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THE ORDER OF PLURISUBHARMONICITY ON
PSEUDOCONVEX DOMAINS WITH LIPSCHITZ BOUNDARIES

Phillip S. Harrington

Abstract. Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain with Lipschitz boundary.
Diederich and Fornaess have shown that when the boundary of Ω is C2, there exists a

constant 0 < η < 1 and a defining function ρ for Ω such that −(−ρ)η is a plurisubhar-
monic function on Ω. In this paper, we show that the result of Diederich and Fornaess

still holds when the boundary is only Lipschitz.

1. Introduction

Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain. We denote the boundary of Ω
by ∂Ω and say that ∂Ω is Lipschitz if it can be written locally as the graph of a Lip-
schitz function. Define the distance function δ for ∂Ω by δ(z) = infw∈∂Ω |z − w|. By
Oka’s Lemma, Ω is pseudoconvex if and only if there exists some open neighborhood
U of ∂Ω such that − log δ is plurisubharmonic on U ∩ Ω. By suitably modifying δ in
the interior of Ω, we can obtain a plurisubharmonic exhaustion function for Ω.

In many applications, it is desirable to have a bounded plurisubharmonic exhaus-
tion function for a given pseudoconvex domain (which − log δ clearly fails to be).
In [12], Kerzman and Rosay show that such functions exist locally on Lipschitz do-
mains and globally on C1 domains, but their functions fail to satisfy global estimates.
Demailly [5] extends Kerzman and Rosay’s result to obtain a global function on Lip-
schitz domains which is comparable to 1

log δ . However, such functions remain quite
singular at the boundary. In this paper, we wish to consider the possibility of Hölder
continuous plurisubharmonic exhaustion functions on Lipschitz domains.

Following Cao, Shaw, and Wang [3], if PSH(Ω) is the space of plurisubharmonic
function on Ω, we define the order of plurisubharmonicity for a domain Ω as follows:

η(Ω) = sup
{

η ∈ [0, 1] : ∃λ ∈ PSH(Ω) and k > 1 such that
1
k

δη < −λ < kδη

}
.

In [7], Diederich and Fornaess show that whenever ∂Ω is C2, η(Ω) > 0. Furthermore,
they use worm domains [6] to show that for any 0 < η < 1, there exists a pseudoconvex
domain with smooth boundary such that η(Ω) < η. Hence, η(Ω) > 0 is the strongest
result which can be expected for generic pseudoconvex domains. On C3 domains,
Range [13] has a simplified proof which provides a concrete representation for λ in
terms of any C3 defining function ρ.

Our main result in this paper is to extend the result of Diederich and Fornaess to
all Lipschitz pseudoconvex domains, as follows:
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Theorem 1.1. Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain with Lipschitz
boundary. Then for some 0 < η < 1 there exists a strictly plurisubharmonic function
λ on Ω and constants k > 1 and c > 0 such that 1

k δη < −λ < kδη and

(1.1) i∂∂λ ≥ icδη∂∂ |z|2

Remark 1.2. Equivalently, we can set ρ = −(−λ)
1
η in Ω and conclude that Ω admits

a defining function ρ such that −(−ρ)η is strictly plurisubharmonic in Ω and satisfies
(1.1).

Several known results that use the Diederich and Fornaess result on C2 domains
can be immediately generalized to Lipschitz domains using this theorem. In [1],
Berndtsson and Charpentier prove the following result for C2 pseudoconvex domains,
and observe that their result will also follow on any Lipschitz pseudoconvex domain
satisfying the conclusions of Theorem 1.1.

Theorem 1.3. Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain with Lipschitz
boundary. Then for any η(Ω)

2 > s > 0, the Bergman projection P and the canonical
solution operator ∂

∗
N for the ∂ equation are bounded in the Sobolev space W s(Ω).

Here, the Bergman projection P denotes the orthogonal projection from L2(Ω) to
ker ∂ ∩ L2(Ω), where ∂ is the Cauchy-Riemann operator. For background on the L2

theory for ∂, see [10], [11], or [4].
In [3], Cao, Shaw, and Wang extend Berndtsson and Charpentier’s result to obtain

estimates for the ∂-Neumann operator. Although they work in CPn in this paper,
their proof for this result also applies in Cn (see [9]).

Theorem 1.4. Let Ω ⊂⊂ Cn be a bounded pseudoconvex domain with Lipschitz
boundary. Then for any η(Ω)

2 > s > 0, the ∂-Neumann operator N is bounded in the
Sobolev space W s

(p,q)(Ω) for all 0 ≤ p ≤ n and 1 ≤ q ≤ n.

