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A VANISHING THEOREM FOR ORIENTED INTERSECTION
MULTIPLICITIES

J. Fasel and V. Srinivas

Abstract. Let A be a regular local ring containing 1/2, which is either equicharacter-
istic, or is smooth over a d.v.r. of mixed characteristic. We prove that the product maps

on derived Grothendieck-Witt groups of A satisfy the following property: given two ele-

ments with supports which do not intersect properly, their product vanishes. This gives
an analogue for “oriented intersection multiplicities” of Serre’s vanishing result for inter-

section multiplicities. It also suggests a Vanishing Conjecture for arbitrary regular local

rings containing 1/2, which is analogous to Serre’s (which was proved independently by
Roberts, and Gillet and Soulé).

1. Introduction

Let A be a regular local ring of dimension d and let M and N be finitely gener-
ated A-modules such that M ⊗ N is of finite length. Serre defined the intersection
multiplicity χA(M,N) by

χA(M,N) =
d∑

i=0

(−1)i`A[TorA
i (M,N)].

Here `A denotes the length of an A-module of finite length. It has been shown that the
intersection multiplicity satisfies Serre’s Vanishing Conjecture: if dimM + dim N <
d, then χ(M,N) = 0. Serre proved this in [18] for A which is equicharacteristic,
or is smooth 1 over a d.v.r. of mixed characteristic; the general case was proved
independently by Roberts [16], and by Gillet and Soulé [11], [12].

On the other hand, let X be a smooth variety of dimension n over a field k, V,W
be irreducible subvarieties of X and P be an irreducible component of V ∩ W that
has the right codimension, i.e. such that codim(P,X) = codim(V,X)+codim(W,X).
If CH∗(X) denotes the Chow ring of X and {V }, {W}, {P} are the classes of the
varieties V,W,P in that ring, then it is well known that

(1) {V } · {W} = χOX,P
(OV,P ,OW,P ){P}+ β

for a cycle β whose support does not contain P .
Some years ago, Barge and Morel introduced a generalization of the Chow groups

called the oriented Chow groups or Chow-Witt groups ([3]; see also [5] for more de-
tails), which admit homomorphisms to the “usual” Chow groups. In a recent paper
([4]), the first author showed that for a smooth variety X over a field of characteristic
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1Here, the local ring A is said to be smooth over a d.v.r. if its completion is a power series ring

over the corresponding complete d.v.r.
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6= 2, the total Chow-Witt group of X, denoted by C̃H
∗
(X), admits a graded ring

structure, such that the natural map C̃H
∗
(X) → CH∗(X) is a ring homomorphism.

If V is a closed algebraic subset of X of pure codimension n, let GWn
V (X) denote

the n-th Grothendieck-Witt group of perfect complexes on X supported in V (see [20]
for more information). In [4], it is shown that there is a natural homomorphism

αV : GWn
V (X) → C̃H

n
(X);

moreover, if W is another closed algebraic subset of pure codimension m such that
V ∩W is of pure codimension m + n, we have a commutative diagram ([4], Theorem
7.6)

GWn
V (X)×GWm

W (X)

αV ×αW

��

? // GWm+n
V ∩W (X)

αV ∩W

��

C̃H
n
(X)× C̃H

m
(X) ·

// C̃H
m+n

(X)

Here the bottom row is the multiplication in the Chow-Witt ring, and ? denotes the
product on the Grothendieck-Witt groups, induced by the usual tensor structure on
perfect complexes. The existence of this commutative diagram is an analogue for
Chow-Witt groups of the formula (1) for Serre’s intersection multiplicity.

Given this result, it is natural to ask whether a version of Serre’s Vanishing Con-
jecture is true for the Grothendieck-Witt groups. We may thus formulate:

Conjecture. Let (A,m) be a regular local ring of dimension n containing 1/2. Let
Z and T be closed subsets of Spec(A) such that dim Z + dim T < n and Z ∩ T = m.
Then the multiplication

GW i
Z(A)×GW j

T (A) → GW i+j
m (A)

is zero for any i, j ∈ N.

