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TWO WEIGHT INEQUALITIES FOR INDIVIDUAL HAAR
MULTIPLIERS AND OTHER WELL LOCALIZED OPERATORS

F. Nazarov, S. Treil, and A. Volberg

Abstract. In this paper we are proving that Sawyer type condition for boundedness

work for the two weight estimates of individual Haar multipliers, as well as for the Haar
shift and other “well localized” operators.

0. Introduction

The main question of this paper concerns two weight estimates for singular integral
operators, i.e. the questions when an integral operator T is bounded operator from a
weighted space L2(w) to L2(v).

One of the most interesting cases is the case when T is the Hilbert transform,
Tf(s) = 1

π

∫ f(t)
s−t dt, although the case of more general Calderón–Zygmund operators

seems to be of great interest as well. For such operators no “real variable” necessary
and sufficient condition is known.1

In this paper we deal with dyadic analogues of the Hilbert transform, the so-called
Haar multipliers and their generalizations. It turns out that for such operators it is
possible to find necessary and sufficient condition for two weight estimates.

Let us introduce one of the main examples. The standard dyadic grid D = D0 is
the collection of all dyadic intervals [2k · j, 2k · (j + 1)), k, j ∈ Z. A general dyadic
grid is an object obtained from D0 by a dilation and a shift.

For an interval I ⊂ R we define the (L2-normalized) Haar function

h
I

:= |I|−1/2(χ
I+
− χ

I−
) :

here |I| stands for the length of the interval I; I+ and I− denote its right and left
halves respectively, and χ

E
denotes the characteristic function (indicator) of the set

E.
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1For the Hilbert transform a necessary and sufficient condition of Helson–Szegö type was ob-

tained by M. Cotlar and C. Sadosky [CS1]. Their condition was stated in the language of com-

plex analysis: the Hilbert transform is a bounded operator from L2(w) → L2(v) if and only if

one can find a function h in the analytic Hardy class H1 such that for some C > 0 the matrix„
Cw − v Cw + v − h

Cw + v − h Cw − v

«
is positive semidefinite a.e. No generalization of this condition to

general Calderón–Zygmund operators is known.
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Given a sequence α = {α
I
}

I∈D define the Haar multiplier (a.k.a. the martingale
transform) Tα by

Tαf :=
∑
I∈D

α
I
(f, h

I
)h

I
, f ∈ L2(R).

We are interested under what conditions on the weights v, w (v, w ≥ 0, v, w ∈ L1
loc)

the operator T = Tα extends to a bounded operator from L2(w) to L2(v), i.e., when
the following two weight estimate∫

R
|Tαf |2vdx ≤ C

∫
R
|f |2wdx

holds.
If one assumes that w−1 ∈ L1

loc (this assumption is satisfied in practically all
interesting cases), then the above estimate means that the operator Mv1/2TαMw−1/2 ,
where Mφ stands for the operator of multiplication by φ, is bounded in the non-
weighted L2 space.

In [NTV1] this question was studied for the family of Haar multipliers T σα, where
α = {α

I
}

I∈D is fixed and σ = {σ
I
}

I∈D is an arbitrary sequence of signs, σ
I

= ±1.
It was shown that the operators Mv1/2T σαMw−1/2 are uniformly (over all possible
choices of signs σ) bounded if and only if the operators are uniformly bounded on
the test functions w−1/2χ

I
, I ∈ D, and their adjoints Mw−1/2T σαMv1/2 are uniformly

bounded on the test functions v1/2χ
I
, I ∈ D.

Conditions where the boundedness of an operator follows from its boundedness on
special test functions as above are called “Sawyer type conditions”, after E. Sawyer,
who proved in [S1] that such condition is necessary and sufficient for two weight esti-
mates of the maximal function (only one condition is needed there). After that there
were quite a few results that Sawyer type conditions are sufficient for the boundedness
of (clearly they are necessary) of different classes of integral operators with positive
kernels.

The above mentioned result about Haar multipliers was a first (and up until now a
unique) result giving necessary and sufficient condition for the boundedness of opera-
tors with alternating kernels. The fact that helped us a lot was that we were dealing
with a family of operators, and that allowed us to reduce the problem to estimates of
an operator with non-negative kernel.

At that moment it seemed impossible to get a sharp result about two weight
estimates for an individual Haar multiplier, at least our method did not allow us
to do that.

So, the main result of the paper looks quite surprising: the Sawyer type condition
works for two weight estimates of an individual Haar multiplier (as well as for a wider
class of so-called “band operators”)!

Before giving a formal definition, let us present one more important example of an
“band operator”, the so called Haar Shift S

Sf :=
∑
I∈D

(f, h
I
)[h

I+
− h

I−
].

This operator is interesting, in particular, because if we average it over all dyadic
grids (translated and rescaled) we get the Hilbert transform (up to a multiplicative
constant), see [P].
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1. Two weight estimates of band operators: formal definitions and main
results

1.1. Main definitions. Let D be the standard dyadic lattice in RN . Let us recall
the definition: for each k ∈ Z we consider the cube [0, 2k)N and all its translations
by elements of RN with coordinates of form j · 2k, j ∈ Z, then take union over all k.
Each dyadic cube has 2N “sons”, and each cube has a unique “parent”.

