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MODULAR CURVES OF D-ELLIPTIC SHEAVES ARE
ASYMPTOTICALLY OPTIMAL

Mihran Papikian

Abstract. We prove that the series of modular curves of D-elliptic sheaves with ap-

propriate level structures attain the Drinfeld-Vladut bound over Fq2 .

1. Introduction

1.1. Motivation. Let q be a power of a prime p and let Fq denote the finite field with
q elements. Let {Ci}i∈N be a series of smooth, projective, geometrically connected
curves defined over Fq. Denote the genus of Ci by gi, and the set of Fq-rational points
on Ci by Ci(Fq). Assume gi → ∞ as i → ∞. A well-known result of Drinfeld and
Vladut [14] says that

(1.1) lim sup
i→∞

(
#Ci(Fq)

gi

)
≤ √

q − 1.

This result, proven in the early 80’s, was a significant and a rather surprising im-
provement of Weil’s celebrated estimate from the 40’s

#C(Fq) ≤ q + 1 + 2g
√
q

in the case when the genus g of C is very large compared to q.
The series {Ci}i∈N is called asymptotically optimal if

lim
i→∞

(
#Ci(Fq)

gi

)
=
√
q − 1,

or, in other words, {Ci}i∈N realizes the bound (1.1). Asymptotically optimal series
are important in coding theory via Goppa codes, and they are also quite interesting
from arithmetic point of view.

If q is not a square then no asymptotically optimal series of curves is known. If q is
a square then asymptotically optimal series always exist, but every known such series
has the property that for all sufficiently large i the curve Ci is of one of the following
types (see [7], [13], [10], [5]):

• classical modular curve, i.e., a curve classifying elliptic curves with some level
structure, such as X0(N)/Fp2 , (N, p) = 1 (in this case q = p2);

• Shimura curve;
• Drinfeld modular curve.
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(It is conjectured by Elkies [4] that asymptotically optimal series arising from certain
recursive constructions always consist of modular curves.)

The purpose of this article is to expand the previous list by including the modular
curves of D-elliptic sheaves, which were introduced by Laumon, Rapoport and Stuhler
in [9]. We show that the modular curves of D-elliptic sheaves with appropriate level
structures produce asymptotically optimal series of curves over Fq, when q is a square.

Just like Drinfeld modular curves are the function field analogues of classical mod-
ular curves over Q, the modular curves of D-elliptic sheaves are the function field
analogues of Shimura curves, hence our result represents a natural final entry in the
above list.

1.2. Main theorem. Before stating precisely the main result, we need to introduce
some terminology and notation.

Let X := P1
Fq

be the projective line over Fq. Denote by F = Fq(T ) the field
of rational functions on X. Fix a 4-dimensional central division algebra D over F
(i.e., a quaternion algebra over F ), which is split at ∞ = 1/T . Let R be the set of
places where D is ramified1. Fix a maximal order D in D in the sense of §2.2. Let
o be a fixed closed point on X − R − ∞. Denote the residue field at o by Fo and
qo := #Fo. For each closed subscheme I of X such that I ∩ (R ∪ o ∪ ∞) = ∅, let
E``I,o be the modular scheme classifying D-elliptic sheaves with zero o and pole ∞,
equipped with level-I structures (see §3 for the definitions). Then E``I,o is a smooth,
projective, 1-dimensional scheme over Fo. Let I be the ideal sheaf of I, and denote
OI := OX/I, deg(I) := dimFq

(OI). The group GL2(OI) acts naturally on E``I,o, by
acting on the level structures. Let H be a subgroup of GL2(OI). Denote by E``HI,o

the quotient E``I,o/H. Denote by F(2)
o the quadratic extension of Fo. Let Z and B

denote the center and the Borel subgroup of GL2, respectively. Finally, decompose
I = ps1

1 · · · psn
n into a product of prime powers in the Dedekind domain Fq[T ] and

embed F×q diagonally into O×I = (OX/p
s1
1 )×× · · · × (OX/p

sn
n )×. Denote the quotient

by O×I /F×q .