As evidence, we have the following theorem (see Theorems 4.2, 5.1):

Theorem. Let (A,m) be a regular local ring of dimension n, such that 1/2 ∈ A.
Assume further that either A contains a field, or A is smooth over a discrete valuation
ring of mixed characteristic.

Let Z and T be closed subsets of Spec(A) with dim Z + dim T < n and Z ∩ T = m.
Then the multiplication

GW i
Z(A)×GW j

T (A) → GW i+j
m (A)

is zero for any i, j ∈ N.

The principal ingredients of the proof are the “calculus” of derived Grothendieck-
Witt and Witt groups, some geometric normalization lemmas, and a result of Gille and
Hornbostel giving the vanishing of maps between Witt groups defined by extension
of support, in some special situations ([9], Theorem 0.1).

We do not recall the definitions of the Grothendieck-Witt groups and Witt groups of
a triangulated category with duality. We instead refer the reader to [1] for information
on Witt groups, with detailed references, and to [20] for the definition, and basic
properties of Grothendieck-Witt groups, of triangulated categories with duality. We
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will also use the products on Grothendieck-Witt and Witt groups defined in [10], which
are naturally induced from the tensor structure on perfect complexes. We remark
that the hypothesis that all schemes are over Z[1/2] is built into the foundations of
the theory of Grothendieck-Witt and Witt groups of triangulated categories with a
duality, in their present form.

2. Geometric lemmas

The following theorem is well known (see [13], theorem 14.4):

Theorem 2.1. Let (A,m) be a d-dimensional Noetherian local ring and suppose that
k = A/m is an infinite field. Let q = (u1, . . . , us) be an m-primary ideal. Then if
yi =

∑
aijuj for 1 ≤ i ≤ d are d sufficiently general linear combinations of u1, . . . , us,

the ideal b = (y1, . . . , yd) is a reduction of q and {y1, . . . , yd} is a system of parameters
of A.

Proof. We give a sketch of the proof in order to make precise what ”sufficiently
general” means. As a first step, the proof shows that there is an homogeneous ideal
Q ⊂ k[x1, . . . , xs] such that

k[x1, . . . , xs]/Q '
⊕
n≥0

qn/qnm = grq(A)⊗A/q k

and dim k[x1, . . . , xs]/Q = d = dim A. Now let X = Spec(k[zij ]) with 1 ≤ i ≤ d,
1 ≤ j ≤ s. Any k-rational point (bij) ∈ X(k) gives an homomorphism

ϕ(bij) : k[x1, . . . , xd] → k[x1, . . . , xs]/Q

defined by ϕ(bij)(xl) =
∑

bljxj . We say that (bij) is good if k[x1, . . . , xs]/Q is a finite
k[x1, . . . , xd]-module (under ϕ(bij)). The proof shows that there exists a polynomial
D ∈ k[zij ] such that if U = Spec(k[zij ]D) then any (bij) ∈ U(k) is good. Then it is
easy to see that (aij) ∈ A has the desired property if the residue (aij) is in U(k). �

From now on, we assume that every field appearing until the end of Section 3 is
infinite.

If k[[z1, . . . , zm]] → k[[x1, . . . , xn]] is a homomorphism between power series alge-
bras over k induced by zi 7→

∑
j aijxj for some aij ∈ k, we call the induced morphism

Spec(k[[x1, . . . , xn]]) → Spec(k[[z1, . . . , zm]]) a linear projection. Such linear projec-
tions are determined by points in Amn(k).

The following two corollaries to theorem 2.1 are obvious:

Corollary 2.2. Let X = Spec(k[[x1, . . . , xn]]), Y = Spec(k[[z1, . . . , zn−1]]) and let
Z = V (f) ⊂ X. Then any sufficiently general linear projection p : X → Y has the
property that p|Z : Z → Y is finite.

Corollary 2.3. Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Consider an ideal
〈I(x), J(y)〉 in the ring k[[x, y]]. Suppose that

(i) dim k[[x, y]]/〈I(x), J(y)〉 ≤ n− 1
(ii) 〈I(x), J(y), x1 − y1, . . . , xn − yn〉 is 〈x, y〉-primary.
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Then for any sufficiently general elements aij ∈ k (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n) the
ideal 〈I(x), J(y), l1(x) − l1(y), . . . , ln−1(x) − ln−1(y)〉 where li(x) =

∑n
j=1 aijxj and

li(y) =
∑n

j=1 aijyj is 〈x, y〉-primary.

