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A NOTE ON DERIVED MCKAY CORRESPONDENCE

Jiun-Cheng Chen and Hsian-Hua Tseng

Abstract. We obtain a global version and a twisted version (in the sense of [BP05]) of

the main theorem of [BKR01].

1. Introduction

We work over the field of complex numbers.
Let X be an irreducible projective variety of dimension n. Assume that X has only

quotient singularities. According to [Vi89], there is a smooth Deligne-Mumford stack
X with coarse moduli space X, such that X and X are isomorphic in codimension
one. Note that X is a quotient stack. Let π : X → X denote the projection.

In the case where X = M/G with G a finite group, let Y ⊂ G-Hilb(M) be the
irreducible component of the G-Hilbert scheme of M that contains the free orbits.
There is a morphism Y → X given by the Hilbert-Chow morphism. The main result
of [BKR01] can be stated as follows: Suppose that dimY ×X Y ≤ n + 1, then Y is
smooth and there is an equivalence of derived categories Db(Y ) ' Db(X ).

We study the global version of this problem (that is, X is not necessarily of the
form M/G as above). Recall that for any Deligne-Mumford stack X , étale locally
on its coarse moduli space, X is of the form [U/G] with U a scheme and G a finite
group. It is tempting to obtain a global crepant resolution by patching the local
ones. This is, however, not obvious at all: Suppose that {Vi} is an étale cover of X,
Vi ×X X ' [Ui/Gi], and for each i there is a crepant resolution φi : Yi → Vi. Then it
is not clear that we can patch these {Yi} together, since crepant resolution in higher
dimension is not unique. In dimension 3, a global crepant resolution can be built
from local ones since flops preserve smoothness and two crepant resolutions can be
connected by a sequence of flops, see Proposition 3.4 below. In higher dimensions, this
argument doesn’t work since flops do not preserve smoothness and may not terminate.

An observation, which we learned from D. Abramovich, is that a certain Hilbert
functor studied by Olsson-Starr [OS03] is a good replacement for G-Hilbert schemes
in the global situation. We denote the scheme representing this Hilbert functor by
Hilb(X ). We will only be interested in a particular component Hilb′(X ) ⊂ Hilb(X ):
Let U ⊂ X be the open set of non-stacky points in X . There is a natural inclusion
U ⊂ Hilb(X ). The scheme Hilb′(X ) is the component which contains U . There is a
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morphism
Hilb′(X )→ X

induced by the functor π∗.

Theorem 1.1. Assume that dimHilb′(X ) ×X Hilb′(X ) ≤ n + 1, then Hilb′(X ) is
smooth and the Fourier-Mukai type transformation

F : Db(Hilb′(X ))→ Db(X )

induced by the universal object over Hilb′(X ) is an equivalence of derived categories.

Remark 1.2. Crepant resolutions, if exist, may not be unique. In [BKR01] a partic-
ular crepant resolution is constructed as a moduli space. It is expected that this is a
general phenomenon: every crepant resolution can be constructed as a moduli space.
This is proved in [CI05] when X = C3/G where G is abelian. We speculate that the
same is true for global orbifolds: every crepant resolution of a global orbifold can be
constructed as a moduli space. Some variants of the Quot functor may be helpful.
We hope to return to this problem in the future.

Remark 1.3. Consider the case when X has only symplectic quotient singularities.
If Hilb′(X ) → X is a crepant resolution, then we have an equivalence of derived
categories Db(X )→ Db(Hilb′(X ), cf [Kal05].

In [BP05], a conjectural twisted version of derived McKay correspondence is for-
mulated. This conjecture suggests an equivalence between the derived category of
twisted sheaves on an orbifold and a related derived category of twisted sheaves on
a crepant resolution. We establish this conjecture in the setting of [BKR01], see
Theorem 4.1.

1.1. Differential graded categories. It is known (e.g. [BK90]) that the derived
category D(X) of coherent sheaves can be enriched to a differential graded (DG)
category which we denote by Lcoh(X). Roughly speaking, objects in Lcoh(X) are
complexes of sheaves. For two objects A = (A·) and B = (B·), a morphism φ of
degree i between them is a collection (φ·), φ· : A· → B·+i. The space HomDG(A,B)
of morphisms is a Z-graded vector space endowed with a differential dφ = dB ◦
φ − (−1)iφ ◦ dA. In other words, HomDG is a complex. One recovers D(X) by
localizing the homotopy category of Lcoh(X) with respect to the subcategory of acyclic
complexes. For more details, see [Ke99].

