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JOINT REDUCTIONS OF MONOMIAL IDEALS AND
MULTIPLICITY OF COMPLEX ANALYTIC MAPS

Carles Bivià-Ausina

Abstract. We characterize the joint reductions of a set of monomial ideals in the ring

On of complex analytic functions defined in a neighbourhood of the origin in Cn. We also

study an integer σ(I1, . . . , In) attached to a family of ideals I1, . . . , In in a Noetherian

local ring that extends the usual notion of mixed multiplicity. If I1, . . . , In are monomial

ideals ofOn, then we obtain a characterization of the families g1, . . . , gn such that gi ∈ Ii,

for all i = 1, . . . , n, and that e(g1, . . . , gn) = σ(I1, . . . , In).

1. Introduction

The computation of the integral closure of ideals is one of the central problems in
commutative algebra (see [4], [7] or [22]). A key role in the context of this problem
is played by the reductions of an ideal, which were defined by Northcott and Rees in
[11] (see Section 2). These ideals are very useful in the computation of multiplicities
of ideals. For instance, if I is an ideal of C[[x1, . . . , xn]] of finite colength generated by
monomials, then the author obtained in [2] a canonical reduction of I that allowed to
compute the multiplicity of I in an effective way (we refer [5] for a different approach
to the computation of the multiplicity of a monomial ideal).

The notion of reduction of an ideal was generalized by Rees in [14] thus giving
the notion of joint reduction of ideals. This notion simplifies the task of computing
the mixed multiplicities of ideals, defined by Teissier and Risler in [18]. By a result
of Swanson [17], joint reductions of ideals of finite colength are characterized via an
equality of mixed multiplicities. This result extends the celebrated Rees’ multiplicity
theorem (see [7, p. 222]).

In Section 2 we consider an integer attached to an ample class of n-tuples of ideals
I1, . . . , In in a Noetherian local ring of dimension n (see Definition 2.4). This integer,
that we denote by σ(I1, . . . , In), extends the notion of mixed multiplicity of ideals
of finite colength defined by Teissier and Risler in [18]. However σ(I1, . . . , In) is
not defined for arbitrary n-tuples of ideals. We point out that, as a consequence of
Proposition 2.9, the integer σ(I1, . . . , In) is equal to the multiplicity defined by Rees
in [15, p. 181] for certain sets of ideals not necessarily of finite colength.
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In the study of σ(I1, . . . , In) we apply results developed by Rees [14] and Swanson
[17] concerning joint reductions, mixed multiplicities and integral closures of ideals.

Let us denote by On the ring of analytic function germs f : (Cn, 0) → C. Let
I1, . . . , In be monomial ideals of On. Then we give in Section 3 a combinatorial char-
acterization of the joint reductions of I1, . . . , In (see Proposition 3.7). If we assume
that σ(I1, . . . , In) < ∞, then we will apply this result to characterize those analytic
maps g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0) such that gi ∈ Ii, for all i = 1, . . . , n, and
such that e(g1, . . . , gn) = σ(I1, . . . , In) (see Theorem 3.10), where e(g1, . . . , gn) is the
Samuel multiplicity of the ideal of On generated by g1, . . . , gn. This characterization
is expressed via the respective Newton polyhedra of I1, . . . , In. The set of such maps
is denoted by R(I1, . . . , In).

If I1, . . . , In are monomial and integrally closed ideals of On, then, at the end of
the paper, we give a result where an important part of the integral closure of the
ideals generated by the components of a map of R(I1, . . . , In) is computed.

The results that we show in this article will be applied, in a subsequent work,
to problems in singularity theory concerning invariants of analytic functions f :
(Cn, 0) → (C, 0). This is the main reason that we fix the setup of this work in
On instead of the ring of formal power series C[[x1, . . . , xn]].

2. Joint reductions of ideals and mixed multiplicities

Let R be a commutative ring. We denote by I the integral closure of an ideal I

of R. If J and I are ideals of R such that J ⊆ I, then J is said to be a reduction
of I if there exists an integer r > 0 such that Ir+1 = JIr. This definition is due to
Northcott and Rees [11]. It is known that J is a reduction of I if and only if I = J

(see [7, p. 6]). The notion of reduction was generalized by Rees in [14] by defining
the notion of joint reduction of a set of ideals.

