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LOCAL TORSION ON ELLIPTIC CURVES AND THE
DEFORMATION THEORY OF GALOIS REPRESENTATIONS

Chantal David and Tom Weston

1. Introduction

Let E be an elliptic curve over Q. Our primary goal in this paper is to investigate
for how many primes p the elliptic curve E possesses a p-adic point of order p. Simple
heuristics suggest the following conjecture.

Conjecture 1.1. Assume that E does not have complex multiplication. Fix d ≥ 1.
Then there are finitely many primes p such that there exists an extension K/Qp of
degree at most d with E(K)[p] 6= 0.

We expect this conjecture to be false (for sufficiently large d) when E does have
complex multiplication. Nevertheless, our main result is that Conjecture 1.1 at least
holds on average. For A,B > 0, let SA,B denote the set of elliptic curves with
Weierstrass equations y2 = x3 + ax + b with a, b ∈ Z, |a| ≤ A and |b| ≤ B. For an
elliptic curve E and x > 0, let πd

E(x) denote the number of primes p ≤ x such that E
possesses a point of order p over an extension of Qp of degree at most d.

Theorem 1.2. Fix d ≥ 1. Assume A,B ≥ x
7
4+ε for some ε > 0. Then

1
#SA,B

∑
E∈SA,B

πd
E(x)� d2

as x→∞.

We remark that it is apparent from our proof that the bound of d2 is probably not
optimal; it is not immediately clear to the authors what an optimal bound would be.

Our proof is essentially a precise version of the heuristic alluded to above. We
explain this heuristic for d = 1; in this case we say that a prime p is a local torsion
prime for E if E(Qp)[p] 6= 0. One sees easily that for a local torsion prime p ≥ 7 of
good reduction for E one must have ap(E) = 1. By the Riemann hypothesis for elliptic
curves over finite fields, ap(E) lies in an interval of length approximately 4

√
p, so that

naively one expects ap(E) = 1 to occur with a probability of 1
4
√

p . A comparison of
the reduction exact sequence with an analysis of extension classes suggests that when
ap(E) = 1, p is a local torsion prime with probability 1

p . Combining these estimates,
one expects ∑

p

1
4
√

p
· 1
p

<∞
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local torsion primes for E, hence the conjecture.
We especially like this heuristic as each of the two parts sometimes fail. Specifically,

for some elliptic curves one has ap(E) = 1 for only finitely many primes; in these cases,
the conjecture (for d = 1) follows immediately. Furthermore, for CM elliptic curves
one finds that ap(E) = 1 in fact forces p to be a local torsion prime; this explains the
CM exception in the conjecture.

Although we believe that Conjecture 1.1 is of independent interest in the arith-
metic of elliptic curves, our motivation for its study originated in questions in the
deformation theory of Galois representations. For any prime p let

ρ̄E,p : Gal(QS∪{p}/Q)→ GL2(Fp)

be the Galois representation on the p-torsion points of E; here QS∪{p} is the maximal
extension of Q unramified away from p and the set S of places of bad reduction
for E. When ρ̄E,p is absolutely irreducible, one can associate to ρ̄E,p its universal
deformation ring Runiv

E,p , parameterizing all lifts of ρ̄E,p to artinian local rings with
residue field Fp. Mazur [10] asked if the deformation theory of ρ̄E,p is unobstructed
(so that Runiv

E,p is non-canonically isomorphic to a power series ring in three variables
over Zp) for all but finitely many primes p. Using work of Flach [4], he showed that
this is the case so long as one excludes those primes p such that E possesses a point
of order p over a quadratic extension of Qp. Theorem 1.2 with d = 2 thus guarantees
that this last condition holds, on average, for only finitely many primes p.

Unfortunately, we can not state a deformation theoretic analogue of Theorem 1.2,
as the other reasons for obstructions do not satisfy as strong of a bound. Neverthe-
less, we do show that Mazur’s question has an affirmative answer for elliptic curves
admitting rational 2-isogenies (which is basically trivial) or 15-isogenies (which is an
amusing computation).