Theorem 1.1. Let {Ii}i∈N be a sequence of closed subschemes of X − R −∞ − o,
such that deg(Ii) →∞. For each i choose a subgroup Hi of GL2(OIi

) such that
(i) Z(OIi

) ⊆ Hi ⊆ B(OIi
);

(ii) det(Hi) generates O×Ii
/F×q .

Let Xi := E``Hi

Ii,o
. Then {Xi}i∈N is a sequence of projective, smooth, geometrically

connected curves defined over F(2)
o which is asymptotically optimal.

Example 1.2. To satisfy the conditions of the theorem, we can take {Ii} to be all
closed subschemes of X − R − ∞ − o (not necessarily reduced), arranged by their
degrees, and Hi = B(OIi

). Then Xi’s are the analogues of classical modular curves
with Hecke level structures.

Another choice which satisfies the conditions of the theorem is when {Ii} are the
closed reduced odd degree points on X −R−∞− o, arranged by increasing degrees,

1A well-known fact from class field theory implies that the cardinality of R is even and non-zero,

and conversely, for any choice of a non-empty finite set R ⊂ |X| of even cardinality there is a unique
quaternion algebra ramified exactly at the places in R.



MODULAR CURVES OF D-ELLIPTIC SHEAVES 527

and Hi = Z(OIi). In this case Xi’s are the analogues of classical modular curves with
full level structures along with a fixed choice of Weil pairing.

Remark 1.3. Unlike Drinfeld modular curves, which are affine, the modular curves of
D-elliptic sheaves are projective by construction, so one doesn’t have to deal with the
issue of the cusps.

1.3. Outline of the proof. Let k be a finite field. Fix an algebraic closure k̄ of
k. In this subsection by a curve over k we mean a proper, smooth scheme C over
Spec(k) of pure relative dimension 1. We do not require a curve to be geometrically
connected. The genus of C is

g(C) :=
1
2

dimQ`
H1

et(C ⊗k k̄,Q`),

where ` is a prime different from the characteristic of k. If C is geometrically connected
then g(C) is equal to the usual genus.

Let C be a curve and let G be a finite subgroup of Aut(C/k). The quotient scheme
C ′ := C/G is again a curve. The quotient morphism π : C → C ′ is a Galois cover.
Let S be a finite subset of C(k̄) and denote S′ := π(S) ⊂ C ′(k̄). Let d be the degree
of π. Since g(C) ≥ d(g(C ′)− 1) and #S ≤ d(#S′), there is an inequality

(1.2)
#S
g(C)

≤ #S′

g(C ′)− 1
.

Now let E``HI,o be as earlier, and let E``I,o(Fo)ss be the set of super-singular points
on E``I,o (see §4 for the definition). Using (1.1) and (1.2), we see that in order to
prove the main theorem it is enough to prove the following four statements:

(1)

lim
deg(I)→∞

#E``I,o(Fo)ss

g(E``I,o)
= qo − 1.

(2) If H contains Z(OI) then the images of super-singular points on E``HI,o are

F(2)
o -rational.

(3) If det(H) generates O×I /F×q then E``HI,o is geometrically connected.
(4) If H ⊆ B(OI) then g(E``HI,o) →∞ as deg(I) →∞.

Parts (1), (2) and (3) are proven as Propositions 5.1, 4.3 and 3.2, respectively. Part
(4) easily follows by comparing the estimate (5.4) with the order of B(OI).