For background on the ∂-Neumann problem, see [8], [2], or [4].
As in [12] and [5], the proof of Theorem 1.1 will begin by locally translating − log δ

in a direction transverse to the boundary, in order to obtain bounded plurisubhar-
monic functions satisfying certain estimates. We proceed to subdivide each neigh-
borhood of the boundary into strips equidistant from the boundary so that we can
refine our plurisubharmonic function on each strip. The key step of the proof is to
show that the new functions on each strip can be patched together to obtain a global
plurisubharmonic function.

2. Proof of the Main Theorem

Let r > 0 be some constant such that for any p ∈ ∂Ω, B(p, r) is a neighborhood
on which ∂Ω can be written as the graph of a Lipschitz function. In other words,
there exist local orthonormal coordinates (z1

p, z2
p, . . . , zn

p ) = (z′p, z
n
p ) on B(p, r) and a

Lipschitz function ϕp such that

Ω ∩B(p, r) =
{
zp ∈ B(p, r) : Imzn

p < ϕp(z′p,Rezn
p )
}

.

We define ρp = Imzn
p − ϕp(z′p,Rezn

p ). Note that for some kp > 1, we have δ ≤
−ρp ≤ kpδ on B(p, r) ∩ Ω. Choose some finite indexing set P ⊂ ∂Ω such that
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{B(p, r/3)}P is a finite cover of ∂Ω, and let k = supP kp. Let χp ∈ C∞
0 (B(p, r/2))

such that χp|B(p,r/3) ≡ 1 and 0 ≤ χp ≤ 1. Choose t > 0 such that χp + (t − 1) |z|2

is plurisubharmonic for all p ∈ P (i.e. i∂∂(χp + t |z|2) ≥ i∂∂ |z|2), and choose d > 0
such that |z| ≤ d on Ω.

Because we are planning to construct a plurisubharmonic function comparable to
δη out of translations of − log δ, we need a way of comparing such functions. To
that end, we define fη(x) = 1 + 2η log

(
x+1
2

)
− xη. To estimate fη, we compute

f ′η(x) = 2η
x+1 − ηxη−1. Using convexity to bound xη and xη−1 by their tangent lines,

we observe that xη ≤ 1 + η(x− 1) and xη−1 ≥ 1 + (η − 1)(x− 1) when 0 < η < 1, so

f ′η(x) ≥ 2η

x + 1
− η

x
(1 + η(x− 1)) =

η(x− 1)
x(x + 1)

(1− η(x + 1)),

f ′η(x) ≤ 2η

x + 1
− η(1 + (η − 1)(x− 1)) =

η(1− x)
x + 1

(1− (1− η)(x + 1)).

Since fη(1) = 0, f ′η(x) > 0 when 1 < x < 1−η
η , and f ′η(x) < 0 when η

1−η < x < 1, we
conclude that fη(x) ≥ 0 whenever η

1−η < x < 1−η
η (assuming now that 0 < η < 1

2 ).
Let M = 2(2 + td2) log k2. Observe that

(2.1) lim
η→0+

fη(x)
ηxη

= 2 log
(

x + 1
2

)
− log x = log

(
(x + 1)2

4x

)
,

and

lim
x→+∞

log
(

(x + 1)2

4x

)
= lim

x→0+
log
(

(x + 1)2

4x

)
= ∞,

so there exists some a0 > 1 such that log
(

(x+1)2

4x

)
> M whenever x > a0 or 0 < x <

1
a0

. Choose a > max
{
a0, 2k4 − 1

}
(we will need a > 2k4 − 1 in order to extend our

function into the interior of Ω) and choose 1
2 > η0 > 0 such that 1−η0

η0
> a. Then

fη(x) ≥ 0 on [ 1a , a] for all 0 < η < η0. Choose such an η > 0 so that by (2.1) we have
fη(a) > ηaηM and fη(1/a) > ηa−ηM .

Let b > 0 be such that − log δ is plurisubharmonic in Ω when 0 < δ < b and
{z ∈ Ω : 0 < δ < b} ⊂

⋃
P B(p, r/3). Then for any 0 < ε < b

a+1 , we define Uε,p ={
z ∈ Ω ∩B(p, r/2) : ε

a < δ < εa
}
. On Uε,p, we set

(2.2) λε,p(zp) =

− εη

(
1 + 2η log

(
kδ(z′p, z

n
p − iε)

2ε

)
− 2η log k2(χp − 1 + t(|z|2 − d2))

)
.