Here we add a note to the theory of D-equivalence that Fourier-Mukai type equiv-
alence can be “lifted” to the level of DG-categories.

Lemma 1.4. Let F : Lcoh(X) → Lcoh(Y ) be a DG functor which induces an equiv-
alence of derived categories D(X) → D(Y ). Then F is a quasi-equivalence of DG
categories.

Proof. Recall that a quasi-equivalence is a DG functor F : Lcoh(X)→ Lcoh(Y ) such
that

(1) The morphism HomDG(A,B)→ HomDG(FA,FB) is a quasi-equivalence of
complexes;

(2) F induces an equivalence D(X)→ D(Y ) of triangulated categories.
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Hence we only need to show the first condition, i.e. the cohomologies coincide. In
degree zero, this is part of the derived equivalence:

H0HomDG(A,B) ' H0HomDG(FA,FB).

On the other hand, we have

HiHomDG(A,B) = H0HomDG(A,B[i])

' H0HomDG(FA,FB[i]) = HiHomDG(FA,FB).

This completes the proof. �

Since pushforward, pullback, and tensor product functors can be lifted to DG level,
it is clear that a Fourier-Mukai functor comes from a DG functor Lcoh(X)→ Lcoh(Y )
which, according to the lemma above, is a quasi-equivalence. It’s clear from the proof
that in this context, having a quasi-equivalence at DG level yields no new information.
However, the DG structure is sometimes necessary: for example, to construct the B-
model potential of a Calabi-Yau manifold using a recent work of K. Costello [Co05].

This paper is organized as follows. Several properties of the Quot functors we
need are established in Section 2. Theorem 1.1 is proved in Section 3. In Section
4 we prove some cases of a conjecture in [BP05] concerning twisted derived McKay
correspondence.
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2. Quot functors after Olsson-Starr

In this section we discuss some properties of Quot functors for Deligne-Mumford
stacks following Olsson-Starr [OS03]. We will focus on the case of quotients of OX .
Let Quot(OX /X ) (respectively Quot(OX/X)) denote the Quot functor associated to
the sheaf OX over X (respectively the sheaf OX over X). According to [Gr62] and
[OS03], these two functors are representable by projective schemes which we denote
by Quot(OX /X ) and Quot(OX/X) respectively.

Definition 2.1. There is a morphism Quot(OX /X ) → Quot(OX/X) defined as fol-
lows: The exact functor π∗ : Coh(X ) → Coh(X) yields a natural transformation
Quot(OX /X ) ⇒ Quot(OX/X) of Quot functors. Let Quot(OX /X ) → Quot(OX/X)
be the induced morphism between the corresponding schemes.

Note that X ⊂ Quot(OX/X) is an irreducible component. Let Hilb′(X ) ⊂
Quot(OX /X ) denote the irreducible component containing the preimage of Xsm. Re-
stricting the morphism Quot(OX /X ) → Quot(OX/X) yields the morphism
Hilb′(X ) → X. Note that Hilb′(X ) is contained in the locus Quot1(OX /X ) which
parametrizes quotients with Hilbert polynomial 1.
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Lemma 2.2. Assume that X is of the form [M/G] with M quasi-projective and
G finite. Then Hilb′(X ) is isomorphic to the irreducible component of G-Hilb(M)
containing the free G-orbits.

Proof. There is a natural morphism Hilb′(X )→ G-Hilb(M) defined as follows: Given
an object Z ⊂ X × S of Hilb′(X )(S). The scheme

Z ×(X×S) (M × S) ⊂M × S

is naturally an S-family of G-clusters: Clearly the group scheme G×S acts fiberwise
on Z ×X×S (M × S). Also, since M × S → X × S is a principle G-bundle, the space
Γ(OZ×X×S(M×S)) coincides with the regular representation C[G] ⊗ Γ(OS) of G × S.
Thus this defines an object in G-Hilb(M)(S).