2. Notation

Aside from the notation in Introduction, we will use the following:

2.1. For each closed point x ∈ |X| (equivalently, a place of F ), we denote by Ox

and Fx the completions of OX,x and F at x, respectively. The residue field of Ox is
denoted by Fx, the cardinality of Fx is denoted by qx. We assume that the valuation
vx : Fx → Z is normalized by vx($x) = 1, where $x is a uniformizer of Ox; the norm
| · |x on Fx is q−vx(·)

x . We denote the adele ring of F by A :=
∏′

x∈|X| Fx. For a set of
places S of F we denote by AS :=

∏′
x6∈S Fx the adele ring outside S.
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2.2. Fix a locally free sheaf D of OX -algebras with stalk at the generic point equal to
D and such that Dx := D⊗OX

Ox is a maximal order in D(Fx). Let DS :=
∏

x6∈S Dx.
For a finite nonempty closed subscheme I of X, denote DI = D ⊗OX

OI . Assuming
I is disjoint from S, let KS

I := ker((DS)× → D×I ).

2.3. Let ζF (s) =
∏

x∈|X| ζx(s) be the zeta function of X, where ζx(s) = (1− q−s
x )−1.

It is well-known (and is easy to show) that

ζF (s) =
1

(1− q−s)(1− q1−s)
.

Let ζS
F (s) be the partial zeta function

∏
x6∈S ζx(s).

2.4. For a scheme W over Fq denote by FrobW its Frobenius endomorphism, which
is the identity on the points and the q-th power map on the functions. We denote
by frobq ∈ Gal(Fq/Fq) the arithmetic Frobenius α 7→ αq, and for x ∈ |X| we let
Frobx = frob− deg(x)

q ∈ Gal(Fx/Fx) be the geometric Frobenius at x. Denote by
X×W the fibred product X×Spec(Fq)W . For a sheaf F on X and G on W , the sheaf
pr∗1(F)⊗ pr∗2(G) on X ×W is denoted by F � G.

2.5. Let D× be the algebraic group over F defined by D×(B) = (D ⊗F B)× for
any F -algebra B; this is the multiplicative group of D. Denote the algebra of 2 × 2
matrices by M2 and its multiplicative group GL2 by G.

3. Modular curves of D-elliptic sheaves

Let S be a Fq-scheme, and let z : S → X be a morphism of Fq-schemes such that
z(S) ⊂ X −R−∞. A D-elliptic sheaf over S, with pole ∞ and zero z, is a sequence
(Ei, ji, ti), i ∈ Z, where each Ei is a locally free sheaf of OX×S-modules of rank 4
equipped with a right action of D compatible with the OX -action, and where

ji : Ei → Ei+1

ti : τEi := (idX × FrobS)∗Ei → Ei+1

are injective OX×S-linear homomorphisms compatible with D-action. The maps ji
and ti are sheaf modifications at∞ and z, respectively, which satisfy certain conditions
[9, §2].

Let I 6= ∅ be a finite closed subscheme of X−∞. Let (Ei, ji, ti) be a D-elliptic sheaf
over S such that z(S) is disjoint from I. Under this assumption, it turns out that
the restrictions EI := Ei|I×S , as well as the restrictions t := ti|I×S , are independent
of i, and t induces an isomorphism τEI

∼= EI . A level-I structure on (Ei, ji, ti) is an
OI×S-linear isomorphism ι : DI �OS

∼= EI , compatible with the action of DI on the
right, which makes the following diagram commutative:

τEI
t // EI

DI �OS

τι

ddIIIIIIIII ι

::vvvvvvvvv
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There is a natural action of Z on the category of D-elliptic sheaves over S with
level-I structures given by

[n](Ei, ji, ti, ι) := (Ei+n, ji+n, ti+n, ι).

For a scheme z : S → X ′ := X−∞−I−R, denote by EllI(S) the set of isomorphism
classes of D-elliptic sheaves over S with zero z and pole ∞, equipped with a level-I
structure, modulo the action of Z. The first main theorem in [9] implies the following:

Theorem 3.1. The functor S 7→ EllI(S) is representable by a smooth projective
scheme E``I over X ′ of pure relative dimension 1.

The finite group D×I acts on DI �OS via right multiplication on DI . This induces
an action of D×I on E``I via its action on the level structures. In terms of the moduli
problem the action of g ∈ D×I is given by

g : (Ei, ji, ti, ι) 7→ (Ei, ji, ti, ι ◦ g−1).