For another application, recall that the newform fE :=
∑

an(E)qn associated to E
is said to possess a companion form modulo p if there is a mod p eigenform g =

∑
bnqn

of weight p− 1 satisfying
n2bn ≡ nan (mod p)

for all n ≥ 1. For d ≥ 1, let πcf
E(x) denote the number of primes p ≤ x such that

ap(E) equals ±1 and fE possesses a companion form modulo p. Using a deep result
of Gross [5], Theorem 1.2 yields the following.

Theorem 1.3. Assume A,B ≥ x
7
4+ε for some ε > 0. Then

1
#SA,B

∑
E∈SA,B

πcf
E (x)� d2

as x→∞.

It would be interesting to remove the assumption that ap(E) = ±1 above, although
it is not immediately clear to the authors how to adapt these methods to that question.

We present some data and simple results on Conjecture 1.1 in the case d = 1 in
Section 2. In Section 3, we show that over the unramified extension of Qp of degree
d, residual p-torsion points lift to p-adic p-torsion points with a frequency of 1

pd . In
Section 4 we use this result and analytic methods to deduce Theorem 1.2. Finally, in
Section 5 we discuss the applications to deformation theory and companion forms.
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2. Local torsion primes

Fix an elliptic curve E over Q. We call a prime p a local torsion prime for E if
E possesses a point of order p over Qp. For x > 0 let πE(x) denote the number of
local torsion primes p ≤ x for E. Using the Magma Computational Algebra System
we computed πE(106) for the 5113 elliptic curves E with conductor at most 1000.
(Note that πE is not isogeny-invariant, so that these computations were done over
isomorphism classes rather than isogeny classes.)

#E such that πE(106) =
Curves # curves 0 1 2 3 4 5+

All curves 5113 568 3687 828 15 1 14
Curves with no torsion 1364 484 733 117 15 1 14

The 14 curves E with πE(106) ≥ 5 were all CM curves and had between 22 and 36
local torsion primes in this range. (In fact, they all had CM by Q(

√
−3), although

this presumably is an artifact of the small conductors we considered.) Thus only
one elliptic curve without complex multiplication and conductor at most 1000 had as
many as four local torsion primes less than one million: the elliptic curve 774D1, for
which 2, 3, 5, 7 are local torsion primes.

We remark that the precise ratios reported here should not be taken too seriously,
as elliptic curves of small conductor are not at all representative of all elliptic curves.
Nevertheless, this data certainly supports Conjecture 1.1. Indeed, large local torsion
primes p were quite rare: 99.1% of the local torsion primes occurring were 2, 3, 5, 7.
The only two elliptic curves in this sample with local torsion primes > 1000 were
131A1 (with local torsion primes 59 and 4723) and 775A1 (with local torsion prime
26993).

We now record some simple results on local torsion primes. Although some of the
proofs rely on results in the next section, we find it most convenient to state them
here.

Proposition 2.1. Let E be an elliptic curve over Q.
(1) If E(Q)tors 6= 0, then E has finitely many local torsion primes. (More pre-

cisely, if E(Q)tors 6= 0, then any prime p ≥ 7 of good reduction for E is not
a local torsion prime for E unless E(Q)tors ∼= Z/p.)

(2) For any finite set of primes P, there exists an elliptic curve E such that each
element of P is a local torsion prime for E.

(3) If E has complex multiplication, then a prime p > 3 of good reduction is a
local torsion prime for E if and only if ap(E) = 1.

Proof.
(1) Suppose that p ≥ 7 is a local torsion prime of E at which E has good reduc-

tion. Since p ≥ 3, the formal group of E over Zp is torsion-free, so that the
natural map

E(Qp)tors → E(Fp)
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is injective. In particular, p divides #E(Fp); since p ≥ 7, it now follows from
the Riemann hypothesis for elliptic curves over finite fields that E(Fp) must
have exactly p elements. Since E(Q)tors is non-trivial and injects into E(Fp),
we conclude that E(Q)tors ∼= Z/p, as desired.