Corollary 2.4. Let X = Spec(k[[x1, . . . , xn]]) and Y = Spec(k[[z1, . . . , zn−1]]). Let
Z, T ⊂ X be closed subsets such that dim Z + dim T < dim X and Z ∩ T is supported
on the closed point. Then for any sufficiently general linear projection p : X → Y we
have that Z 6= p−1(p(Z)) and p−1(p(Z)) ∩ T is also supported on the closed point.

Proof. We may interpret Z ∩ p−1p(T ), T ∩ p−1p(Z) in terms of Z ×Y T . Thus, let
T and Z be respectively defined by ideals I and J . Using Corollary 2.3, we can find
a nonempty open subset U ⊂ Spec(k[zij ]) such that for any rational point (bij) ∈
U(k) the associated projection p has the property that the ideal 〈I(x), J(y), l1(x) −
l1(y), . . . , ln−1(x)− ln−1(y)〉 is 〈x, y〉-primary. Therefore p−1p(Z)∩T and Z∩p−1p(T )
are supported on the closed point. Further, Z → p(Z), T → p(T ) are finite, since the
ideal 〈I(x), l1(x), . . . , ln−1(x)〉 is 〈x〉-primary and the ideal 〈J(y), l1(y), . . . , ln−1(y)〉
is 〈y〉-primary. Hence p−1p(Z) 6= Z and p−1p(T ) 6= T , since the fibre of p over the
closed point of Y is 1-dimensional. �

3. The zero theorem for transfers

We recall (see [6], Defn. 2.16) that if X is a Noetherian, Gorenstein Z[1/2]-scheme
of finite Krull dimension (e.g. quasi-projective over a field or a complete discrete

valuation ring), and Z ⊂ X is a closed subscheme, then W̃ i
Z(X) (resp. G̃W

i

Z(X))
denotes the i-th derived Witt group (resp. i-th derived Grothendieck-Witt group) of
the full subcategory Db

Z(X) ⊂ Db(X) of the bounded derived category of X consisting
of complexes with (coherent) homology supported (set-theoretically) in Z, with the
natural duality structure (essentially Grothendieck-Serre duality). If X is regular, this
coincides with W i

Z(X) (resp. GW i
Z(X)), similarly defined using perfect complexes.

The trace in duality theory leads to transfer maps in certain situations, with the
expected properties. For Witt groups, a good reference is [7]. A closer look at the
arguments used there shows that a transfer morphism with the expected properties
can also be defined for Grothendieck-Witt groups.

The next theorem is due to Gille and Hornbostel ([9], Theorem 0.1).

Theorem 3.1. Let R be a Gorenstein ring of finite Krull dimension, t ∈ R a non
zero-divisor and π : R → R/tR the quotient map. Suppose that π has a flat splitting
q : R/tR → R. Then the transfer morphism

Tr(R/tR)/R : W̃ i(R/Rt) → W̃ i+1(R)

is zero for all i ∈ Z.

In fact, the proof of their result ultimately boils down to Lemma 2.5 in their paper,
proved using a specific computation at the level of forms, given by an isometry. This
formula in fact yields a stronger conclusion, for coherent Witt groups with supports
(analogous to the stronger assertion Theorem 2.1 in their paper):

Theorem 3.2. Let R be a Gorenstein ring of finite Krull dimension, t ∈ R a non
zero-divisor and π : R → R/tR the quotient map. Suppose that π has a flat splitting
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q : R/tR → R. Let J ⊂ R be an ideal containing t, and let J̃ = q(J/tR)R. Then the
transfer morphism

Tr(R/tR)/R : W̃ i
J/tR(R/Rt) → W̃ i+1eJ (R)

is zero for all i ∈ Z.