In this paper by a cube we will always mean a dyadic cube.
For a cube Q let `(Q) denote its size, i.e. the length of its side. And for a cube Q let

Q(k) be the kth grandparent of the cube Q, i.e. the cube R of size 2k`(Q) containing
Q.

A (non-weighted) Haar function on a cube Q is a function h
Q

supported on Q,
constant on the “children” of Q and orthogonal to constants,

∫
Q

h
Q

dx = 0. The set
of all Haar function on a cube Q ⊂ RN is a vector space of dimension 2N − 1.

With a dyadic lattice D in RN one can naturally associate a (non-oriented) 2N -ary
tree, where each dyadic cube is connected to its 2N “sons”. By the “tree distance” (or
“graph distance”) dtree(Q,R) between cubes Q,R ∈ D we understand the distance
on the graph, where we assign length 1 to each wedge.

And now the formal definition:

Definition 1.1. A band operator on RN is a bounded operator in L2(Rd) whose
matrix in the Haar basis has the “band structure”, meaning there exists r ∈ Z+ such
that (Th

Q
, h

R
) = 0 for all Haar functions hQ, hR such that dtree(Q, R) > r.

The Haar multipliers (martingale transforms) discussed in the introductions are
band operators with r = 0, and the Haar shift is a band operator with r = 1.

1.2. Two weigh estimates. As we already mentioned above, the operator T can
be extended to a bounded operator acting from L2(w) to L2(v) if and only if the
operator M

1/2
v TM

−1/2
w can be extended to a bounded operator in the (non-weighted)

L2. Denoting u := w−1 we can write the problem in more symmetric form, namely,
when the operator M

1/2
v TM

1/2
u can be extended to a bounded operator in the non-

weighted L2? Here we assume that u and v are L1
loc weights. This formulation is (at

least formally) a bit more general then the formulation with two weight estimates,
because here we do not assume that u−1 ∈ L1

loc (and we did assume above that
w−1 ∈ L1

loc).
Now we are ready to state one of the main results of the paper:

Theorem 1.2. Let T be a band operator, and let u, v ≥ 0, u, v ∈ L1
loc. Then the

operator M
1/2
v TM

1/2
u extends to a bounded operator in L2 if and only if for all dyadic

cubes Q the following two inequalities hold:∫
RN

|T (χ
Q

u)|2vdx ≤ C

∫
Q

udx,(1.1) ∫
RN

|T ∗(χ
Q

v)|2udx ≤ C

∫
Q

vdx.(1.2)
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Moreover, the norm of the operator M
1/2
v TM

1/2
u can be estimated by a constant de-

pending only on the dimension N , the number r in the definition of the band matrix,
and the constants C in (1.1), (1.2)

The above theorem says that to verify the boundedness of the operator M
1/2
v TM

1/2
u

it is sufficient only to check its boundedness on the test functions u1/χ
Q

and the

boundedness of its formal adjoint M
1/2
u T ∗M

1/2
v on the test functions v1/2χ

Q
for all

dyadic cubes Q.

Remark 1.3. A careful reader can ask a question here on how one can interpret the
expressions T (χ

Q
u) and T ∗(χ

Q
v). The problem is that the operator T (and so its

adjoint T ∗) are defined only on L2, so if one only assumes that u, v ∈ L1
loc, the above

expressions formally are not defined.
However, it is easy to give the meaning to the conditions (1.1), (1.2). First of all,

T (χ
Q

u) and T ∗(χ
Q

v) are well defined if u, v ∈ L2
loc. Second, it is trivial, that for any

weight v′ ≤ v we have ‖M1/2
v′ TM

1/
u ‖ ≤ ‖M1/2

v TM
1/
u ‖, and by taking adjoint one can

conclude that for any weight u′ ≤ u we have ‖M1/2
v TM

1/
u′ ‖ ≤ ‖M1/2

v TM
1/
u ‖.

Therefore, for any sequence of weights un, un ∈ L2(Q), un ↗ u, the expression
Tunχ

Q
is well defined. If, in addition, one assumes that the operator M

1/2
v TM

1/2
u

is bounded, then ‖v1/2Tunχ
Q
‖L2 ≤ C < ∞, and moreover v1/2Tunχ

Q
converges to

some functions in L2. It is easy to see that this limit function does not depend on the
choice of the sequence un, so we call this function v1/2Tχ

Q
u. The right side of (1.1)

then can be interpreted as the L2 norm of this function. The dual condition (1.2) can
be interpreted similarly.

Remark 1.4. For the sufficiency part one can think even of a simpler condition to
interpret (1.1), (1.2). For example, one can pick an increasing sequence of weights
un ∈ L2

loc ↗ u (for example un(x) = min{u(x), n}) and interpret the condition (1.1)
as the uniform estimate (independent of n and Q)∫

RN

|T (χ
Q

un)|2vdx ≤ C

∫
Q

udx

The dual condition (1.2) is interpreted similarly by picking an increasing sequence
vn ↗ v.