(2) For each p ∈ P, fix αp, βp ∈ Fp so that the elliptic curve Eαp,βp
with Weier-

strass equation y2 = x3 + αpx + βp has precisely p points over Fp. (The
existence of such a curve is guaranteed by Deuring’s Theorem which gives an
exact formula for the number of elliptic curves over Fp with p + 1− r points
for |r| ≤ 2

√
p; see for example [8] for a statement of Deuring’s Theorem.) Let

(Ap, Bp) ∈ Z/p2 × Z/p2 be one of the pairs lifting (αp, βp) in Corollary 3.5.
Let A,B ∈ Z be such that A ≡ Ap (mod p2), B ≡ Bp (mod p2) for all p ∈ P.
Then by Corollary 3.5 each p ∈ P is a local torsion prime for EA,B .

(3) This is clear from Lemma 3.2 as a CM elliptic curve is a canonical lift of each
of its reductions. Alternately, it follows from the fact that for an ordinary
prime p the mod p Galois representation of a CM elliptic curve is abelian
when restricted to a decomposition group at p.

�

3. Local torsion on elliptic curves

Fix a prime p > 3 and a finite extension k of Fp of degree d. Let W denote the
ring of Witt vectors over k; we write K for the field of fractions of W . Note that
k = W/pW ; we set W2 = W/p2W .

Let E be an elliptic curve over W ; that is, E is an elliptic curve over K with good
reduction. The next lemma gives a criterion for E to possess a K-rational point of
order p. For a finite abelian group M we write rankp M for the p-rank of M (that is,
for the Fp-dimension of M ⊗Z Fp or equivalently of the p-torsion subgroup M [p]).

Lemma 3.1. Let E be an elliptic curve over W . Then:

rankp E(W2) =

{
d if E(K)[p] = 0;
d + 1 if E(K)[p] 6= 0.

Proof. Consider the diagram (with exact rows)

0 // E0(pW ) //

��

E(K) //

��

E(k) // 0

0 // E0(pW/p2) // E(W2) // E(k) // 0

with E0 the formal group of E over OK . Since W is unramified over Zp, it follows
from [11, Theorem IV.6.4b] that the reduction map E0(pW ) → E0(pW/p2) can be
identified with the natural map Zd

p → (Z/p)d. In particular, taking p-torsion and
applying the snake lemma we obtain a commutative diagram

0 // 0 //

��

E(K)[p] //

��

E(k)[p] // (Z/p)d

0 // (Z/p)d // E(W2)[p] // E(k)[p] // (Z/p)d
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It follows that
rankp E(W2) = d + rankp E(K)[p].

Since the field K(E[p]) contains K(µp) and thus is ramified over Qp, E(K)[p] is at
most one-dimensional and the lemma follows. �

We fix now an elliptic curve E over k such that E(k)[p] 6= 0. We first determine
how many lifts of E to W2 have p-rank d + 1.

Lemma 3.2. Let E be an elliptic curve over k such that E(k) has a non-trivial p-
torsion point. Then precisely one of the pd isomorphism classes of lifts of E to an
elliptic curve Ẽ over W2 satisfies rankp Ẽ(W2) = d + 1.

Proof. Since E is necessarily ordinary, there is a canonical exact sequence of finite
flat group schemes

0→ µp → E[p]→ Z/p→ 0

over k̄. In fact, since E(k) has a point of order p, it follows that this exact sequence
exists already over k and is split; that is, E[p] ∼= µp × Z/p as k-group schemes.

By the Serre–Tate theorem (see [6, Theorem 1.2.1], for example), the lifts of E to
elliptic curves over W2 are parameterized by the lifts of the p-divisible group E[p∞]
to a p-divisible group over W2. Any such lift is an extension of Qp/Zp by µp∞ , so
that these lifts correspond to elements of

lim←−
n

Ext1(Z/pn, µpn)

where the extensions are computed in the category of finite flat group schemes over
W2. It is equivalent to compute these extensions under the flat topology, so that

Ext1(Z/pn, µpn) ∼= H1
fl(Spec W2, µpn) ∼= W×

2 /W×pn

2
∼= p ·W2

∼= (Z/p)d.