For Grothendieck-Witt groups, the situation is similar. First recall that for any
triangulated category C with duality and any i ∈ Z there is an exact sequence ([20],
Theorem 2.6):

GW i(C)
f // K0(C) H // GW i+1(C) // W i+1(C) // 0

where f is induced by the forgetful functor and H is the hyperbolic functor. Using
this sequence, we can prove

Theorem 3.3. Let R be a Gorenstein ring of finite Krull dimension, t ∈ R a non
zero-divisor and π : R → R/tR the quotient map. Suppose that π has a flat splitting
q : R/tR → R. Let J ⊂ R be an ideal containing t, and let J̃ = q(J/tR)R. Then the
transfer morphism

Tr(R/tR)/R : G̃W
i

J/tR(R/Rt) → G̃W
i+1eJ (R)

is zero for all i ∈ Z.

Proof. The arguments of [9], Lemma 2.8 show that for any x ∈ G̃W
i

J/tR(R/Rt) the
transfer Tr(R/tR)/R(x) is isometric to [K(t), l1] ? q∗(x) where [K(t), l1] is the class in
GW 1(R) of the Koszul complex

0 // R
t // R // 0

endowed with the form

0 // R
t //

−1

��

R //

1

��

0

0 // R −t
// R // 0

and ? denotes the action of the Grothendieck-Witt groups of the derived category
of bounded perfect complexes on the Grothendieck-Witt groups of the derived cate-
gory of bounded complexes with coherent homology (see [10],§3). It turns out that
[K(t), l1] = H(R) in GW 1(R) (use for example [10], §2.4) where R denotes the com-
plex with R concentrated in degree 0 and zeroes elswhere. This complex carries a
symmetric form (the identity for example) and can be seen as an element of GW 0(R).
This shows that R is in the image of f . The exact sequence above gives H(R) = 0 in
GW 1(R). Hence [K(t), l1] = 0 and the result is proved.

�

Theorem 3.4. Let R be a Gorenstein ring of finite Krull dimension, t ∈ R a non
zero-divisor and J ⊂ R an ideal containing t. Then for any i ∈ N the transfer
morphism
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Tr(R/tR)/R : G̃W
i

J/tR(R/Rt) → G̃W
i+1

J (R)

is an isomorphism.

Proof. We follow the arguments of [8], §3. First remark that the filtration by the
codimension of the support yields a Gersten complex in Grothendieck-Witt groups
by [17], Remark 8.3. As in Gille’s work, we are then reduced to show the result
for a local Gorenstein ring. The result then follows from the computation of the
Grothendieck-Witt groups of such a ring. This computation goes as in our Lemma
4.1 below (using also [6], Lemma 4.4). �

Corollary 3.5. Let R, t be as in Theorem 3.2. Let X = Spec(R), Y = Spec(R/tR)
and Z a closed subscheme of Y . Let p : X → Y be the flat splitting of the inclusion
i : Y → X. Then the extension of support

e : G̃W
i

Z(X) → G̃W
i

p−1(Z)(X)

is zero.

Proof. We have the following commutative diagram:

G̃W
i

Z(X)
e // G̃W

i

p−1(Z)(X)

G̃W
i−1

Z (Y ).

TrY/X

OO

TrY/X

77ppppppppppp

The diagonal transfer TrY/X : G̃W
i−1

Z (Y ) → G̃W
i

p−1(Z)(X) is zero by theorem 3.3

and the vertical transfer TrY/X : G̃W
i−1

Z (Y ) → G̃W
i

Z(X) is an isomorphism by the
above theorem. �

Finally, we have the following proposition, analogous to the key step in Quillen’s
proof of the Gersten conjecture (see also [9], [19] or [15]):

Proposition 3.6. Let X = Spec(k[[x1, . . . , xn]]), Z ⊂ X a proper closed subset and
Y = Spec(k[[z1, . . . , zn−1]]). Then for any i ∈ N and any sufficiently general linear
projection p : X → Y the extension of support

G̃W
i

Z(X) → G̃W
i

p−1(p(Z))(X)

is zero.

