this case the exact value of Cn is not known.

In both formulations the interesting case n = 3 is conspicuously absent and it
is this case we would like to address in this letter. Before stating the theorem we
mention some preliminaries. For smooth functions of compact support on Hn one has
that

(11)
∫

Hn

|∇f(x, y)|2dxdy −
∫

Hn

f(x, y)2

4y2
dxdy =

∫
Hn

y|∇g(x, y)|2dxdy ,

where

(12) g(x, y) =
f(x, y)
√

y
.

Since the right side of (11) is positive, we can extend it to all functions f for which
this expression is finite. More precisely we say that f ∈ D1(Hn) if the corresponding
g vanishes at infinity in dxydy- measure, and the weak derivative of g(x, y) is square-
integrable with respect to this measure. Recall that ‘vanishing at infinity in dxydy
measure’ means that the set {|g(x, y)| > a} has finite dxydy- measure for every a > 0.
Note, that for such functions, the two terms in (1) may be separately infinity, but
their difference is well defined and finite. For such functions it was established in [10]
that for n ≥ 4 an optimizer exists for (1).

We have

THEOREM 1.1. Let f ∈ D1(H3). Then f ∈ L6(H3) and the inequality

(13)
∫

H3
|∇f(x)|2dx ≥

∫
H3

1
4y2

|f(x)|2dx + S3

(∫
H3
|f(x)|6dx

) 1
3

holds where S3 is the sharp Sobolev constant in three dimensions, i.e.,

(14) S3 = 3(π/2)4/3 .

The inequality is always strict for nonzero f ’s. Using the formulation on hyperbolic
space we have the inequality

(15)
∫

P3
|∇k(u)|2dVol ≥ S3

(∫
P3
|k(u)|6dVol

) 1
3

+
∫

P3
|k(u)|2dVol .

At first sight (13) seems to contradict the well known fact that Hardy’s inequality

(16)
∫

H3
|∇f(x)|2dx ≥

∫
H3

1
4y2

|f(x)|2dx

as well as Sobolev’s inequality

(17)
∫

H3
|∇f(x)|2dx ≥ S3

(∫
H3
|f(x)|6dx

) 1
3

are sharp in the sense that in each the constant on the right side cannot be replaced
by a larger one. None of them, however, has a non-zero optimizer and the optimizing
sequence in Hardy’s inequality are far from optimal for Sobolev’s inequality and vice
versa. In fact Theorem 1.1 says that if hm,m = 1, 2, . . . is an optimizing sequence
for Hardy’s inequality, then necessarily ‖hm‖6 → 0 as m → ∞ and likewise if gm is
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an optimizing sequence for Sobolev’s inequality on the half-space we necessarily must
have that

∫
g2

m/y2 → 0 as m →∞.
Inequality (15) which is equivalent to (13) shows the remarkable fact that in three

dimensions −∆P3 − 1, as far as Sobolev’s inequality is concerned, behaves as −∆
on R3.

In contrast to the case n = 3, for n ≥ 4 the sharp constant is always attained for
some nonzero function (see [10]).

The problem (1) has been generalized to the case where the underlying domain
D is a convex set. In this case one replaces 1

4y2 by 1
4d(x)2 where d(x) is the distance

of the point x ∈ D to the boundary of D. It is conjectured in [10] that the sharp
constant for convex domains is given by the half space problem. This is true for the
case where the domain is a ball. First we define D1(Bn) to be those functions g for
which the corresponding function f given by (4) is in D1(Hn). We have

THEOREM 1.2. Let g ∈ D1(Bn). Then g ∈ L
2n

n−2 (Bn) and

(18)
∫

Bn

|∇g(Ω)|2dΩ−
∫

Bn

1
4(1− |Ω|)2

|g(Ω)|2dΩ ≥ Cn

(∫
Bn

|g(Ω)|
2n

n−2 dΩ
)n−2

n

.

For nonzero g’s the inequality is always strict.

The inequality follows directly from (3) by noting that for |Ω| < 1,

(19)
1

(1− |Ω|2)2
>

1
4(1− |Ω|)2

.

That the inequality is sharp and always strict for non-zero functions can be seen by
scaling down a compactly supported ‘almost’ optimizer of the half space problem and
use this as a trial function for the ball problem. Note that this device also works for
general convex domains. The hard part is to establish the analog of (18) for general
convex domains.