Therefore the natural map

(1) lim←−
n

Ext1(Z/pn, µpn)→ Ext1(Z/p, µp)

is an isomorphism, and these groups have order pd. In particular, this proves that E
has precisely pd isomorphism classes of lifts to W2.

Let Ẽ be a lift of E to W2. One sees immediately from the proof of Lemma 3.1
that Ẽ(W2) has p-rank d + 1 if and only if the canonical exact sequence

0→ µp → Ẽ[p]→ Z/p→ 0

splits. By (1), this occurs for precisely one lift Ẽ, as claimed. (This lift is usually
called the canonical lift of E to W2.) �

Remark 3.3. We note that it follows from the above proof that the isomorphism
class of an elliptic curve over W2 is determined by its j-invariant and the isomorphism
class of its reduction to k. This fact can certainly be proven in far more elementary
ways.

For a, b elements of some ring R, we write Ea,b for the projective plane curve with
affine Weierstrass equation y2 = x3 + ax + b. The next lemma applies Lemma 3.2 to
obtain a lifting result for these cubics.
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Proposition 3.4. Let Ea,b be an elliptic curve over k such that j(Ea,b) 6= 0, 1728.
Assume that Ea,b(k) has an element of order p. Then there are exactly pd distinct
pairs (Ai, Bi) ∈W2 ×W2 such that (Ai, Bi) ≡ (a, b) mod p and

rankp EAi,Bi(W2) = d + 1.

Proof. Consider the closed subscheme S of A3
W2

(with coordinates j, A,B) defined by
the j-invariant equation

j = 6912 · A3

4A3 + 27B2
.

The surface S×W2 k is smooth away from j = 0, 1728, so that it follows from Hensel’s
lemma that for each of the pd lifts j̃ of j(Ea,b) to W2, there are precisely pd lifts of
(a, b) to W2×W2 such that the corresponding elliptic curve over W2 has j-invariant j̃.
In particular, each of the pd possible j-invariants lifting j(E) to W2 occurs for some
EA,B with (A,B) ∈W2×W2. Since by Lemma 3.2 there are precisely pd isomorphism
classes of lifts of Ea,b to W2, it follows that the isomorphism class of a lift of E is
determined by its j-invariant. (Alternately, since the twists of an elliptic curve E
over a ring R are parameterized by H1

fl(Spec R,AutE) and one has p - # AutEa,b

since p ≥ 5, one can deduce this from the fact that the categories of étale sheaves on
Spec k and Spec W are equivalent.) In particular, each isomorphism class occurs for
precisely pd values of A,B. By Lemma 3.2 precisely one of these isomorphism classes
has p-rank d + 1, which yields the proposition. �

For our analytic arguments we will be interested only in elliptic curves over Zp. In
this case Proposition 3.4 yields the following.

Corollary 3.5. Let Ea,b be an ordinary elliptic curve over Fp such that j(Ea,b) 6=
0, 1728. Let k be an extension of Fp of degree d such that E(k)[p] 6= 0; set W2 =
W/p2 with W the ring of Witt vectors of k. Then there are exactly p distinct pairs
(Ai, Bi) ∈ Z/p2 × Z/p2 such that (Ai, Bi) ≡ (a, b) mod p and

rankp EAi,Bi
(W2) = d + 1.

Proof. The canonical lift of Ea,b to W2 has j-invariant in Z/p2. Thus by Hensel’s
lemma as before there are precisely p pairs lying in Z/p2 × Z/p2 among the pd pairs
of Proposition 3.4. The corollary follows. �

4. Analytic arguments

Fix d ≥ 1 and as before let W2 denote the Witt vectors of length two over a finite
field k of order pd.

Definition 4.1. We write νp(d) for the number of pairs (a, b) ∈ Z/p2 × Z/p2 such
that Ea,b is an elliptic curve with rankp Ea,b(W2) = d + 1.

The following estimates will be used in our main result.

Lemma 4.2. We have ∑
p≤x

νd(p)� dx7/2 log x;
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∑
p≤x

νd(p)
p2
� dx3/2 log x;

∑
p≤x

νd(p)
p4
� d.