Proof. As Z is a proper closed subset of X there exists a non-zero non-unit t ∈
k[[x1, . . . , xn]] such that Z ⊂ V (t). Let j : V (t) → X be the inclusion. Any sufficiently
general linear projection p : X → Y is flat and has the property that p|V (t)

: V (t) → Y
is finite. Consider the following fibre product:
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X ′ f //

p′

��

X

p

��
V (t)

p|V (t)

//
j

=={{{{{{{{
Y.

The inclusion j : V (t) → X induces a closed immersion i′ : V (t) → X ′ such that
fi′ = j. Observe that V (t) is also a principal divisor in X ′ ([19], Theorem 5.23).
As closed subsets, we have p−1(p(Z)) = f(p′)−1(Z) and then it is enough to show

that G̃W
i

Z(X) → G̃W
i

f(p′)−1(Z)(X) is zero to get the result. We have the following
commutative diagram:

G̃W
i

Z(X) G̃W
i

Z(X)
e // G̃W

i

f(p′)−1(Z)(X)

G̃W
i−1

Z (V (t))
(i′)∗

//

j∗

OO

G̃W
i

i′(Z)(X
′,L) e

//

f∗

OO

G̃W
i

(p′)−1(Z)(X
′,L)

f∗

OO

where e is the extension of support, and L is the relative dualizing sheaf for f (see
[7], §4 for the functoriality of the transfer). By Theorem 3.4, we know that j∗ is
an isomorphism. Since X ′ is local and L is a locally free sheaf, we can trivialize
it. Therefore, Corollary 3.5 shows that e : G̃W

i

i′(Z)(X
′,L) → G̃W

i

(p′)−1(Z)(X
′,L) is

zero. �

4. The theorem in the equicharacteristic case

Let (A,m) be a regular local ring. The proof of our main result will require the
computation of the Grothendieck-Witt groups with support on the closed point. For
any i ∈ Z, we have already seen that there is an exact sequence ([20], Theorem 2.6)

GW i
m(A)

f // K0(Db
m(A)) H // GW i+1

m (A) // W i+1
m (A) // 0

Lemma 4.1. (i) Let (A,m) be a regular local ring. Then

GWn
m(A) '

{
GW (A/m) if n ≡ dim A (mod 4)

0 if n ≡ dim A + 1 (mod 4).

If n ≡ dim A + 2 (mod 4), then H : K0(Db
m(A)) → GWn

m(A) is an isomor-
phism. Finally, if n ≡ dim A + 3 (mod 4) there is an exact sequence

0 // K0(Db
m(A)) ·2 // K0(Db

m(A)) H // GWn
m(A) // 0 .

(ii) If (A,m) → (B, n) is a flat homomorphism of regular local rings such that
mB = n, so that dim A = dim B, then for any n ≡ dim A (mod 4), there is
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a commutative diagram

GWn
m(A)

∼=→ GW (A/m)
↓ ↓

GWn
n (B)

∼=→ GW (B/n)

If n 6≡ dim A (mod 4), then the map GWn
m(A) → GWn

n (B) is induced by the
map in K-theory K0(Db

m(A)) → K0(Db
n(B)).

Proof. The arguments of [2], §6 use equivalences of triangulated categories. There-
fore, the same method shows that GW dim A

m (A) ' GW fl(A). The latter is in turn
isomorphic to GW (A/m) by [14], Theorem 6.10. This also proves that the forgetful
functor

f : GW dim A
m (A) → K0(Db

m(A))
is surjective. The above exact sequence and Lemma 4.1 show then that GWn

m(A) = 0
if n ≡ dim A + 1 (mod 4), which in turn implies that

H : K0(Db
m(A)) → GWn

m(A)
is an isomorphism if n ≡ dim A + 2 (mod 4). For the remaining case, we have to
compute the composition f ◦H where f is the forgetful functor and H is the homo-
morphism of the above line. An easy computation shows that it is the multiplication
by 2. The proof of (ii) follows from the remark that a flat morphism induces a
commutative diagram of exact sequences linking K0, GW and W .

�

Theorem 4.2. Let (A,m) be a regular local ring of dimension n containing a field
of characteristic 6= 2. Let Z and T be closed subsets of Spec(A) with Z ∩ T = m and
dim Z + dim T < n. Then the multiplication

GW i
Z(A)×GW j

T (A) → GW i+j
m (A)

is zero for any i, j ∈ N.