It is easy to check that this morphism is a closed immersion, as one may recover Z ⊂
X ×S by taking the stack quotient [Z×X×S (M×S)/G]. Moreover, let G-Hilb(M)→
X = M/G be the morphism induced from the Hilbert-Chow morphism. Then the
following diagram commutes:

Hilb′(X ) → G-Hilb(M)
↓ ↙
X.

The result follows. �

An important property is that Hilb′(X ) behaves well under étale base-change on
the coarse moduli space.

Proposition 2.3. Let U → X be an étale morphism from a scheme U such that U
is finite to its image. Then we have

U ×X Hilb′(X ) ' Hilb′(U ×X X ).

Proof. First note that we may identify a scheme with the Hilbert scheme of a point
on it. In particular, we have Hilb1(U) ' U and Hilb1(X) ' X.

Consider the diagram
XU

φ−−−−→ X

πU

y π

y
U

φ̄−−−−→ X,
where XU

∼= U ×X X . Note that U is a coarse moduli space of U ×X X .
We will define two morphisms α : U ×X Hilb′(X ) → Hilb′(U ×X X ) and β :

Hilb′(U ×X X )→ U ×X Hilb′(X ).
Definition of α: Consider any morphism f : S → U ×X Hilb′(X ). By the universal

property of the fiber product, the morphism f : S → U ×X Hilb′(X ) corresponds to
three objects

[OU×S → P ] ∈ Hilb1(U)(S), [OX×S → Q] ∈ Hilb′(X )(S)

and [OX×S → R] ∈ Hilb1(X)(S),
such that the quotients

(π × id)∗OX×S → (π × id)∗Q, and OX×S → (φ̄× id)∗OU×S → (φ̄× id)∗P
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coincide with OX×S → R. We can identify these objects with
Consider the corresponding morphism h1 : S → U (resp. h2 : S → X) of [OU×S →

P ] ∈ Hilb1(U)(S) (resp.[OX×S → R] ∈ Hilb1(X)(S)).
Consider the quotient

OU×XX×S → (πU × id)∗P ⊗(φ×id)∗(π×id)∗R (φ× id)∗Q.

It is straightforward to check that this gives an object in Hilb′(U ×X X )(S), thus
defines the morphism α. We give a more geometric interpretation of the map α:
Let ZX,S ⊂ S × X be the correspodening substack. Consider the substack (φ ×
id)−1ZX,S ⊂ S × U ×X X . Note that the coarse space of ZX,S is S and the coarse
space of (φ× id)−1ZX,S is S ×X U , which contains S as a component (recall that we
have the morphism S → U). Pulling back the stack (φ× id)−1(ZX,S) (over U) to S
via the morphism S → U . The resulting stack in proper over S.

The stack (φ× id)−1(ZX,S) is not the stack we need. Tensoring the structure sheaf
of (φ× id)−1(ZX,S) with πU × id)∗P , i.e. pulling back to S via the morphism S → U ,
gives the correct substack.

Definition of β: Given an object OU×XX×S → P of Hilb′(U ×X X )(S). Let
ZU,S ⊂ S × (U ×X X ) be the corresponding substack. Note that (φ × id)∗ZU,S ' S
and (φ× id)|ZU,S

: ZU,S → X × S is proper.
We claim that the morphism (φ×id)|ZU,S

: ZU,S → X×S is isomorphic to its image
in X ×S. This is local on S. Let h1 : S → X. Consider a étale altas g : X1 → X May
assume that the image h1(S) lies in g(X1) and g : X1 → X is finite (to its image) of
degree d.Consider the pull back of X1 to U . The morphism X2 → U is also finite to
its image.

This can be check locally on S. Shrinking U if necessary, we may assume that
U → φ̄ is finite, say of degree d. Consider the stack

Therefore the map (φ×id)∗OU×XX×S → (φ×id)∗P is surjective and the composite

OX×S → (φ× id)∗OU×XX×S → (φ× id)∗P

is surjective. Since ZS → (φ× id)(ZS) is an isomorphism, (φ× id)∗P is proper over
S.