Proof. Write νd(p) = ν′d(p)+ν0
d(p)+ν1728

d (p) where ν′d(p) (resp. ν0
d(p), resp. ν1728

d (p))
denotes the number of pairs (a, b) ∈ Z/p2 × Z/p2 such that Ea,b(W2) has p-rank
d + 1 and Ea,b does not have j-invariant 0 or 1728 (resp. has j-invariant 0, resp. has
j-invariant 1728). It suffices to prove the lemma separately for each of these three
functions.

We begin with ν′d(p). Since an elliptic curve E over Fp has a point of order p over
Fpd if and only if ap(E)d ≡ 1 mod p (see Lemma 4.3 below), by Corollary 3.5 we
have

ν′d(p) = p ·#
{
(a, b) ∈ F×p × F×p ; ap(Ea,b)d ≡ 1 mod p

}
= p ·

∑
|r|<2

√
p

rd≡1 mod p

(p− 1)H(r2 − 4p)

by Deuring’s theorem; see for example [8]. (Note that restricting to (a, b) ∈ F×p ×F×p
has eliminated those elliptic curves with j-invariant 0 or 1728.) The class number for-
mula together with the trivial bound L(1, χD)� log D yields H(r2−4p)� √p log2 p.
As (for large enough p) there are at most d such r, it follows that

ν′d(p)� dp5/2 log2 p.

The asserted bounds for ν′d(p) all follow easily from this.
Consider now ν0

d(p). An elliptic curve E over Z/p2 with j-invariant 0 is always the
canonical lift of its reduction, so that by the proof of Lemma 3.2 it has p-rank d + 1
over W precisely when

ap(E ×Z/p2 Fp)d ≡ 1 (mod p).

(Note that in this case Corollary 3.5 does not apply.) Since a curve Ea,b over Fp has
j-invariant 0 if and only if b = 0 and each such curve over Fp has p2 lifts to Z/p2, we
obtain

ν0
d(p) = p2 ·

∑
|r|<2

√
p

rd≡1 mod p

#{a ∈ F×p ; ap(Ea,0) = r}.

Thus ∑
p≤x

ν0
d(p)
p2

=
∑
p≤x

∑
|r|<2

√
p

rd≡1 mod p

∑
a∈F×p

χr
Ea,0

(p)
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where χr
E(p) is 1 if ap(E) = r and 0 otherwise. Reversing the order of summation,

we obtain ∑
p≤x

ν0
d(p)
p2

=
∑
a≤x

∑
a≤p≤x

∑
|r|<2

√
p

rd≡1 mod p

χr
Ea,0

(p)

� d ·max
r

∑
a≤x

#
{
p ≤ x ; ap(Ea,0) = r

} .

An elementary argument using the description of ap(Ea,0) in terms of the quadratic
form X2 + Y 2 shows that

#
{
p ≤ x; ap(Ea,0) = r

}
�
√

x

so that we obtain ∑
p≤x

ν0
d(p)
p2

� d ·
∑
a≤x

√
x

� dx3/2.

Applying partial summation one now easily obtains∑
p≤x

ν0
d(p)
p4

� d

∑
p≤x

ν0
d(p)� dx7/2

which suffice for the lemma. An entirely similar argument gives the same bounds for
ν1728

d . �

The next lemma was used in the preceding proof. There are of course many proofs;
we give one in the spirit of Section 3. Alternately, one could use the Weil conjectures
and look at the p-divisibility of #E(Fpd) = pd + 1− (αd

p + βd
p), where αp, βp are the

roots of the characteristic polynomial x2 − ap(E)x + p over Fp.

Lemma 4.3. Let E be an elliptic curve over Fp. Then E(Fpd)[p] 6= 0 if and only if
ap(E)d ≡ 1 mod p.