An amusing consequence of the formulation (3) is that by inversion with respect
to the unit sphere one obtains a sharp inequality on the complement of the unit ball,
i.e., we have

THEOREM 1.3. The inequality
(20)∫

(Bn)c

|∇g(Ω)|2dΩ−
∫

(Bn)c

1
(1− |Ω|2)2

|g(Ω)|2dΩ ≥ Cn

(∫
(Bn)c

|g(Ω)|
2n

n−2 dΩ

)n−2
n

holds for all functions g with the property that |x|−(n−2)g( x
|x|2 ) ∈ D1(Bn). Moreover,

for n > 3 equality can be attained.

The appropriate formulation of this inequality for general domains, not necessarily
convex, is an open problem. Theorem 1.3 suggests that the ‘correct’ inequality is
formulated in terms of either the harmonic radius or the hyperbolic radius of a domain
D. For a definition of these concepts we refer the reader to [1]. Both of these objects
are conformally covariant, i.e., under conformal transformations they scale with the
n-th root of the Jacobian. In the case of a ball, the two concepts coincide and are
equal to (1− |Ω|2). Since the ball and the half space are conformally the same, these
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two concepts coincide also on the half space and are given by 2y. Thus, it is natural
to ask for which domain D does the inequality

(21)
∫

D

[
|∇f |2 − 1

R(x)2
|f(x)|2

]
dnx ≥ Cn

(∫
D

|f(x)|
2n

n−2 dnx

)n−2
n

hold? Here R(x) is either the harmonic radius or the hyperbolic radius. While the
sharp constant Cn is the same for conformally equivalent domains, is it the same for
all convex domains? We do not know the answers to these questions.

The plan of the paper is the following. In Section 2 we derive the Green function
for fractional powers of the operator −∆− 1

4y2 . This yields Hardy-Littlewood-Sobolev
type kernels. In Section 3 we prove Lp estimates for these kernels and recover Theo-
rem 1.1.

2. The Green function

From now on the dimension n is arbitrary. It is convenient to start with the
following heat type equation on the upper half space Hn

(22) ut = ∆u +
1

4y2
u , u(x, y; 0) = f(x, y) .

Substituting u =
√

yg one obtains the equation

(23) gt = ∆xg + gyy +
1
y
gy , g(x, y; 0) =

f(x, y)
√

y
,

and one sees that the right side of the equation is an n + 1 dimensional Laplacian.
Note that gyy + 1

y gy is the two dimensional Laplacian of a radial function. A similar
idea has been used in [2] in a different context. With this in mind one arrives at once
at the following formula for the solution of the heat equation

(24) u(x, y; t) =
∫

Hn

G(x− x′, y, y′; t)f(x′, y′)dx′dy′

where

(25) G(x− x′, y, y′; t) =
(

1
4πt

)n+1
2 √

yy′e−
(x−x′)2+y2+y′2

4t

∫ 2π

0

e
yy′
2t cos φdφ .

It is not hard to see that this heat kernel is a contraction semigroup on L2(Hn)
with Lebesgue measure. Thus, the generator Q is a selfadjoint operator and it is an
extension of −∆− 1

4y2 originally defined on smooth functions with compact support
in Hn. Note that the L2-norm of the gradient of functions in the domain of Q is in
general not finite. We shall continue to use the symbol −∆− 1

4y2 to denote Q.
It is straight forward to see (see e.g., Theorem 7.10 in [8]) that

(26) lim
t→0

1
t

[
‖f‖2L2(Hn) − (f,Gtf)L2(Hn)

]
= 2π

∫
Hn

(
|∇xg|2 + |gy|2

)
ydydx

where Gtf is the solution of the intial value problem (22) and g = f√
y . Note that

the right hand side is manifestly positive and coincides with the interpretation of
−∆− 1

4y2 given in [10].
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Via the heat kernel we find the kernel of the fractional powers

(27) (−∆− 1
4y2

)−
α
2 (x;x′) =

1
Γ(α

2 )

∫ ∞

0

t
α
2 G(x− x′, y, y′; t)

dt

t
,

for α > 0, and a calculation leads to the expression

(−∆− 1
4y2

)−
α
2 (x;x′)(28)

= 2−απ−
n+1

2
Γ(n+1−α

2 )
Γ(α

2 )

√
yy′
∫ 2π

0

[
(x− x′)2 + y2 + y′2 − 2yy′ cos φ

]−n+1−α
2 dφ

=: Φn,α(x;x′) .