Hence we obtain an object OX×S → (φ × id)∗P of Hilb′(X )(S). This defines a
morphism

Hilb′(U ×X X )→ Hilb′(X ).
The functor πU∗ induces a morphism Hilb′(U ×X X ) → U . It follows from the
equality π ◦ φ = φ̄ ◦ πU that the two composites Hilb′(U ×X X ) → Hilb′(X ) → X

and Hilb′(U ×X X ) → U
φ̄→ X coincide. Therefore we obtain a morphism β :

Hilb′(U ×X X )→ U ×X Hilb′(X ).
To conclude, it suffices to show that both α ◦β and β ◦α are identity functors. We

begin with β ◦ α. Consider a morphism S → U ×X Hilb′(X ) which corresponds to
three objects described above. Since

(φ× id)∗((πU × id)∗P ⊗(φ×id)∗(π×id)∗R (φ× id)∗Q)

' (π × id)∗(φ̄× id)∗P ⊗(π×id)∗R Q ' Q,

(πU × id)∗((πU × id)∗P ⊗(φ×id)∗(π×id)∗R (φ× id)∗Q)

' P ⊗(φ̄×id)∗R (φ̄× id)∗(π × id)∗Q ' P.
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It follows that β ◦ α is the identity functor.
It remains to prove that α ◦ β is the identity functor. Note that for this we

may assume that U is a formal neighborhood of a point in X. Consider an object
OU×XX×S → P of Hilb′(U ×X X )(S). Applying β yields two objects

[OX×S → (φ× id)∗P ] ∈ Hilb′(X )(S) and [OU×S → (πU × id)∗P ] ∈ Hilb′(U)(S),

which induce the same object in Hilb′(X)(S). Applying α then yields the following
object in Hilb′(U ×X X )(S):

OU×XX×S → (πU×id)∗(πU×id)∗P⊗(πU×id)∗(πU×id)∗(φ×id)∗(φ×id)∗P (φ×id)∗(φ×id)∗P.

Since the adjunction morphism

(φ× id)∗(φ× id)∗P → P

is an isomorphism, we conclude that this is the object OU×XX×S → P we start
with. �

It can be seen from the proof that the universal object on Hilb(X ) pulls back to
the universal object on Hilb(U ×X X ).

Lemma 2.2 and Proposition 2.3 imply in particular that in fact those G-Hilbert
schemes patch together nicely to a global object.

3. Proof of 1.1

In this section we present two proofs of Theorem 1.1.

3.1. Some basic materials. We present several results concerning derived cate-
gories of coherent sheaves on smooth Deligne-Mumford stacks.

Proposition 3.1 (Serre functor). Let X be a smooth separated Deligne-Mumford
stack which has a coarse moduli space X which is a quasi-projective Gorenstein va-
riety, whose dualizing sheaf is denoted by ωX . Then Db(X ) has a Serre functor

S(−) := (−
L
⊗ π∗ωX)[dimX ].

Proof. Note that S is clearly an equivalence. We need to show that for u, v ∈ Db(X )
there is a bifunctorial isomorphism

Hom(u, v) ' Hom(v, S(u))∨.

Our argument is parallel to that in [Ka02], Proposition 2.6. First assume that u is
a locally free sheaf and v is a sheaf with compact support. We may assume that
u = OX by replacing v by u∨ ⊗ v. Now we have

Hom(u, v[k]) ' Hk(X , v) ' Hk(X, π∗v).

On the other hand,

Hom(v[k], S(u)) ' ExtdimX−k(v, π∗ωX) ' ExtdimX−k(π∗v, ωX).

Hence Hom(u, v[k]) ' Hom(v[k], S(u))∨ by the duality for X.
If v is a locally free sheaf and u is a sheaf with compact support, then by the

previous case, we have

Hom(u, v[k]) ' Hom(S(u), S(v)[k]) ' Hom(v[k], S(u))∨.

The general case follows by taking locally free resolutions. �
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Note that if X is isomorphic to X in codimension 1, then π∗ωX ' ωX as Cartier

divisors. In this case the Serre functor is given by S(−) = (−
L
⊗ ωX )[dimX ].

Proposition 3.2 (a spanning class). Let X be a smooth Deligne-Mumford stack which
has Serre duality. Then the set

{OZ |Z ⊂ X is a closed substack, π(Z) is a point in X}

is a spanning class of Db(X ).