Proof. If ap(E) = 0, then E is supersingular and never has p-torsion over any ex-
tension of Fp, so we may assume that ap(E) 6= 0. In this case, the p-torsion of E
decomposes as

E[p] = Z/p(χ)⊕ µp(χ−1)
where χ is the character of Gal(F̄p/Fp) sending a Frobenius to ap(E). (See [5], for
example.) Now E(Fpd)[p] 6= 0 if and only if χ is trivial on Gal(F̄p/Fpd); since this
Galois group is generated by the dth power of Frobenius, the lemma follows. �

Recall that for an elliptic curve E, πd
E(x) denotes the number of primes p ≤ x such

that E possesses a point of order p over an extension of Qp of degree at most d. Let
πd,ur

E (x) denote the number of primes p ≤ x such that E possesses a point of order p
over an unramified extension of Qp of degree at most d.
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Lemma 4.4. Let E be an elliptic curve. Then

πd
E(x)− πd,ur

E (x)

is bounded by the number of primes p ≤ d.

Proof. Fix a prime p > d and a ramified extension K/Qp of degree at most d. To
prove the lemma it suffices to show that if E(K)[p] 6= 0, then already E(Kur)[p] 6= 0
with Kur the maximal unramified subfield of K. For this, recall that the restriction of
the p-torsion Galois representation of E to a decomposition group at p has the form(

εχ ∗
0 χ−1

)
with ε the cyclotomic character, χ an unramified character and ∗ either trivial or
wildly ramified. K is not wildly ramified (since d < p) and does not contain µp, so
that the only way that E(K)[p] can be non-zero is if ∗ is trivial and χ factors through
Gal(K/Qp). Since χ is unramified, it must thus factor through Gal(Kur/Qp) as well,
as desired. �

Recall that SA,B denotes the set of elliptic curves Ea,b with a, b ∈ Z and |a| ≤ A,
|b| ≤ B.

Proposition 4.5. Fix A,B > 0. Then

1
#SA,B

∑
E∈SA,B

πd
E(x) = O(d2) + d ·O

((
1
A

+
1
B

)
x3/2 log x +

1
AB

x7/2 log x

)
.

Proof. By Lemma 4.4 we have
1

#SA,B

∑
E∈SA,B

πd
E(x) =

1
#SA,B

∑
E∈SA,B

πd,ur
E (x) + d ·O(1).

It thus suffices to consider the latter sum.
Let Kd

p denote the unramified extension of Qp of degree d and let π̃d
E(x) denote

the number of p ≤ x such that E(Kd
p )[p] 6= 0. By Lemma 3.1, E(Kd

p )[p] 6= 0 can be
detected by looking at E over Z/p2. Since there are(

2A

p2
+ O(1)

)
·
(

2B

p2
+ O(1)

)
elliptic curves in SA,B reducing to any fixed elliptic curve over Z/p2, applying
Lemma 3.1 and reversing the order of summation we find that

1
#SA,B

∑
E∈SA,B

π̃d
E(x) =

1
#SA,B

∑
p≤x

#
{
E ∈ SA,B ; E(Kd

p )[p] 6= 0
}

=
1

#SA,B

∑
p≤x

(
2A

p2
+ O(1)

)
·
(

2B

p2
+ O(1)

)
νd(p)

=
∑
p≤x

νd(p)
p4

+ O

(
1
A

+
1
B

) ∑
p≤x

νd(p)
p2

+
1

AB

∑
p≤x

νd(p)


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since
#SA,B = 4AB(1 + o(1)).

Applying the estimates of Lemma 4.2 and summing over d now yields the result. �

Corollary 4.6. If A,B � x7/4+ε, then
1

#SA,B

∑
E∈SA,B

πd
E(x)� d2

as x→∞.

5. Deformation theory

Fix an elliptic curve E over Q without complex multiplication. Let S denote
the set of primes at which E has bad reduction. For a prime p consider the Galois
representation

ρ̄E,p : Gal(QS∪{p}/Q)→ GL2(Fp)
giving the Galois action on the p-torsion points E[p]. A deformation of ρ̄E,p to a local
ring R with residue field Fp is a strict equivalence class of Galois representations

Gal(QS∪{p}/Q)→ GL2(R)

which yield ρ̄E,p on composition with the reduction map

GL2(R)→ GL2(Fp);

here two Galois representations are considered to be strictly equivalent if they are
conjugate by a matrix which reduces to the identity in GL2(Fp).