Let H be a subgroup of D×I . Denote the quotient of E``I under the action of H
by E``HI . Assume I ∩R = ∅. Then D×I ∼= G(OI). Suppose H is such that

det : H � O×I /F
×
q ,

i.e., under the determinant homomorphism H maps surjectively onto O×I /F×q .

Proposition 3.2. With above notation and assumptions, the fibres of the morphism
E``HI → X ′ are geometrically connected.

Proof. Let C∞ be the completion of the algebraic closure of F∞. Consider the rigid-
analytic variety E``HI (C∞)an. Denote by H∞ the preimage of H in (D∞)× under
the quotient map (D∞)× → D×I . By the theory of analytic uniformization [1, Thm.
4.4.11], the connected components of E``HI (C∞)an are in one-to-one correspondence
with

D×(F ) \D×(A∞)/H∞ ∼−→ F× \ (A∞)×/Nr(H∞),

where the last isomorphism is induced by the reduced norm, and is a consequence of
the strong approximation theorem. As is easy to check,

F× \ (A∞)×/Nr(H∞) ∼= F×q \ O×I /det(H).

Hence, under our assumption, E``HI (C∞)an is connected. Since the number of con-
nected components of an algebraic variety over C∞ is equal to the number of connected
components of the corresponding rigid-analytic space, we conclude that the generic fi-
bre of E``HI is geometrically connected. By Stein factorization theorem, all geometric
fibres of E``HI → X ′ are connected. �

Remark 3.3. Theorem 4.4.11 of [1], which we used in the previous proof, is stated in
the language of formal schemes; the desired description follows by applying Raynaud’s
“generic fibre” functor. It is unfortunate that the proof of this useful theorem is only
vaguely outlined in [1]. Nevertheless, as is shown in [12], the desired uniformization
can be deduced from Hausberger’s version of the Cherednik-Drinfeld theorem for E``I
[6].
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4. Super-singular D-elliptic sheaves

In this section we discuss a special class of D-elliptic sheaves over extensions of Fo,
where o ∈ |X| −∞.

One of the key preliminary results in [9] is the description of the points on the
closed fibres of E``I → X ′. This is done in two steps, similar to the description of the
set of abelian varieties over finite fields: one starts by describing the isogeny classes
of D-elliptic sheaves and then parametrizes each isogeny class.

For the definition of isogenies between D-elliptic sheaves over k := Fo we refer to
[9, §9]. For our purposes it is enough to know [9, Thm. 9.13] that there is a canonical
bijection between the set of isogeny classes of D-elliptic sheaves over k with zero o

and the pairs (F̃ , Π̃) consisting of a finite separable field extension F̃ of F , and an
element Π̃ ∈ F̃×⊗Z Q which does not belong to B×⊗Z Q for any proper F -subalgebra
B of F̃ . The pair (F̃ , Π̃) must satisfy several technical conditions [9, (9.11)]. We say
that (Ei, ji, ti) is super-singular if in its corresponding pair (F̃ , Π̃) the field F̃ is F
itself.

Lemma 4.1. All super-singular D-elliptic sheaves are isogenous.

Proof. Extend the valuations from F to F× ⊗Q by vx(f ⊗ a) = a · vx(f). Then any
element of F×⊗Q, up to an element of F×q , is uniquely determined by its valuations. If
F̃ = F then the valuations of Π̃ by [9, (9.11)] are v∞(Π̃) = −1/2, vo(Π̃) = 1/deg(o)2,
and vx(Π̃) = 0 if x 6= o,∞. Therefore, up to an isomorphism, the pair (F̃ , Π̃) is
unique if F = F̃ . �

From now on we assume that I ⊂ X −R− o−∞ and I 6= ∅. Denote

E``I,o := E``I ×X′ Spec(Fo).