These formulae hold provided that 0 < α < n + 1.
Similarly, for 0 < α < n well known expressions hold for (−∆)−

α
2 on Rn which,

for reasons that become clear later, we write in terms of the variables (x, y) as

(−∆)−
α
2 (x;x′)(29)

= 2−απ−
n
2

Γ(n−α
2 )

Γ(α
2 )

[
(x− x′)2 + (y − y′)2

]−n−α
2

=: Γ(
n− α

2
)Ψn,α(x;x′) .

Note that Ψn,α is also defined for n = α. First we state some simple pointwise
properties about the kernel Φn,α.

LEMMA 2.1. If n ≤ α < n + 1, we have that

(30) sup
a

Φn,α(x, y + a;x′, y′ + a) = lim
a→∞

Φn,α(x, y + a;x′, y′ + a) ≡ ∞ .

If n− 1 ≤ α < n for n ≥ 2 and 0 < α < 1 for n = 1, we have that

(31) sup
a

Φn,α(x, y + a;x′, y′ + a) = lim
a→∞

Φn,α(x, y + a;x′, y′ + a) ≡ Ψn,α(x;x′) .

In this case

(32) Φn,α(x;x′) = Ψn,α(x,x′)F (A) ,

where

(33) A =
√

yy′

|x− x′|

and F (A) is strictly increasing towards Γ(n−α
2 ).

Proof. An elementary calculation shows that (32) holds for all α < n + 1 with F
defined as

(34) F (A) =
Γ(n+1−α

2 )
√

π

∫ π

−π

A

[1 + 2A2(1− cos(φ))]
n+1−α

2

dφ .

All the statements are an immediate consequence of Lemma 4.1 with β = n+1−α
2 . �
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3. Lp-estimates for fractional powers

As a consequence of Lemma 2.1 and Lieb’s sharp constant in the Hardy-Littlewood
Sobolev inequality [7] we have the following corollary.

COROLLARY 3.1. If n ≤ α < n + 1 then the operator

(35) (−∆− 1
4y2

)−
α
2

is not bounded from Lp(Hn) to Lq(Hn) for any 1 ≤ p, q ≤ ∞. If n ≥ 2 and n − 1 ≤
α < n (resp. 0 < α < 1 if n = 1), then this operator is a bounded operator from
Lp(Hn) to Lq(Hn) for all 1 < p, q < ∞ that satisfy

(36)
1
q

=
1
p
− α

n
,

and its norm coincides with the one of (−∆)−α/2 : Lp(Rn) → Lq(Rn).
Moreover, for such values of α we have

(37) (f, (−∆− 1
4y2

)−
α
2 f) ≤ 2−απ−

n
2

Γ(n−α
2 )

Γ(α
2 )

C(n, α)‖f‖2p

where p = 2n
n+α and

(38) C(n, α) = π
n−α

2
Γ(α

2 )
Γ(n+α

2 )

[
Γ(n

2 )
Γ(n)

]−α
n

is the sharp constant. This constant is not attained in (37) for nonzero functions.

Note that the inequality

(39)
∫

Rn×Rn

f(x)g(y)Φn,α(x,y)dxdy ≤
∫

Rn×Rn

f(x)g(y)Ψn,α(x,y)dxdy

is always strict for non-negative functions f, g which do not vanish identically. This
follows from the fact that Φn,α(x,y) < Ψn,α(x,y) in Rn×Rn except on the diagonal
x = y.