When ρ̄E,p is absolutely irreducible (which is true for sufficiently large p) it is
known [9, Section 1.2] that there exists a universal deformation

ρuniv
E,p : Gal(QS∪{p}/Q)→ GL2(Runiv

E,p )

in the category of inverse limits of artinian local rings with residue field Fp; the ring
Runiv

E,p is called the universal deformation ring of ρ̄E,p. Thus any deformation of ρ̄E,p

to such a ring R is obtained from ρuniv by composition with a unique map Runiv
E,p → R.

It is of fundamental interest to understand the structure of Runiv
E,p . Let ad ρ̄E,p

denote the adjoint representation of ρ̄E,p and set

di := dimFp
Hi(QS∪{p}/Q, ad ρ̄E,p).

We have the following result of Mazur [9, Section 1.6 and Section 1.10].

Proposition 5.1. With notation as above, Runiv
E,p is a quotient of a power series ring

in d1 variables over Zp by an ideal generated by at most d2 elements. Furthermore, one
has d1− d2 = 3. In particular, if d2 = 0 (in which case one says that the deformation
theory of ρ̄E,p is unobstructed), then Runiv

E,p is (non-canonically) isomorphic to a power
series ring in three variables over Zp.

In [10], Mazur further asks if the deformation theory of ρ̄E,p is unobstructed for
all but finitely many primes p. (We remark that the analogous question for modular
forms of weight at least 3 was answered affirmatively in [13].) Using Poitou–Tate
duality and work of Flach [4] on symmetric square Selmer groups, he proved the
following result.
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Proposition 5.2. Let p be a prime of good reduction for E such that ρ̄E,p is absolutely
irreducible. If the deformation theory of ρ̄E,p is obstructed, then one of the following
holds:

(1) p ≤ 3;
(2) p ∈ S;
(3) ` ≡ 1 (mod p) for some ` ∈ S;
(4) The Galois representation ρ̄E,p is not surjective;
(5) p divides the (appropriately normalized) special value L(Sym2 E, 2)/Ω of the

symmetric square L-function of E;
(6) H0(Q`,Sym2 E[p]) 6= 0 for some ` ∈ S ∪ {p}.

Furthermore each of these conditions holds for all but finitely many primes p, with
the possible exception of the vanishing of H0(Qp,Sym2 E[p]) in (6).

To answer Mazur’s question it thus suffices to show that H0(Qp,Sym2 E[p]) = 0
for all but finitely many p. The next proposition gives some reformulations of this
condition.

Proposition 5.3. Let p be an odd prime of good reduction for E. Then the following
are equivalent:

(1) H0(Qp,Sym2 E[p]) 6= 0;
(2) ap(E) = ±1 and the restriction of ρ̄E,p to a decomposition group at p is

semi-simple;
(3) ap(E) = ±1 and fE possesses a companion form modulo p.

If p ≥ 7, then these conditions are further equivalent to:
(4) E(K)[p] 6= 0 with K some quadratic extension of Qp.

Proof. The equivalence of (1) and (2) is [10, Lemma of p. 172]. The equivalence of (2)
and (3) is the main result of [5]. Finally, for the equivalence of (1) and (4) we modify
the argument of [1, Lemma 2.3(i)]. It is clear that if x ∈ E(K)[p] is non-trivial, then
x⊗ x gives a non-zero element of H0(Qp,Sym2 E[p]). For the converse, suppose that
t ∈ H0(Qp,Sym2 E[p]) is non-trivial. Let ε denote the mod p cyclotomic character.
Since p ≥ 7 we may choose σ ∈ Gal(Q̄p/Qp) such that ε(σ)4 6= 1. Let λ, µ ∈ F̄p be
the eigenvalues of σ acting on E[p]. Then the eigenvalues of σ acting on Sym2 E[p]
are λ2, λµ = ε(σ), and µ2. Since t is fixed by σ, one of these must equal 1; as ε(σ) 6= 1
we may assume without loss of generality that λ2 = 1.