Let E``I,o(k)ss ⊂ E``I,o(k) of the set of isomorphism classes of super-singular D-
elliptic sheaves over k with level-I structures. Let D̄ be the quaternion algebra over
F with invariants

invxD̄ =

 1/2, if x = ∞;
−1/2, if x = o;
invx(D), otherwise.

As a consequence of [9, §10] and Lemma 4.1, we have

Theorem 4.2. There is a bijection

E``I,o(k)ss
∼−→ D̄×(F ) \

[
(D̄×(A∞,o)/K∞,o

I × Z
]
,

where D̄×(F ) is embedded diagonally into D̄×(A∞,o), and its action on Z is via the
composition of the reduced norm Nr with the valuation vo. This bijection is compatible
with the action of (D∞,o)×. The action of Frobo on E``I,o(k)ss corresponds to the
translation by 1 on Z.

Let H be a subgroup of D×I , and denote the quotient E``I,o/H by E``HI,o. Denote
the preimage of H in (D∞,o)× by H∞,o. Let E``HI,o(k)

ss be the image of E``I,o(k)ss

under the quotient map.
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Proposition 4.3. If Z(OI) ⊆ H then

E``HI,o(F(2)
o )ss = E``HI,o(k)

ss,

i.e., all the super-singular points on E``HI,o are F(2)
o -rational.

Proof. As a consequence of Theorem 4.2, there is a bijection

E``HI,o(k)
ss ∼−→ D̄×(F ) \

[
(D̄×(A∞,o)/H∞,o × Z

]
,

and
P = D̄×(F )[g∞,oH∞,o,mo] ∈ E``HI,o(k)

ss

is rational over F(2)
o if there is δ ∈ D̄×(F ) such that (g∞,o)−1δg∞,o ∈ H∞,o and

vo(Nr(δ)) = 2. Let f ∈ F× be an element whose divisor on X is (f) = [o− deg(o)∞].
Take δ = f ∈ F× ↪→ D̄×(F ) as an element of the center of D̄×(F ). Then Nr(f) = f2,
and vo(Nr(f)) = 2 · vo(f) = 2. We clearly have f ∈ H∞,o, so (g∞,o)−1fg∞,o = f ∈
H∞,o, and the first condition is also satisfied. Therefore, P ∈ E``HI,o(F

(2)
o )ss. (Note

that f usually will not be in K∞,o
I .) �

Now we compute the order of the set E``I,o(k)ss. Fix a maximal order D̄ for D̄
similar to D for D. Normalize the local multiplicative measure on D̄×(Fx) so that
Vol(D̄×x ) = 1. Define the measure on D̄×(A) to be the restricted product measure.
(As D̄×(A) and D̄×(Fx) are unimodular, we do not distinguish between left and right
Haar measures.) Let D̄1(A) be the kernel of the homomorphism ‖·‖ : D̄×(A) → qZ

given by the composition of the reduced norm Nr : D̄×(A) → A× with the idelic norm∏
x∈|X| | · |x : A× → qZ. The quotient D̄×(F ) \ D̄1(A) is compact, hence has finite

volume with respect to the push-forward measure. (Note that D̄×(F ) lies in D̄1(A),
thanks to the product formula.)

Proposition 4.4.

#E``I,o(k)ss =
#G(OI)(qo − 1)
(q2 − 1)(q − 1)

·
∏
x∈R

(qx − 1).

Proof. Let K̄S
I := ker

(
(D̄S)× → D̄×I

)
. By Theorem 4.2,

(4.1) #E``I,o(k)ss = #
(
D̄×(F ) \

[
(D̄×(A∞,o)/K̄∞,o

I × Z
])
.