Proof. This follows from the argument of [Br99], Example 2.2. �

It follows that a Deligne-Mumford stack as in Proposition 3.1 has a spanning class
given as above.

3.2. Reduction to local case: the first proof. Let {Ui} be an étale cover of X
such that Ui ×X X ' [Mi/Gi] for some schemes Mi and finite groups Gi. Consider
the diagram

X

π

y
X ←−−−− Hilb′(X ),

and its pullback to Ui

Xi := Ui ×X X

πi

y
Ui ←−−−− Ui ×X Hilb′(X ).

Let F : Db(Hilb′(X )) → Db(X ) be a Fourier-Mukai type transformation defined by
an object E ∈ Db(Hilb′(X )×X ) and Fi : Db(Ui×X Hilb′(X ))→ Db(Xi) the Fourier-
Mukai type transformation given by pulling everything back to Ui.

Proposition 3.3. Assume that Fi are equivalences of derived categories for all i,
then so is F .

Proof. This follows from the argument of [Ch02], Proposition 3.2, using the spanning
class given in Proposition 3.2. �

Proof of Theorem 1.1. By Lemma 2.2 and Proposition 2.3, the functor

Fi : Db(Ui ×X Hilb′(X ))→ Db(Xi)

is the Fourier-Mukai type transformation defined by the universal object of the Hilbert
scheme Gi-Hilb(Mi). By the results of [BKR01], we know that Fi is an equivalence,
Ui ×X Hilb′(X ) is smooth, and Ui ×X Hilb′(X ) → Ui is a crepant resolution. It
follows from Proposition 2.3 that Hilb′(X ) is smooth and Hilb′(X )→ X is a crepant
resolution. By Proposition 3.3 it follows that F is an equivalence. �
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3.3. Patching local crepant resolutions. In general, without knowing the global
space Hilb′(X ), it is not a priori clear the crepant resolutions of Ui given by G-Hilbert
schemes can be patched to a crepant resolution of X. We note that it in fact can be
done in dimension 3.

Proposition 3.4. Let X be a normal Q-factorial projective threefold and {Ui} an
open cover of X. Suppose that for every i there is a crepant resolution φi : Yi → Ui,
then there is a crepant resolution φ : Y → X.

Proof. Consider a relative minimal model f : Y → X, where Y is terminal, Q-factorial
and KY is f -nef. We only need to prove that Y → X is crepant and Y is smooth.
Note that X has only canonical singularities since local crepant resolutions exist. The
first part follows since X is canonical and KY is f -nef. To check that Y is smooth we
only need to check it locally. Thus we consider the restriction f |Ui

: Y |Ui
→ Ui. Both

Y |Ui → Ui and Yi → Ui are relative minimal models of Ui, so they can be connected
by a sequence of flops. Since flops in dimension 3 preserve smoothness, the result
follows. �

Remark 3.5. This argument does not work in higher dimensions, since flops may not
terminate and may not preserve smoothness.

3.4. Another proof of 1.1. Instead of using results of [BKR01], the second proof
uses their arguments. It is not hard to check that the arguments in [BKR01] extends
to our case provided Proposition 2.3 and the following:

(1) the category Db(X ) is indecomposable;
(2) we have the Grothedieck duality for the morphism Hilb′(X )×X → Hilb′(X );
(3) we have a Serre functor for Db(X ).

(1) follows from the argument of [Br99], Example 3.2, provided we know that for
any integral closed substack W of X , the sheaf OW is indecomposible. This can be
seen as follows: Since X is smooth, we have X ' [M/GLr] where GLr is some general
linear group. By assumption X is connected, so is X. It follows that M is connected.
Let p : M → X be the structure morphism. Then p∗ : Db(X ) → Db(M) is fully
faithful, and p∗OW = OW×XM is indecomposible. Hence OW is indecomposible.

For (2), note that Hilb′(X )×X → Hilb′(X ) factors as

Hilb′(X )×X id×π−→ Hilb′(X )×X → Hilb′(X ).

Also note that (id×π)∗ is exact and has the left and right adjoint (id×π)∗. We may
conclude by the Grothendick duality for schemes.

(3) follows from Proposition 3.1.