Indeed, these conditions would imply the conditions (1.1), (1.2) with u and v
replaced by un and vm respectively. That, by Theorem (1.2) implies the uniform
estimate ‖M1/2

vn TM
1/2
um ‖ ≤ C < ∞ which implies the estimate ‖M1/2

v TM
1/2
u ‖ ≤ C.

The conditions of Theorem 1.2 can be relaxed a bit by integrating only over the
cubes Q:

Theorem 1.5. Let T be a band operator and let u, v ≥ 0, u, v ∈ L1
loc. Then the

operator M
1/2
v TM

1/2
u extends to a bounded operator in L2 if and only if for all dyadic

cubes Q the following two conditions hold:
(1) For all dyadic cubes Q, R satisfying 2−r`(Q) ≤ `(R) ≤ 2r`(Q)

|〈Tχ
Q

, χ
R
〉| ≤ C

(∫
Q

u

)1/2 (∫
Q

v

)1/2

;
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(2) For all dyadic cubes Q∫
RN

|T (χ
Q

u)|2vdx ≤ C

∫
Q

udx,

∫
RN

|T ∗(χ
Q

v)|2udx ≤ C

∫
Q

vdx.

Moreover, the norm of the operator M
1/2
v TM

1/2
u can be estimated by a constant de-

pending only on the dimension N , the number r in the definition of the band matrix,
and the constants C in the above conditions (1) and (2).

In this paper 〈 · , · 〉 stands for the standard inner product in L2(RN ), 〈f, g〉 =∫
fgdx. Note that

〈Tχ
Q

u, χ
R

v〉 = 〈M1/2
v TM1/2

u χ
Q

u1/2, χ
R

v1/2〉,

so, as we discussed above in Remark 1.3, this expression is well defined.

Remark 1.6. Note, that in fact one does not even need the operator T to be bounded
in L2. A bit more elaborate reasoning than in Remark 1.3 would allow us to interpret
the conditions of Theorem 1.2 in the case when we only require the bilinear form
〈Tf, g〉 of the operator T be defined on bounded compactly supported functions f
and g. We leave the details here as an exercise for the reader.

2. Well-localized operators for general measures

To prove theorems 1.2 and 1.5 we prove even a bit more general results about the
so-called well-localized operators T = Tµ : L2(µ) → L2(ν) for general measures µ, ν
that may have singular parts.

2.1. Heuristics and formal definition. The idea behind the notion of well-local-
ized operators is rather simple. If one has an integral operator T ,

Tf(x) =
∫

K(x, y)f(y)dm(y),

where the integration is with respect to the Lebesgue measure m in RN , one can
consider (at least formally) the operator Tµ where the integration with respect to the
measure µ,

Tµf(x) =
∫

K(x, y)f(y)dµ(y).

Such reduction is quite common in weighted estimates. For example, two weight
estimates for integral operators T can be reduced to estimates of operators Tµ :
L2(µ) → L2(ν) with appropriately chosen measures µ and ν. One of the advantages
of such representation is that the integration in the operator and in the computation
of the norm is with respect to the same measure µ.

Since a rank one operator 〈 · , f〉g is an integral operator with kernel g(x)f(y), one
can formally represent any operator T is L2 as an integral operator by considering its
matrix in an orthonormal basis (for example in the Haar basis) and writing it as a
sum of rank one operators. And then one can replace the integration with respect to
the Lebesgue measure by the integration with respect to the measure µ. However this
is only a formal reasoning, because, first of all, the resulting “kernel” of the “integral”
operator does not need to be a function. And even if the kernel K is a function, it is
completely not clear how to interpret the operator Tµ.
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So, instead of writing a band operator as an integral operator (which is not always
possible: for example, the identity I is a band operator) and then trying to interpret
the operator Tµ, we pick an axiomatic approach.

Looking at the above formal reasoning, one can figure out what structure the
matrix of the operator Tµ should have with respect to the weighted Haar bases in
L2(µ) and L2(ν), if one start with a band operator T . It is not difficult to see, that
while the matrix of Tµ in the weighted Haar bases is not generally a band matrix, it
has some special properties, some traces of the band structure of T .

So, we took this special structure of the matrix in the weighted Haar bases as the
definition of the well-localized operators. Later in this section we will show how for a
band operator T one can rigorously reduce the estimates of the operator M

1/2
v TM

1/2
u

to the estimates of of the appropriate well-localized operator Tµ

And now main definitions.
First, let us define the weighted Haar system. For each cube Q a Haar function

with respect to a measure µ (µ-Haar function) on Q is a function hµ
Q supported on Q,

constant on all 2N “children” of Q, and such that
∫

Q
hµ

Q dµ = 0. Note that for a given
Q the set Hµ

Q of all µ-Haar functions on Q is a subspace of dimension at most 2N − 1
(can be less since degenerate situations are possible). The set HQ of non-weighted
Haar functions on Q has exactly dimension 2N − 1.

Let µ and ν are (regular Borel) measures in RN . Let us be given an operator
T = Tµ acting from L2(µ) to L2(ν). By given we mean that we know its bilinear form
〈Tχ

Q
, χ

R
〉ν on characteristic functions of cubes; here 〈 · , · 〉ν is the inner product in

L2(ν),

〈f, g〉ν =
∫

fg dν.