Proof. Let Â be the completion of A (for the m-adic valuation).
Using lemma 4.1, we see that GWn

m(A) ' GWnbm(Â) for all n, and the following
diagram commutes,

GW i
Z(A)×GW j

T (A) //

��

GW i+j
m (A)

��
GW ibZ(Â)×GW jbT (Â) // GW i+jbm (Â)

where the vertical arrows are induced by the completion. Hence it is enough to
prove the result for a complete regular local ring. Therefore we can suppose that
A = k[[x1, . . . , xn]] for a field k.

Next, we observe that if k′ is an infinite algebraic extension of k which is an
increasing union of finite algebraic subextensions of odd degree, then the natural map
GW (k) → GW (k′) is injective, since the map on Grothendieck-Witt groups for a
finite extension of fields of odd degree is injective (standard transfer argument). By
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applying lemma 4.1(ii) to k[[x1, . . . , xn]] → k′[[x1, . . . , xn]], we thus further reduce to
the case when the field k is infinite.

Let B = k[[z1, . . . , zn−1]]. Then using Corollary 2.4 and Proposition 3.6, we see
that there exists a linear projection p : Spec(A) → Spec(B) such that:

(1) The extension of support e : GW i
Z(A) → GW i

p−1(p(Z))(A) is zero.
(2) p−1p(Z) ∩ T = m.

The conclusion follows from the following commutative diagram:

GW i
Z(A)×GW j

T (A)

e×Id

��

// GW i+j
m (A)

GW i
p−1(p(Z))(A)×GW j

T (A) // GW i+j
m (A).

�

5. The case of a regular local ring smooth over a d.v.r. of mixed
characteristic

The proof in the case of a regular local ring smooth over a d.v.r. of mixed charac-
teristic is similar in many respects to that in the equicharacteristic case. Hence, we
will be sketchy, except at points where there are some new features in the proof in
this case.

First, as in the proof of Theorem 4.2, it suffices to reduce to the case of a complete
local ring, i.e., we may assume that A ∼= Λ[[x1, . . . , xn]] where Λ is a complete d.v.r.
of mixed characteristic, and 1/2 ∈ Λ.

Next, we claim that it suffices to treat the case when Λ has an infinite residue field.
This is similar to the argument in the equicharacteristic case. If Λ has a finite residue
field k, and k′ is a finite extension of k of odd degree, then (from Cohen structure
theory, for example) we can find an over-ring Λ′ which is also a complete discrete
valuation ring, finite and unramified over Λ, with residue field k′. Since the map of
Grothendieck-Witt groups GW (k) → GW (k′) is injective (since we have a transfer
here as well), it suffices to obtain the result for A⊗ΛΛ′. We may pass to a direct limit
over a tower of such odd extensions, and obtain a new local ring, smooth over a d.v.r.
with infinite residue field, and it suffices to prove the result for the completion of this
new local ring.

Thus, we have reduced the proof of the Main Theorem in the mixed characteristic
case to the following result.

Theorem 5.1. Let Λ be a complete d.v.r. of mixed characteristic containing 1/2,
with infinite residue field, and let A = Λ[[x1, . . . , xn]], with maximal ideal m. Let Z
and T be closed subsets of Spec(A) such that dim Z + dim T < n + 1 = dimA and
Z ∩ T = m. Then the multiplication

GW i
Z(A)×GW j

T (A) → GW i+j
m (A)

is zero for any i, j ∈ N.
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Proof. We first consider the case when Z, T are both contained in the closed fiber
X of X → Spec(Λ). Let f : X → X be the inclusion. Then we have isomorphisms
(since X is a principal divisor)

f∗ : GW i−1
Z (X) ∼= GW i

Z(X), f∗ : GW j−1
T (X) → GW j

T (X).

If α ∈ GW i−1
Z (X), β ∈ GW i−1

T (X), then by the projection formula ([7], Theorem
5.2), we have

f∗(α) · f∗(β) = f∗(α · f∗f∗β) ∈ GW i+j
{m}(X).