Now consider σ2, which has E[p] eigenvalues λ2 = 1 and ε(σ)2. These eigenvalues
are distinct, so we may choose a basis x, y of E[p] with σ2-eigenvalues 1 and ε(σ)2,
respectively. Since ε(σ)4 6= 1, one computes easily that the σ2-invariant subspace of
Sym2 E[p] is spanned by x⊗x. Since t must lie in this subspace, it follows that x⊗x
is fixed by all of Gal(Q̄p/Qp). Thus Gal(Q̄p/Qp) acts on x by a quadratic character,
so that x is defined over a quadratic extension of Qp. �

Combined with Proposition 5.3, Theorem 1.2 immediately yields Theorem 1.3.
Furthermore, it shows that the exceptional case in Proposition 5.2 occurs on average
finitely often. Unfortunately, already the condition (2) of Proposition 5.2 fails to
satisfy such a strong bound, so that we can not state such a result for the deformation
theory of E.
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Nevertheless, for certain elliptic curves one has ap(E) = ±1 for finitely many p,
so that one can verify Conjecture 1.1 for d = 2 for these curves and thus settle these
questions. More precisely, we have the following. (For an alternate proof of the
15-isogeny case, see [3, Theorem 1.4].)

Proposition 5.4. Let E be an elliptic curve over Q without complex multiplication.
Assume that E admits either a rational 2-isogeny or a rational 15-isogeny. Then
Conjecture 1.1 holds for E with d = 2. In particular, the deformation theory of ρ̄E,p

is unobstructed for all but finitely many primes p.

Proof. We in fact show that E does not have a point of order p over Fp2 for all but
finitely many p. Since for p ≥ 7 this occurs if and only if ap(E) = ±1, it suffices to
show that occurs for only finitely many primes p.

If E possesses a rational 2-isogeny, then it has rational 2-torsion. Thus in particular
E(Fp)[2] 6= 0 for all but finitely many primes p. Fix such a p > 2. Then

ap(E) = p + 1−#E(Fp) ≡ 0 (mod 2),

so that certainly ap(E) 6= ±1, as desired.
Now let E be an elliptic curve admitting a 15-isogeny. The modular curve X0(15)

has four non-cuspidal rational points; as the four elliptic curves in the isogeny class
50A of [2] admit rational 15-isogenies and are distinct over Q̄, it follows that every
elliptic curve admitting a rational 15-isogeny is isogenous to a twist of the curve 50A1.
Since isogeny does not change Fourier coefficients and twisting changes them only up
to sign (and introducing some zeroes), it suffices to prove the proposition for the
elliptic curve 50A1.

Let E denote the elliptic curve 50A1; it has Weierstrass equation

y2 + xy + y = x3 − x− 2.

Then E has the rational 3-torsion points

{(2, 1), (2,−4)} ∈ E[3]

and admits a rational 5-isogeny. Thus

ρ̄E,3
∼=

(
1 ∗
0 ε

)
ρ̄E,5

∼=
(

χ ∗
0 εχ−1

)
with ε cyclotomic and χ some Dirichlet character. One finds that E has a 5-torsion
point

P = (−ζ3
5 − ζ2

5 − 1,−ζ3
5 − 2ζ5 − 1)

with ζ5 a primitive 5th root of unity. Using this one explicitly computes χ as a
Dirichlet character of conductor 5; combined with the knowledge of ρ̄E,3, we conclude
that

ρ̄E,15
∼=

(
χ1 ∗
0 χ2

)
with χ1, χ2 Dirichlet characters of conductor 15 given by

n 1 2 4 7 8 11 13 14
χ1(n) 1 13 4 13 7 1 7 4
χ2(n) 1 14 1 4 14 11 4 11
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In particular, we have

ap(E) ≡ χ1(p) + χ2(p) (mod 15)

for all p ≥ 7. Thus
ap(E) ∈ {0, 2, 5, 6, 11, 12}

modulo 15, so that ap(E) 6= ±1 for all p ≥ 7, as desired. �
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