Note that the above bilinear forms also define a formal adjoint T ∗ = T ∗ν of T = Tµ.

Definition 2.1. Let T = Tµ be he operator defined above, acting (formally) from
L2(µ) to L2(ν). We say that Tµ is lower triangularly localized if there exists a constant
r > 0 such that for all cubes R and Q, `(R) ≤ `(Q), and for all ν-Haar functions hµ

R

on R

〈Tµχ
Q

, hν
R〉ν = 0

if R 6⊂ Q(r) or if `(R) ≤ 2−r`(Q) and R 6⊂ Q. Here, recall, Q(r) is the “grandparent”
of order r of the cube Q.

And we say that the operator Tµ is well localized if both Tµ and its formal adjoint
T ∗ν are lower triangularly localized.

Note, that the Haar multipliers and Haar shift, discussed in the Introduction are
well localized in the sense of the above definition, see Section 2.2 below. Note, that
while the matrix of a Haar multiplier Tα in the non-weighted case has only one
diagonal, the matrix of the weighted version may have infinitely many.

2.2. From weighted estimates for band operators to estimates of well lo-
calized operators. First we want to show that two weight estimates for the band
operators can be reduced from the estimates for the well-localized operators.
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Let T be a band operator in the non-weighted L2(RN ) and let u, v ≥ 0, u, v ∈ L1
loc

be two weights. Suppose we want to know whether the operator M
1/2
v TM

1/2
u is

bounded.
Let us denote dν = vdm, dµ = udm, where m is the Lebesgue measure in RN .

Note that Mu1/2 : L2(µ) → L2(m), Mv1/2 : L2(ν) → L2(m) are isometries. So the
boundedness of the operator M

1/2
v TM

1/2
u in L2(m) is equivalent to the boundedness

of the operator
Tµ = Mv−1/2(M1/2

v TM1/2
u )Mu1/2 = TMu

acting from L2(µ) to L2(ν).
If the operator T is an integral operator

Tf(x) =
∫

RN

K(x, y)f(y)dm(y),

then the operator Tµ is the integral operator with the same kernel K, but the inte-
gration is performed with respect to the measure dµ = udm,

Tµf(x) =
∫

RN

K(x, y)f(y)dµ(y).

The adjoint of the operator Tµ : L2(µ) → L2(ν) is the operator T ∗ν : L2(ν) → L2(µ),

T ∗ν = T ∗Mv.

Again, in the case of integral operator, we have the following representation of T ∗ν .

T ∗ν g(y) =
∫

RN

K(x, y)g(x)dν(x),

which explains the subscript ν.

Remark. The formula T ∗ν = T ∗Mv may seem strange, it looks like the formula should
be MuT ∗. However, this is a correct formula, and the naturally looking formula MuT ∗

is wrong, the main reason being that we are considering operators acting between
different spaces.

Namely, if we represent Tµ as

Tµ = Mv−1/2 [Mv1/2TMu1/2 ]Mu1/2

then in brackets all operators are operators in L2, so multiplication operators are self-
adjoint ones. But outside the brackets, the operators Mv−1/2 and Mu1/2 are unitary
operators, Mv−1/2 : RanMv1/2 ⊂ L2 → L2(ν) and Mu1/2 : L2(µ) → RanMu1/2 ⊂ L2.
So their adjoint are their inverses, and so

(Tµ)∗ = Mu−1/2 [Mu1/2T ∗Mv1/2 ]M1/2
v = T ∗Mv =: T ∗ν .

Let us now show that the operator Tµ is indeed a well localized operator in the
sense of Definition 2.1.

Consider a decomposition of the operator T with respect to the non-weighted Haar
basis in L2(m),

T =
∑

R,Q∈D
T

R,Q
, T

R,Q
: HQ → HR;

here recall that HQ denotes the space of all non-weighted Haar functions h
Q

on
the cube Q (which is a subspace of L2(m) of dimension 2N − 1). If we chose some
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orthonormal bases {h
Q,k

}2
N−1

k=1 and {h
R,j
}2

N−1
j=1 in HQ and HR respectively, then we

can represent TR,Q as

T
R,Q

=
2N−1∑
j,k=1

〈Th
Q,k

, h
R,j
〉〈 · , h

Q,k
〉h

R,j
.

Since the rank one operator 〈 · , h
Q,k

〉h
R,j

is an integral operator with kernel

h
Q,k

(y)h
R,j

(x), we can conclude that TR,Q can be represented as an integral op-
erator with bounded compactly supported kernel. So, the operators TR,Q are well
defined on L1

loc functions.
Assume for a moment that u ∈ L2

loc. Then uχ
Q
∈ L2, so

Tuχ
Q

=
∑

Q′,R′

T
R′,Q′uχ

Q

where the series converges in L2. Consider a cube R, `(R) ≤ `(Q). If we also assume
that v ∈ L2

loc, then 〈Tuχ
Q

, hν
R
〉ν = 〈Tuχ

Q
, vhν

R
〉 is well defined and

(2.1) 〈Tuχ
Q

, hν

R
〉ν =

∑
Q′,R′∈D

〈T
R′,Q′χQ

u, hν

R
〉ν

Note, that T
R′,Q′χQ

u 6= 0 only if Q′∩Q 6= ∅, so in the above sum we need to consider

only such Q′. Since a weighted Haar function hν
R is orthogonal in L2(ν) to constants,