Definition 2.1. [14] Let I1, . . . , Ip be ideals of R. Let g1, . . . , gp be elements of R

such that gi ∈ Ii, for all i = 1, . . . , p. The p-tuple (g1, . . . , gp) is termed a joint
reduction of (I1, . . . , Ip) if and only if the ideal

g1I2 · · · Ip + g2I1I3 · · · Ip + · · ·+ gpI1 · · · Ip−1

is a reduction of I1 · · · Ip.

Let (R,m) be a Noetherian local ring of dimension n. If an ideal I of R is m-
primary then we will also say that I has finite colength. If I is an ideal of R of finite
colength, then we denote by e(I), or by e(I;R), the multiplicity of I in the sense of
Samuel (see [7, p. 214]). We will denote the colength of I in R by `(R/I).

If I1, . . . , In are ideals of R of finite colength, we denote indistinctly by e(I1, . . . , In)
or by e(I1, . . . , In;R) the mixed multiplicity of I1, . . . , In defined by Teissier and
Risler in [18]. We also refer to [7, §17] or [17] for the definitions and fundamental
results concerning mixed multiplicities of ideals. Here we recall briefly the definition
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of e(I1, . . . , In). Let us denote by Z+ the set of non-negative integers. Under the
conditions exposed above, let us consider the function H : Zn

+ → Z+ given by

(1) H(r1, . . . , rn) = `

(
R

Ir1
1 · · · Irn

n

)
,

for all (r1, . . . , rn) ∈ Zn
+. Then, it is proven in [18] that there exists a polynomial P

in n variables, say x1, . . . , xn, with rational coefficients and of degree n such that

H(r1, . . . , rn) = P (r1, . . . , rn),

for all sufficiently large r1, . . . , rn ∈ Z+. Moreover, the coefficient of the monomial
x1 · · ·xn in P is an integer. This integer is called the mixed multiplicity of I1, . . . , In

and is denoted by e(I1, . . . , In).
We remark that if I1, . . . , In are all equal to a given ideal I of R, then e(I1, . . . , In) =

e(I). We will need the following known result (see [7, p. 345] or [17, Lemma 2.4]).

Lemma 2.2. Let R be a Noetherian local ring of dimension n > 1. Let I1, . . . , In be
ideals of R of finite colength. Let g1, . . . , gn be elements of R such that gi ∈ Ii, for all
i = 1, . . . , n, and that the ideal 〈g1, . . . , gn〉 has also finite colength. Then

e(g1, . . . , gn) > e(I1, . . . , In).

Rees proved in [13] that if J ⊆ I are ideals of a quasi-unmixed Noetherian local
ring R, then J is a reduction of I if and only if e(I) = e(J) (see also [7, p. 222]).
Moreover, Rees proved in [14, Theorem 2.4] that if (g1, . . . , gn) is a joint reduction of
(I1, . . . , In), where I1, . . . , In is a set of ideals of finite colength of a local Noetherian
ring R, then e(g1, . . . , gn) = e(I1, . . . , In) (see also [7, p. 343]). The converse of this
result is a nice result of Swanson that we now state.

Theorem 2.3. [17] Let R be a quasi-unmixed Noetherian local ring. Let I1, . . . , Is be
ideals and let gi be an element of Ii, for i = 1, . . . , s. Suppose that the ideals I1, . . . , Is

and 〈g1, . . . , gs〉 have the same height s and the same radical. If

e(〈g1, . . . , gs〉Rp;Rp) = e(I1Rp, . . . , IsRp;Rp),

for each prime ideal p minimal over 〈g1, . . . , gs〉, then (g1, . . . , gs) is a joint reduction
of (I1, . . . , Is).

We now define an invariant, defined in terms of mixed multiplicities of ideals, that
is attached to a set of ideals in a Noetherian local ring. The ideals that we consider
are not assumed to have finite colength.

Definition 2.4. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In

be ideals of R. Then we define

(2) σ(I1, . . . , In) = max
r∈Z+

e(I1 + mr, . . . , In + mr).
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The set of integers {e(I1 + mr, . . . , In + mr) : r ∈ Z+} is not bounded in general;
therefore σ(I1, . . . , In) is not always finite for any family of ideals I1, . . . , In. The
finiteness of σ(I1, . . . , In) is characterized in Proposition 2.9. We remark that if Ii

has finite colength, for all i = 1, . . . , n, then σ(I1, . . . , In) equals the mixed multiplicity
e(I1, . . . , In).