(Note thatK∞,o
I = K̄∞,o

I .) Since D̄(Fo) is a division algebra, the maximal order D̄×o is
unique in D̄×(Fo) and is characterized by D̄×o = {a ∈ D̄×(Fo) | Nr(a) ∈ O×o }; see [11,
§12]. Hence the kernel of the reduced norm Nr on D̄×(Fo) is in D̄×o . This, combined
with the fact that Nr : D̄×o → O×o is surjective, implies vo ◦ Nr : D̄×(Fo)/D̄×o

∼−→ Z.
Since D̄×(F ) acts on Z in (4.1) via vo ◦Nr, we get

D̄×(F ) \
[
(D̄×(A∞,o)/K̄∞,o

I × Z
] ∼= D̄×(F ) \ D̄×(A∞)/K̄∞

I .

Since D̄(F∞) is a division algebra and ∞ is rational, for each a ∈ D̄×(A∞), up to an
element of D̄×∞, there is a unique b ∈ D̄×(F∞) such that (a, b) ∈ D̄1(A). Hence,

D̄×(F ) \ D̄×(A∞)/K̄∞
I
∼= D̄×(F ) \ D̄1(A)/K̄I .

Next, note that D̄×/K̄I
∼= G(OI). Since by our normalization of the measure we have

Vol(D̄×) = 1, we conclude:

#E``I,o(k)ss = #G(OI) ·Vol
(
D̄×(F ) \ D̄1(A)

)
.
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It remains to compute the volume. This calculation is essentially contained in [15],
but in absence of a convenient explicit reference we sketch some of the details.

One starts by relating the volume in question to the residue at 0 of a certain zeta
function. Let Φ be the characteristic function of D̄ in D̄(A). Consider the following
integral

ζD̄(s) =
∫

D̄×(A)

Φ(z) · ‖z‖s
d×z.

It absolutely converges for Re(s) > 1, can be meromorphically continued to the whole
plane with a simple pole at 0, and

Res
s=0

ζD̄(s) = −Vol
(
D̄×(F ) \ D̄1(A)

) 1
log q

.

Next, we have the decomposition ζD̄(s) =
∏

x ζD̄x
(s), where

ζD̄x
(s) =

∫
D̄×(Fx)

Φx(zx) · |Nr(zx)|sxd×zx.

If D̄ is split at x then, by considering the decomposition of M2(Ox) into left D̄×x ∼=
G(Ox)-cosets, we get

ζD̄x
(s) =

∫
M2(Ox)−{0}

|Nr(zx)|sxd×zx

= Vol(D̄×x )

( ∞∑
n=0

q−sn
x

)( ∞∑
n=0

q(−s+1)n
x

)
= ζx(s) · ζx(s− 1).

On the other hand, if D̄ is ramified at x then D̄(Fx) is a division algebra, hence D̄x

has a unique maximal ideal P � D̄x and Nr(P) = $x; see [11, (24.13)]. Thus,

ζD̄x
(s) =

∫
D̄x−{0}

|Nr(zx)|sxd×zx = Vol(D̄×x )
∞∑

n=0

q−sn
x = ζx(s).

Let S = R ∪ {∞, o}. Combining the local calculations,

Res
s=0

ζD̄(s) = − 1
(q − 1) log q

· ζS
F (−1).

Therefore

Vol
(
D̄×(F ) \ D̄1(A)

)
=

(qo − 1)
(q2 − 1)(q − 1)

·
∏
x∈R

(qx − 1),

and the proposition follows. �

5. Genus calculations

Let A(D×(F ) \D×(A)/$Z
∞) be the space of Q`-valued locally constant functions

on D×(A)/$Z
∞ which are invariant under the action of D×(F ) on the left. This space

is equipped with the right regular representation of D×(A)/$Z
∞. Since D is a division

algebra, the coset space D×(F ) \ D×(A)/$Z
∞ is compact and decomposes as a sum

of irreducible admissible representations

A(D×(F ) \D×(A)/$Z
∞) =

⊕
Π

Π,
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where each representation appears with multiplicity one, cf. [9, §13]. The represen-
tations appearing in this sum are called automorphic.