〈T
R′,Q′χQ

u, hν〉ν = 0 for R $ R′. Also, trivially 〈T
R′,Q′χQ

u, hν〉ν = 0 if R′ ∩R 6= ∅.
And finally, the band structure of T means that T

R′,Q′ = 0 if dtree(R′, Q′) > r. So
in the above sum we can consider only R′, Q′ satisfying Q′ ∩ Q 6= ∅, R′ ⊂ R and
dtree(R′, Q′) ≤ r.

Since R′ ⊂ R and `(R) ≤ `(Q), the assumption dtree(R′, Q′) ≤ r implies that
`(Q′) ≤ 2r`(Q). This together with Q ∩ Q′ 6= ∅ implies that Q′ ⊂ Q(r). Indeed,
Q ∩ Q′ 6= ∅ means that either Q′ ⊂ Q (and so Q′ ⊂ Q(r)), or Q ⊂ Q′, and in the
latter case the estimate on the size of Q′ implies Q′ ⊂ Q(r).

Note that if R 6⊂ Q(r) then R′ 6⊂ Q(r) (because R′ ⊂ R). Therefore, dtree(R′, Q′) ≥
r +2, because we need at least one step to go above Q(r) and then at least r +1 steps
to go to cubes of size `(R). Therefore, 〈T (w−1χ

Q
), hν

R〉ν = 0 if R 6⊂ Q(r).
A similar reasoning works for the case `(R) ≤ 2−r`(Q). Namely, the inclusion

R′ ⊂ R and the inequality dtree(R′, Q′) ≤ r imply that `(Q′) ≤ `(Q), so it follows
from Q ∩Q′ 6= ∅ that Q′ ⊂ Q. If R 6⊂ Q then R′ 6⊂ Q and dtree(R′, Q′) ≥ r + 2 (we
need at least one step to go from Q′ above Q, and then at least r + 1 steps to go to
the cubes of size 2−r`(R)). Therefore, 〈T (w−1χ

Q
), hν

R〉ν = 0 if `(R) ≤ 2−r`(Q) and
R 6⊂ Q.

So, the operator Tµ is lower triangularly localized, and the same reasoning can be
applied to the adjoint operator T ∗ν . So we have shown, that under the assumption
u, v ∈ L2

loc the operator Tµ obtained from the band operator T is well localized. �
To treat the general case let us note that for Q ∩ R = ∅ the above sum (2.1) has

only finitely many terms. Each operator T
R′,Q′ is an integral operator with bounded

compactly supported kernel, so 〈Tχ
Q

u, hν
R
〉ν is well defined for u, v ∈ L1

loc.
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Moreover, if we take increasing sequences of weights un, vk ∈ L2
loc, un ↗ u, vk ↗ v,

and define dνk = vkdm, then

lim
n→∞

lim
k→∞

〈Tχ
Q

un, hνk

R
〉νk

= 〈Tχ
Q

u, hν

R
〉ν = 〈Mv1/2TMu1/2χ

Q
u1/2, hν

R
v1/2〉,

where the function Mv1/2TMu1/2χ
Q

u1/2 is interpreted exactly as in the Remark 1.3

2.3. Sawyer type results for well localized operators. The following two the-
orems can be also considered the main result of the paper.

Theorem 2.2. Let T = Tµ be a well localized operator acting (formally) from L2(µ)
to L2(ν). Then Tµ is a bounded operator from L2(µ) to L2(ν) if and only if T and its
formal adjoint T ∗ν are uniformly bounded on characteristic functions of cubes, i.e. iff

‖Tµχ
Q
‖2

L2(ν)
≤ C‖χ

Q
‖2

L2(µ)
= Cµ(Q), ∀Q ∈ D,

‖T ∗ν χ
Q
‖2

L2(µ)
≤ C‖χ

Q
‖2

L2(ν)
= Cν(Q), ∀Q ∈ D.

Moreover, the norm of T can be estimated by a constant depending only on the di-
mension N , the above constants C and r from the definition of well localized operator.

Theorem 1.2 is an immediate corollary of this theorem.
The assumptions that Tµ and T ∗ν are uniformly bounded on the characteristic

functions of cubes can be relaxed a little: one does not have to integrate Tµχ
Q

over
the whole space. Namely, Theorem 2.2 can be restated as follows

Theorem 2.3. Let T = Tµ be a well localized operator acting (formally) from L2(µ)
to L2(ν). Then Tµ is a bounded operator from L2(µ) to L2(ν) if and only if the
following two conditions hold:

(1)
∣∣∣〈Tµχ

Q
, χ

R
〉ν

∣∣∣ ≤ Cµ(Q)1/2ν(R)1/2 for all cubes Q, R of comparable size,

2−r`(Q) ≤ `(R) ≤ 2r`(Q); here r is the number from the definition of well
localized operator.