4. Twisted derived McKay correspondence

In this section we discuss the twisted version of derived McKay correspondence
proposed in [BP05]. Let X = M/G with M quasi-projective of dimension n and G
finite and X be the associated stack as discussed above. Also let Y be the component
of G-Hilbert scheme of M which contains free orbits. According to [BKR01], we
have an integral functor Φ : Db(Y ) → Db(X ) given by the kernel OZ , which is an
equivalence under certain conditions. Here Z = [Z/G] and Z ⊂ Y ×M is the universal
closed subscheme.
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The authors of [BP05] proposed a twisted version of this equivalence, which we
recast in our setting as follows: Let Br(Y ) be the Brauer group of Y . It is shown in
[BP05] that both Br(Y ) and H2(G, C∗) can be embedded into a larger group, namely
Br(Xsm). Let α ∈ Br(Y ) ∩H2(G, C∗) be a class which is r-torsion. It follows that
there is an injective homomorphism ι : µr → C∗ such that α is in the images of the
induced maps H2

et(Y, µr) → H2
et(Y, C∗) and H2(G, µr) → H2(G, C∗). Thus we can

associate a µr-gerbe Yα over Y and a µr-gerbe Xα over X . The α-twisted derived
categories Db(Y, α) and Db(X , α) are derived categories of coherent sheaves on Yα

and Xα whose actions by C∗ and µr are compatible via ι : µr → C∗ (see [Li04]). It is
conjectured in [BP05] that there is a equivalence of derived categories

Db(Y, α)→ Db(X , α).

We prove this conjecture in our situation. Consider the following diagram:

Xα × Yα
πY−−−−→ Yα

pY−−−−→ Y

πX

y φ̄

y
Xα

pX−−−−→ X pX−−−−→ X

Since α ∈ Br(Y ) ∩H2(G, C∗), it is not hard to check that the integral functor Φα

defined by the kernel (pY × pX )∗OZ is a functor between Db(Y, α) and Db(X , α).

Theorem 4.1. Assume that dimY ×X Y ≤ n + 1, then Φα is an equivalence of
triangulated categories.

Proof. According to [BKR01], Y is smooth and Y → X is a crepant resolution.
It follows that Yα and Xα are smooth Deligne-Mumford stacks. In view of this,
that Φα is an equivalence is a special case of a stack version of Bridgeland’s result
([Br99], Theorem 1.1). It is straightforward (although lengthy) to modify Bridgeland’s
arguments in [Br99] to prove that Φα is an equivalence if and only if

(4.1) ExtiXα
((pY × pX )∗OZ |y1 , (pY × pX )∗OZ |y2) = 0 for all i ≥ 0, y1 6= y2 ∈ Yα;

(4.2) (pY × pX )∗OZ |y ' (pY × pX )∗OZ |y ⊗ p∗X p∗XωX for all y ∈ Yα.

We simply note that in order for the arguments in [Br99] to work for this, we
need to have a Serre functor, a spanning class and indecomposability of the derived
categories, as well as calculations of certain Ext groups. These have been settled in
Proposition 3.1, 3.2 and in Section 3.4. The needed calculations of Ext groups follows
from those in [BKR01]. Now the calculations in [BKR01] immediately imply (4.1)
and (4.2). Hence Φα is an equivalence. �

Remark 4.2.
(1) It is natural to ask for a global version of the conjecture in [BP05]. One

expects that the work of [BP05] can be generalized to give such a conjecture.
Our work should be helpful in proving such a conjecture on global twisted
derived McKay correspondence.
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(2) Consider the following situation: X = M/G as above, X = [M/G] is the
Deligne-Mumford stack as before, and Y → X be a crepant resolution. Sup-
pose that there is an equivalence of derived categories Db(Y ) ' Db(X ). It
is known that such an equivalence is a Fourier-Mukai transform given by an
integral kernel E ∈ Db(Y ×X ). If E is a sheaf on Y ×X , then our arguments
can be modified to show that for α ∈ Br(Y ) ∩H2(G, C∗), the integral func-
tor given by the pullback of E to the associated gerbe yields an equivalence
Db(Y, α) ' Db(X , α). It is interesting to understand whether this is the case
or not, if E is not a sheaf.
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