Proof of Theorem 1.1. Recall that Q is a self-adjoint operator on L2(H3). Thus for
f ∈ L2(H3) with Qα/4f ∈ L2(H3) we have that

(40) |(f, h)| = |(Qα/4f,Q−α/4h)| ≤ (f,Qα/2f)1/2(h, Q−α/2h)1/2

which by Corollary 3.1 yields the bound

(41) |(f, h)|2 ≤ 2−απ−
n
2

Γ(n−α
2 )

Γ(α
2 )

C(n, α)(f,Qα/2f)‖h‖2p

for n− 1 ≤ α < n and p = 2n
n+α . Thus, f ∈ Lp′(H3) with p′ = 2n

n−α and

(42) ‖f‖2p′ ≤ 2−απ−
n
2

Γ(n−α
2 )

Γ(α
2 )

C(n, α)(f,Qα/2f) .
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Under the assumption that f ∈ L2(H3), (13) follows by choosing n = 3 and α = 2.
To obtain the statement for f ∈ D1(H3) we can assume that f =:

√
yg ≥ 0 and set

fC =
√

ygC where

(43) gC(x, y) = min

(
C,

[
g(x, y)− 1

C

]
+

)
,

C is some large positive constant and [x]+ := max(x, 0). Since g vanishes at infinity
in dxydy- measure,

(44)
∫

H3
gC(x, y)2dxydy =

∫
H3

fC(x, y)2dxdy

is finite.
Moreover,

(45)
∫

H3
|∇gC(x, y)|2dxydy =

∫
1/C≤g≤C+1/C

|∇g(x, y)|2dxydy ,

and hence Q1/2fC ∈ L2(H3). Thus the inequality (13) holds for fC . Now we let
C → ∞ and conclude, using (45) and (13), that ‖fC‖6 is uniformly bounded. Using
monotone convergence we find that limC→∞ ‖fC‖6 = ‖f‖6 < ∞.

Assume that there is equality in (13) for some nonzero function f ∈ D1(H3). Then
with h = fp′−1/‖f‖p′−1

p′ we must have equality in (37) with f replaced by h. This
cannot be unless h and hence f vanish identically. �

The reader may wonder what happens when 0 < α < n − 1. In this case the
sharp constant in the inequality corresponding to (37) is not known and neither is the
existence of an optimizer. The problem, however, is conformally invariant and in a
similar fashion as in the Hardy-Sobolev-Maz’ya inequality, it can be transformed into
one in the unit ball that is rotationally invariant. The device of competing symmetries
developed in [4] allows to restrict the maximization problem to radial functions on
the ball. Likewise, it is also possible to show that every maximizer, provided it exists,
is the conformal image of a radial function.

4. Appendix

In this appendix we collect some facts about the function

(46) F (A) :=
Γ(β)√

π

∫ π

−π

A

(1 + 2A2(1− cos(φ)))β
dφ ,

where β = n+1−α
2 .

LEMMA 4.1. Depending on the value of β, the function F (A) has the following
asymptotics as A →∞.
a) If 0 < β ≤ 1

2 then limA→∞ F (A) = ∞.
b) If 1

2 < β ≤ 1, then F (A) is a strictly monotone increasing function and

(47) lim
A→∞

F (A) = Γ(β − 1
2
) .
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Proof. Since

(48) F (A) =
Γ(β)√

π
G(A)

where

(49) G(A) =
∫ πA

−πA

1
(1 + 2A2(1− cos( φ

A )))β
dφ

the limit of F (A) as A →∞ is

(50)
Γ(β)√

π

∫ ∞

−∞

1
(1 + φ2)β

dφ = Γ(β − 1
2
)

for β > 1
2 and it is +∞ for β ≤ 1

2 . This proves a). To see that b) holds for β = 1 one
easily performs the φ integration and obtains

(51) G(A) =
2πA√

1 + 4A2
,

which is obviously strictly increasing with A. For 1
2 < β < 1 we use the formula[

1 + 2A2(1− cos φ)
]−β

(52) =
sin(πβ)

π

∫ ∞

0

[
1 + t + 2A2(1− cos φ)

]−1
t1−β dt

t
.

Integrating with respect to φ yields

(53) G(A) = 2 sin(πβ)
∫ ∞

0

A√
(1 + t)2 + 4(1 + t)A2

t1−β dt

t
.

Again, this function increases strictly with A. �

Acknowledgements

The authors thank Professor Tintarev for pointing out an inconsistency in an earlier
formulation of Theorem 1.1. This work was partially supported by Fondecyt (CHILE)
projects 106–0651 and 706–0200, and CONICYT/PBCT Proyecto Anillo de Investi-
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