(2) For all cubes Q∫
Q

∣∣∣Tµχ
Q

∣∣∣2 dν ≤ Cµ(Q),
∫

Q

∣∣∣T ∗ν χ
Q

∣∣∣2 dν ≤ Cν(Q).

Moreover, the norm of T can be estimated by a constant depending only on the di-
mension N , the above constants C and r from the definition of well localized operator.

Theorem 1.5 is an immediate corollary of the above Theorem 2.3.
Note that in the condition (2) of the theorem one can replace Tµχ

Q
by its or-

thogonal (in L2(ν)) projection onto the subspace of functions F with zero aver-
age over Q,

∫
Q

f dν = 0, and similarly for T ∗ν χ
Q

. The condition (1) implies that∣∣∣〈Tµχ
Q

, χ
Q
〉ν

∣∣∣ ≤ C(µ(Q))1/2(ν(Q))1/2, i.e. that the projection onto the orthogonal
complement of this subspace is bounded.

While in our main example the measures µ and ν are absolutely continuous, and
the operator T came from an operator in the non-weighted L2, in Theorems 2.2 and
2.3 the measures are arbitrary regular Borel measures and Tµ is an arbitrary operator
L2(µ) → L2(ν). We only need to know its bilinear form 〈Tµχ

Q
, χ

R
〉ν to apply the

theorems.
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Remark 2.4. We do not have to assume that the operator T is bounded in the non-
weighted L2 to be able to apply Theorem 2.2 and 2.3 to get the weighted norm
inequalities for T . We only need to be able to define 〈Tµχ

Q
, χ

R
〉ν . In Section 2.2

above we had shown how one can treat this expression if the operator T is bounded
in the non-weighted L2. The same reasoning will work if T is bounded in any non-
weighted Lp.

In general situation (for example, if we have unbounded Haar multipliers) some
care is needed to interpret 〈Tµχ

Q
, χ

R
〉ν , but after that one can apply Theorem 2.2

and 2.3.

3. Proof of Theorems 2.2 and 2.3.

3.1. Martingale difference decomposition. Denote by Ek = Eµ
k the averaging

operator in L2(µ) over dyadic cubes of size (length of the side) 2k, namely Eµ
k f(x) =

µ(Q)−1
∫

Q
fdµ, where Q is a dyadic cube of size 2k containing x (for the sake of

definiteness, we consider cubes of the form x0 + [a, b)N ). If Q is a cube of size 2k, we
denote by Eµ

Q
f the restriction of Eµ

k f to Q: Eµ
Q

f := (µ(Q)−1
∫

Q
fdµ)χ

Q
= χ

Q
Eµ

k f .

Let ∆k = ∆µ
k := Eµ

k−1 − Eµ
k . Again for a dyadic cube Q of size 2k, denote by

∆µ
Qf the restriction of ∆µ

kf to Q. Clearly, for any f ∈ L2(µ), the functions ∆µ
Qf ,

Q ∈ D, are orthogonal to each other, and that for any fixed n we have the orthogonal
decomposition

f =
∑

Q∈D,`(Q)≤2n

∆µ
Qf +

∑
Q∈D,`(Q)=2n

Eµ
Qf,(3.1)

‖f‖2L2(µ) =
∑

Q∈D,`(Q)≤2n

‖∆µ
Qf‖2 +

∑
Q∈D,`(Q)=2n

‖Eµ
Qf‖2.

3.2. Paraproducts. Define the paraproduct Πµ = Πµ
T , acting (formally) from L2(µ)

to L2(ν) by
Πµf :=

∑
Q∈D

Eµ
Qf

∑
R∈D, R⊂Q,

`(R)=2−r`(Q)

∆ν
RTµχ

Q
.

The paraproduct Πν = Πν
T∗ is defined similarly,

Πνf :=
∑
Q∈D

Eν
Qf

∑
R∈D, R⊂Q,

`(R)=2−r`(Q)

∆µ
RT ∗ν χ

Q
.

Remark 3.1. Note, that it follows from the definition of well localized operator that
if R ⊂ Q, and `(R) ≤ 2−r`(Q), then for any Q′ ⊃ Q

∆ν
RTµχ

Q′ = ∆ν
RTµχ

Q
.

In other words, in the definition of Π we can always replace χ
Q

by χ
Q′ where Q′ is a

bigger cube.
That essentially means that formally we can write T1 instead of Tχ

Q
, so the

definition is more in line with the standard definition of a paraproduct.

The following lemma describes the matrix of Π with respect to the weighted Haar
systems in L2(µ) and L2(ν).



INEQUALITIES FOR HAAR MULTIPLIERS 593

Lemma 3.2. Let Q, R be dyadic cubes. Then for the paraproduct Π = Πµ defined
above

(1) If `(R) ≥ 2−r`(Q) then 〈Πµhµ
Q, hν

R〉ν = 0 for all weighted Haar functions hµ
Q

and hν
R.