So it suffices to prove that the composition

GW j−1
T (X)

f∗→ GW j
T (X)

f∗→ GW j
T (X).

is 0. For this, it suffices to prove the vanishing of the further composition with the
isomorphism

f∗ : GW j
T (X) → GW j+1

T (X).

Now if 1 ∈ W (X) is the unit form, then

f∗f
∗f∗(β) = f∗(f∗f∗β · 1) = f∗β · f∗1 = f∗β · f∗(f∗f∗1).

So it suffices to show that f∗f∗(1) ∈ GW 1(X) vanishes. But, regarding X as a
scheme over Spec(Λ), clearly 1 ∈ GW (X) is the pullback of 1 ∈ GW (Spec(k)), where
k is the residue field of Λ, and the element f∗f∗(1) is similarly the pullback of the
corresponding element in GW 1(Spec(k)). But GW 1(Spec(k)) = 0.

Thus, in the case when Z, T are both contained in the closed fiber X, the theo-
rem holds. So we may assume that (say) Z is not contained in the closed fiber; in
particular, n > 0.

Let Z = Z ′ ∪ Z ′′ where all irreducible components of Z ′ dominate Spec(Λ), and
Z ′′ = Z ∩ X. Let Z ′ = Z ′ ∩ X be the closed fiber of Z ′ → Spec(Λ), so that
dim Z ′ = dim Z ′ − 1. Let T be the closed fiber of T → Spec(Λ).

Let Y = Spec(Λ[[z1, . . . , zn−1]]). Let Y denote the closed fiber of Y over Spec(Λ).
We consider morphisms p : X → Y of Λ-schemes induced by continuous homomor-
phisms with zi 7→

∑
j aijxj , with aij ∈ Λ. For a ∈ Λ, let a denote its image in the

residue field k.
By Corollary 2.3 applied to the ideals of Z ′ and T in X = Spec(k[[x1, . . . , xn]]),

we see that for general aij ∈ Λ, if p : X → Y is the corresponding morphism, then
p−1p(Z ′) ∩ T = {m}, and p |Z′ : Z ′ → Y is finite (since the fiber of Z ′ → Y over the
closed point is the corresponding fiber of Z ′ → Y , it is quasi-finite).

Let p−1p(Z ′) be the closed fiber of p−1p(Z ′), and let Z̃ = Z ′′ ∪ p−1p(Z ′). Then Z̃
is the closed fiber of p−1p(Z ′) ∪ Z ′′, and it has dimension at most that of Z.

We now claim that the image of the extension of support map

GW i
Z(X) → GW i

p−1p(Z′)∪Z′′(X)

has image contained in that of the similar map

GW ieZ(X) → GW i
p−1p(Z′)∪Z′′(X).

From the exact sequence

GW ieZ(X) → GW i
p−1p(Z′)∪Z′′(X) → GW i

p−1p(Z′′)\eZ(X \ Z̃),
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and the excision isomorphism

GW i
p−1p(Z′)∪Z′′\eZ(X \ Z̃) → GW i

p−1p(Z′′)\X
(X \X),

it suffices to show that the map

GW i
Z(X) → GW i

p−1p(Z′)\X
(X \X)

is 0. This in turn follows from the fact that

GW i
Z\X

(X \X) → GW i
p−1p(Z′′)\X

(X \X)

is 0, by Proposition 3.6 applied to the affine scheme X \X.
From the commutative diagram

GW i
Z(A)×GW j

T (A)

e×Id

��

// GW i+j
m (A)

GW i
p−1(p(Z)′)∪Z′′(A)×GW j

T (A) // GW i+j
m (A),

we thus see that it suffices to prove the result with Z replaced by Z̃, i.e., in the special
case when Z is contained in the closed fiber. By a similar argument, we further reduce
to the case when T is also contained in the closed fiber; now we are in the first case,
already dealt with.
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rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, Springer-

Verlag, Berlin (1965).
[19] V. Srinivas, Algebraic K-theory, Vol. 90 of Progress in Mathematics, Birkhäuser Boston Inc.,
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