Here, we emphasize that |z|2 is defined in terms of global coordinates on Cn, rather
than the local coordinates on B(p, r). Observe also that

i∂∂λε,p ≥ i2ηεη log k2∂∂ |z|2 > i(2ηa−η log k2)δη∂∂ |z|2

on Uε,p, since − log δ(z′p, z
n
p − iε) is plurisubharmonic.
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To compute estimates of λε,p that are independent of p, we will need to observe
that

δ(z′p, z
n
p − iε) ≤ −ρp(zp) + ε ≤ k(δ(z) + ε),(2.3)

δ(z′p, z
n
p − iε) ≥ 1

k
(−ρp(zp) + ε) ≥ 1

k
(δ(z) + ε).(2.4)

Hence, when χp = 1, we have

λε,p(z) ≥ −εη

(
1 + 2η log

(
k2(δ(z) + ε)

2ε

)
− 2ηt log k2(|z|2 − d2)

)
,

and when χp = 0, we have

λε,p(z) ≤ −εη

(
1 + 2η log

(
δ(z) + ε

2ε

)
− 2η log k2(−1 + t(|z|2 − d2))

)
= −εη

(
1 + 2η log

(
k2(δ(z) + ε)

2ε

)
− 2ηt log k2(|z|2 − d2)

)
.

Since λε,p1 ≥ λε,p2 on B(p1, r/3)\B(p2, r/2), the function

λε(z) = sup
{p∈P:z∈B(p,r/2)}

λε,p(z)

is continuous on Uε =
{
z ∈ Ω : ε

a < δ < εa
}

and

(2.5) i∂∂λε(z) ≥ i(2ηa−η log k2)δη∂∂ |z|2 .

Note that this patching argument is a variation of the method used in [5], and that
(2.5) follows from Lemma 2.10 in the same paper.

Now, observe that on Uε, we have

(2.6) λε ≤ −εη

(
1 + 2η log

(
δ + ε

2ε

))
= −εηfη

(
δ

ε

)
− δη ≤ −δη,

and

λε ≥ −εη

(
1 + 2η log

(
k2(δ + ε)

2ε

)
+ 2η log k2(1 + td2)

)
= −εη

(
fη

(
δ

ε

)
+ 2η log k2(2 + td2)

)
− δη.

(2.7)

Referring back to the defining inequalities for a and M , we see that when δ = εa, we
have

λε ≤ −εηfη(a)− δη < −δηηM − δη.

Since fη(1) = 0, we also have

λεa = λδ ≥ −δηηM − δη.

Hence λεa > λε when δ = εa, and similarly λε/a > λε when δ = ε/a. If we set
εn = a−n b

a+1 , we can then define

λ̃(z) = sup
{n∈N:z∈Uεn}

λεn
(z).

As before, we have
i∂∂λ̃ ≥ i(2ηa−η log k2)δη∂∂ |z|2 ,
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while (2.6) and (2.7) give us

−δη ≥ λ̃ ≥ −δη

(
aη

(
sup

[1/a,a]

fη + ηM

)
+ 1

)
.

To complete the proof, we need only find a strictly plurisubharmonic extension of
λ̃ into the interior of Ω. Referring back to (2.2) and (2.4), we see that when δ = εa,

λε ≤ −εη

(
1 + 2η log

(
a + 1

2

)
− 2ηt log k2(|z|2 − d2)

)
,

and when δ = ε, we use (2.2) and (2.3) to show

λε ≥ −εη
(
1 + 2η log k2 − 2η log k2(−1 + t(|z|2 − d2))

)
= −εη

(
1 + 4η log k2 − 2ηt log k2(|z|2 − d2)

)
.

Since a > 2k4 − 1, we have η log
(

a+1
2

)
> 2η log k2. Hence, we can define

λ0 = −εη
1

(
1 + η log

(
a + 1

2

)
+ 2η log k2 − 2η log k2t(|z|2 − d2)

)
satisfying λ0 < λε1 when δ = ε1 and λ0 > λε1 when δ = ε1a. Clearly, λ0 is also
strictly plurisubharmonic. To conclude the proof, we define

λ =


λ̃ δ ≤ ε1

sup
{

λ̃, λ0

}
ε1 < δ < ε1a

λ0 δ ≥ ε1a

.
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