(2) If R 6⊂ Q, then 〈Πµhµ
Q, hν

R〉ν = 0 for all weighted Haar functions hµ
Q and hν

R.
(3) If `(R) < 2−r`(Q), then for all weighted Haar functions hµ

Q and hν
R

〈Πµhµ
Q, hν

R〉ν = 〈Thµ
Q, hν

R〉ν ;

in particular, if R 6⊂ Q, then both sides of the equality are 0.

Proof. Let us use Q′ and R′ for the summation indices in the paraproduct, i.e. let us
write

Πµhµ
Q :=

∑
Q′∈D

Eµ
Q′h

µ
Q

∑
R′∈D, R′⊂Q′,
`(R′)=2−r`(Q′)

∆ν
R′Tµχ

Q′ .

Since hν
R is orthogonal to ranges of all projections ∆ν

R′ except ∆ν
R we can write

(3.2) 〈Πhµ
Q, hν

R〉ν = 〈(Eµ
Q′h

µ
Q)∆ν

RTχ
Q′ , h

ν
R〉ν = a〈Tχ

Q′ , h
ν
R〉ν

where Q′ is the grandparent of R of order r (i.e. the cube Q′, Q′ ⊃ R and such that
`(Q′) = 2r`(R)) and a is the value of EQ′hµ

Q on Q′, EQ′hµ
Q = aχ

Q′ .

It is easy to see that Eµ
Q′h

µ
Q 6≡ 0 (equivalently a 6= 0) only if Q′ $ Q. Therefore,

see (3.2), 〈Πhµ
Q, hν

R〉ν 6=) only if Q′ $ Q and statements 1 and 2 of the lemma follow
immediately.

Indeed, if `(R) ≥ 2−r`(Q) and `(Q′) = 2r`(R), the inclusion Q′ $ Q is impossible,
so 〈Πhµ

Q, hν
R〉ν = 0, and the statement (1) is proved.

If R 6⊂ Q, then the inclusion Q′ $ Q implies that R 6⊂ Q′. But `(R) = 2−r`(Q′),
so by the definition of a well localized operator 〈Πhµ

Q, hν
R〉ν = 0 and the statement

(2) is proved.
Let us prove statement 3. Let `(R) < 2−r`(Q). If R 6⊂ Q then by the statement 2

of the lemma 〈Πhµ
Q, hν

R〉ν = 0, and 〈Tµhµ
Q, hν

R〉ν = 0 by the definition of well localized
operators (“children” Qk of Q are cubes of size at least 2r`(R), and it follows from
the definition of well localized operator that 〈Tµχ

Qk
, hν

R〉ν = 0). So, we only need to
consider the case R ⊂ Q.

Let Q1 be the “child” of Q containing R (i.e. R ⊂ Q1 ⊂ Q, `(Q1) = `(Q)/2),
and let a be the value of hµ

Q on Q1. Then, since for all other children Qk of Q the
definition of well localized operator implies 〈Tχ

Qk
, hν

R〉ν = 0, we can conclude that

〈Thµ
Q, hν

R〉ν = a〈Tχ
Q1

, hν
R〉ν

On the other hand we have shown before, see (3.2) that

〈Πhµ
Q, hν

R〉ν = 〈(Eµ
Q′h

µ
Q)∆ν

RTχ
Q′ , h

ν
R〉ν

where R ⊂ Q′ $ Q, `(Q′) = 2r`(R). Therefore Q′ ⊂ Q1 and so Eµ
Q′h

µ
Q = aχ

Q′ .
We also know, see Remark 3.1, that because Q′ ⊂ Q1 we have equality ∆ν

RTχ
Q′ =

∆ν
RTχ

Q1
. Thus we can continue:

〈Πhµ
Q, hν

R〉ν = a〈∆ν
RTχ

Q′ , h
ν
R〉ν = a〈∆ν

RTχ
Q1

, hν
R〉ν = a〈Tχ

Q1
, hν

R〉ν .
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Therefore 〈Πhµ
Q, hν

R〉ν = 〈Thµ
Q, hν

R〉ν , and the lemma is proved. �

It follows from Lemma 3.2 and the definition of a well localized operator, that in
the weighted Haar bases the matrix of the difference Tµ − Πµ

T − (Πν
T∗)∗ has finitely

many diagonals, which are bounded by the assumption (1) of Theorem 2.3. Therefore,
the main part in the proof Theorem 2.3 (and thus Theorem 2.2) is to prove that the
paraproducts are bounded. Of course, one also need to take care of the terms like
Eµ

Q
f in the decomposition (3.1), but this is ratther simple, we present the details in

Section 3.4 below

3.3. Boundedness of the paraproduct. We will need the following well known
theorem.

Let f
R

:= 1
µ(R)

∫
R

f dµ be the average of the function f with respect to the measure
µ.

Theorem 3.3 (Dyadic Carleson Embedding Theorem). If the numbers a
Q
≥ 0,

Q ∈ D satisfy the following Carleson measure condition

(3.3)
∑
Q⊂R

a
Q
≤ µ(R),

then for any f ∈ L2(µ) ∑
R∈D

a
R
|f

R
|2 ≤ C‖f‖2L2(µ)

where C is an absolute constant.