Each automorphic representation Π decomposes as a restricted tensor product
Π = ⊗x∈|X|Πx of admissible irreducible representations of D×(Fx). We denote Π∞ =
⊗x6=∞Πx, so Π = Π∞⊗Π∞. If Π is finite dimensional, then it is of the form Π = χ◦Nr,
where χ is a Hecke character of A×, cf. [9, Lem. 14.8]. If Π is infinite dimensional,
then Πx is infinite dimensional for every x 6∈ R.

Let ψ be a character of F×x . Denote by Spx ⊗ψ the unique irreducible quotient of
the induced representation

IndG
B(| · |−

1
2

x ψ ⊕ | · |
1
2
xψ).

The representation Spx ⊗ ψ is called the special representation of G(Fx) twisted by
ψ. If ψ = 1, then we simply write Spx.

Let η = Spec(F ) be the generic point of X and fix an algebraic closure F of
F . Let E``I,η := E``I ×X Spec(F ). Fix a prime number ` 6= p and consider the
`-adic cohomology groups Hi

I,η := Hi(E``I,η ⊗F F ,Q`). These are finite dimensional
Q`-vector spaces, which are non-zero only if 0 ≤ i ≤ 2.

Denote by W (D×; I) the subspace of A(D×(F ) \D×(A)/$Z
∞) consisting of auto-

morphic representations Π such that the subspace of K∞
I -fixed vectors (Π∞)K∞

I is
non-zero and Π∞ ∼= Sp∞. (Keep in mind that D×(F∞) ∼= G(F∞) since by assumption
D is split at ∞.)

Taking the K∞
I -invariants in Theorems 14.9 and 14.12 of [9], we get

dimQ`
H1

I,η = 2
∑

Π∈W (D×;I)

dimQ`
(Π∞)K∞

I .

LetH1
I,o := H1(E``I,o⊗Fo

Fo,Q`). By proper base change theorem, there is a canonical
isomorphism H1

I,o
∼= H1

I,η of Q`-vector spaces. Hence

(5.1) g(E``I,o) =
∑

Π∈W (D×;I)

dimQ`
(Π∞)K∞

I .

To estimate this last sum, we transfer the question from D× to G. The global
Jacquet-Langlands correspondence [8, Ch. III] associates to each infinite dimensional
automorphic representation Π of D×(A) a cuspidal representation Π′ = JL(Π) of
G(A) with the following properties:

(1) if x 6∈ R then Πx
∼= Π′

x;
(2) if x ∈ R and Πx

∼= ψ ◦Nr for a character ψ of F×x , then

Π′
x
∼= Spx ⊗ ψ.

Suppose Π∞ has a non-zero K∞
I -fixed vector. Then, for x ∈ R, Πx has a non-zero

vector fixed by D×x (since I ∩ R = ∅ by assumption). On the other hand, D×x is
normal in D×(Fx) and D×(Fx)/D×x ∼= Z. Therefore, Πx = ψ◦Nr for some unramified
character of F×x (ψ is unramified because the reduced norm maps D×x surjectively
onto O×x ). Thus, for x ∈ R, Π′

x is a twist of Spx by an unramified character.
Let Jx be the Iwahori subgroup of G(Ox), i.e., the subgroup of matrices which maps

to B(Fx) modulo $x. The representations of the form Spx ⊗ ψ, with ψ unramified,
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can be characterized by the property that they have a unique 1-dimensional Jx-fixed
subspace; see [2]. For a finite set S ⊂ |X| −∞ define a subgroup of G(A∞)

J∞S :=
∏
x∈S

Jx

∏
x∈|X|−S−∞

G(Ox).

Denote by W (G; I,R) the set of cuspidal representations of G(A) which have a
non-zero K∞

I ∩ J∞R -fixed vector and ∞ component isomorphic to Sp∞. Define the
R-new part W (G; I,R)R−new of W (G; I,R) to be the representations which do not
have a non-zero K∞

I ∩ J∞S -fixed vector for any S strictly contained in R. From what
was said, we know that the image of W (D×; I) under JL lies in the R-new part of
W (G; I,R), and in fact, as part of the theory, it is known that the Jacquet-Langlands
correspondence gives a bijection

(5.2) JL : W (D×; I) ∼−→W (G; I,R)R−new.