This theorem is very well known, cf [Dur70]. For an alternative prove see also
[NTV], [NT], [NTV3], where it was proved with the constant C = 4 using Bellman
function method. It was also proved in [NTV3] that the constant C = 4 is optimal.
We should mention, that in [NT], [NTV3] this theorem was proved for R1, but the
same proof works for general martingale setup. A proof for R2 was presented in
[NTV], and the same proof works for RN .

Let us now show that the paraproduct Π = Πµ
T is bounded. Ranges of the pro-

jections δν
R are mutually orthogonal, so to prove the boundedness of the paraproduct

Πµ
T it is sufficient to show that the numbers

a
Q

:=
∑

R∈D,R⊂Q
`(R)=2−r`(Q)

‖∆ν
RTµχ

R
‖2L2(ν) ≤

satisfy the Carleson Measure Condition (3.3) from Theorem 3.3. Let us prove this.
Consider a cube Q̃. We want to show that∑

Q⊂ eQ
∑

R∈D,R⊂Q
`(R)=2−r`(Q)

‖∆ν
RTµχ

Q
‖2L2(ν) ≤ Cµ(Q).

By Remark 3.1 we can replace χ
Q

by χ eQ , so the desired estimates becomes∑
R∈D,R⊂ eQ

`(R)≤2−r`( eQ)

‖∆ν
RTµχ eQ‖2L2(ν) ≤

∑
R⊂ eQ

‖∆ν
RTµχ eQ‖2L2(ν) ≤ ‖χ eQTµχ eQ‖2L2(ν).
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By assumption (2) of Theorem 2.3

‖χ eQTµχ eQ‖2L2(ν) :=
∫

eQ |Tµχ eQ |2dν ≤ Cµ(Q̃)

and so the sequence a
Q

, Q ∈ D satisfies the condition (3.3) �

3.4. Why T is bounded. Let f ∈ L2(µ), g ∈ L2(ν).
We want to estimate

|〈Tµf, g〉ν | ≤ C‖f‖L2(µ)‖g‖L2(ν).

It is sufficient to prove the estimate on a dense set of compactly supported functions.
Each compact subset of RN is contained in at most 2N cubes of the same size as the
size of this compact subset, so let Qk, k = 1, 2, . . . , 2N be cubes of size 2d containing
supports of f and g.

Let us decompose f and g using the martingale difference decomposition,

f =
2N∑
k=1

Eµ
Qk

f +
∑

Q:`(Q)≤2d

∆µ
Qf, g =

2N∑
k=1

Eν
Qk

g +
∑

Q:`(Q)≤2d

∆ν
Qg.

Note, that ∆µ
Qf and ∆ν

Qg are µ- and ν-Haar functions on the cube Q.
By Lemma 3.2〈
Tµ

∑
Q

∆µ
Qf,

∑
R

∆ν
Rg

〉
ν

= 〈Πµ
T f, g〉ν + 〈f,Πν

T∗g〉ν

+
∑

Q:`(Q)≤2d

 ∑
R:2−r`(Q)≤`(R)≤2r`(Q)

〈Tµ∆µ
Qf,∆ν

Rg〉ν


We know that the paraproducts Πµ

T and Πν
T∗ are bounded, so it remains to estimate

the last sum. It follows from the assumption (1) of Theorem 2.3 that

|〈Tµ∆µ
Qf,∆ν

Rg〉ν | ≤ C‖∆µ
Qf‖L2(µ) ‖∆ν

Rg‖L2(ν)

if 2−r`(Q) ≤ `(R) ≤ 2r`(Q).
On the other hand, it follows from the definition of a well localized operator, that

given a cube Q at most M terms 〈Tµ∆µ
Qf,∆ν

Rg〉ν are non-zero, where M does not
depend on the choice of Q. Therefore we can split the sum into at most M sums of
form (operators with “one diagonal”)∑

Q

〈Tµ∆µ
Qf,∆ν

R(Q)g〉ν ,

which can be estimated by Cauchy–Schwarz inequality.
It remains to estimate the terms involving EQ. By assumption (1) of Theorem 2.3

|〈TµEµ
Qk

f,Eν
Qj

g〉| ≤ C‖χ
Qk
‖L2(µ)‖χQj

‖L2(ν) ≤ C‖f‖L2(µ)‖g‖L2(ν), and since there

are at most 2N cubes Qk we can estimate∑
k,j

|〈TµEµ
Qk

f,Eν
Qj

g〉ν | ≤ 22NC‖f‖L2(µ)‖g‖L2(ν).
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Let us now estimate ∑
k

∣∣∣∑
R

〈TµEµ
Qk

f,∆ν
Rg〉ν

∣∣∣
For a fixed Qk we have by the assumption of Theorem 2.2∣∣∣ ∑

R:`(R)<`(Qk)

〈TµEµ
Qk

f,∆ν
Rg〉ν

∣∣∣ ≤ C‖f‖L2(µ)‖g‖L2(ν).

But we have at most 2N cubes Qk, so the whole sum is bounded by

2NC‖f‖L2(µ)‖g‖L2(ν).

The sum ∑
k

∣∣∣∑
R

〈Tµ∆µ
Rf,Eν

Qk
g〉ν

∣∣∣
can be estimated similarly.

�
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