One can think of R as a reduced closed subscheme of X −∞. Write I +R for the
scheme-theoretic union of I and R. Note that W (G; I,R) makes sense for an arbitrary
finite R, so from now on R is an arbitrary closed subscheme of X−∞, disjoint from I.
To simplify the notation, we write W (I,R) for W (G; I,R), and W (I) for W (G; I, ∅).
Let

w(I,R) :=
∑

Π∈W (R,I)

dimQ`
(Π∞)K∞

I ∩J∞R .

Similar notation will be used for sums over subsets of W (I,R), e.g., w(I,R)R−new is
the sum over Π in W (I,R)R−new.

The number w(I) is well-known and can be computed in several different (although
interrelated) ways. For example, one can use Drinfeld’s fundamental theorem [3, Thm.
2] and relate w(I) to the genus of the modular curve X(I) classifying rank-2 Drinfeld
modules over F with full level-I structure. Since we are mostly concerned with the
asymptotic behavior, for simplicity we only give the asymptotic formulae.

Write f(I) � g(I) for two Q-valued functions f(I) and g(I) depending on I, if
f(I)/g(I) → 1 as deg(I) →∞. Then one has the following (see Theorem 8.1 in [5])

w(I) � #G(OI)
(q2 − 1)(q − 1)

.

Now w(I,R) can be deduced from w(I +R):

(5.3) w(I,R) � #G(OI)
(q2 − 1)(q − 1)

∏
x∈R

(qx + 1).

Geometrically this can be seen as follows. Let X(I,R) be the modular curve classify-
ing rank-2 Drinfeld modules over F with a full level-I structure and a cyclic level-R
structure. There is a natural Galois covering X(I +R) → X(I,R) with Galois group
B(OR). If I is large enough then this covering is étale, so the genus of X(I,R) is
asymptotically equal to the genus of X(I +R) divided by #B(OR). Now note that

#G(OI+R)/#B(OR) = #G(OI)
∏
x∈R

(qx + 1).

For a subset P ⊆ R define W (I,R)P−new to be the subset of W (I,R) consisting of
representations which do not have a K∞

I ∩J∞S -fixed vector for any S strictly contained
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in P . Let x ∈ R be a place, and write R = R′ + x. Since the Atkin-Lehner theory
of new forms on G works over F essentially the same way as for classical cusp forms,
we have

W (I,R) = W (I,R)x−new ⊕W (I,R)x−old,

where
W (I,R)x−old ∼= W (I,R′)⊕W (I,R′).

Hence
w(I,R)x−new = w(I,R)− 2w(I,R− x).

Next, let x, z ∈ R be two distinct places and write R = R′ + x+ z. Then

W (I,R)x−old ∩W (I,R)z−old ∼= W (I,R′)⊕4,

and, using the exclusion-inclusion principle, we get

w(I,R){x,z}−new = w(I,R)− 2w(I,R− x)− 2w(I,R− z) + 4w(I,R− x− z).

Expanding this argument,

w(I,R)R−new =
∑
P⊆R

(−2)#Pw(I,R− P ),

where the sum is over all subsets of R. Finally, we can combine this with (5.3) to
obtain

w(I,R)R−new � #G(OI)
(q2 − 1)(q − 1)

∑
P⊆R

(−2)#P
∏

x∈R−P

(qx + 1)


=

#G(OI)
(q2 − 1)(q − 1)

∏
x∈R

(qx − 1).

This estimate, combined with (5.1) and (5.2), gives the following asymptotic formula:

(5.4) g(E``I,o) �
#G(OI)

(q2 − 1)(q − 1)

∏
x∈R

(qx − 1).

Proposition 5.1.

lim
deg(I)→∞

#E``I,o(Fo)ss

g(E``I,o)
= qo − 1.

Proof. This follows from Proposition 4.4 and (5.4). �
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