Proposition 2.5. Let (R,m) be a quasi-unmixed Noetherian local ring of dimension
n. Let I1, . . . , In be ideals of R such that σ(I1, . . . , In) < ∞ and let g1, . . . , gn be
elements of R such that gi ∈ Ii, for all i = 1, . . . , n, and 〈g1, . . . , gn〉 is an ideal of
finite colength. Then σ(I1, . . . , In) = e(g1, . . . , gn) if and only if there exists an integer
r0 > 1 such that (g1, . . . , gn) is a joint reduction of (I1 + mr, . . . , In + mr), for all
r > r0.

Proof. The if part follows as a direct consequence of the expression of mixed multi-
plicities as the multiplicity of a joint reduction (see the paragraph before Theorem
2.3).

Conversely, if σ(I1, . . . , In) = e(g1, . . . , gn) then (g1, . . . , gn) is a joint reduction of
(I1 + mr, . . . , In + mr), for all r � 0, as a consequence of Theorem 2.3. �

By virtue of the previous result we give the following definition.

Definition 2.6. Let (R,m) be a local ring of dimension n and let I1, . . . , In be ideals
of R. Let gi ∈ Ii, for i = 1, . . . , n. We say that g1, . . . , gn is a σ-joint reduction
of (I1, . . . , In) when there exists an integer r0 > 1 such that (g1, . . . , gn) is a joint
reduction of (I1 + mr, . . . , In + mr), for all r > r0.

We will use the following auxiliary result, whose proof appears in [7, p. 134].

Lemma 2.7. Let (R,m) be a Noetherian local ring and let I be an ideal of R. Then

I =
⋂
r>1

I + mr.

Proposition 2.8. Let (R,m) be a Noetherian local ring of dimension n and let
I1, . . . , In be ideals of R. Let gi ∈ Ii, for i = 1, . . . , n. If g1, . . . , gn is a σ-joint
reduction of (I1, . . . , In) then (g1, . . . , gn) is a joint reduction of (I1, . . . , In).

Proof. When n = 1 the result follows easily from Lemma 2.7. Let us suppose that
n > 2. Let us define the ideals

Pr = g1(I2 + mr) · · · (In + mr) + · · ·+ gn(I1 + mr) · · · (In−1 + mr)

Qr = (I1 + mr) · · · (In + mr).

Then there exists an integer r0 > 1 such that

(3) Qr = Pr, for all r > r0.

If j, s ∈ {1, . . . , n}, we define

Lj =
∑

16i1<···<ij6n

Ii1 · · · Iij
, Ls

j =
∑

16i1<···<ij6n
ij 6=s

Ii1 · · · Iij
,
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where in the definition of Ls
j we suppose that j 6 n− 1. Then, a simple computation

shows that

(4) Ln +mr(n−1)L1 ⊆ Qr = Ln +mrLn−1 + · · ·+mr(n−1)L1 +mrn ⊆ Ln +mr+n−1

and that

(5) Pr = g1L
1
n−1 + · · ·+ gnLn

n−1 +
n∑

i=1

gi

(
mrLi

n−2 + · · ·+ m(n−2)rLi
1 + m(n−1)r

)
.

Let J denote the ideal of R generated by g1, . . . , gn. Then

(6) g1L
1
n−1 + · · ·+ gnLn

n−1 + m(n−1)rJ ⊆ Pr ⊆ g1L
1
n−1 + · · ·+ gnLn

n−1 + mr+n−1.

Then, from Lemma 2.7 and the inclusions given in (4) and (6) we obtain the equalities

(7) Ln =
⋂
r>1

Qr, g1L1
n−1 + · · ·+ gnLn

n−1 =
⋂
r>1

Pr.

Therefore, from (3) we have

g1L1
n−1 + · · ·+ gnLn

n−1 =
⋂

r>r0

Pr =
⋂

r>r0

Qr = Ln = I1 · · · In.

This implies that g1L
1
n−1 + · · · + gnLn

n−1 is a reduction of I1 · · · In, or equivalently,
that (g1, . . . , gn) is a joint reduction of (I1, . . . , In). �

In Example 2.10 we show that the converse of Proposition 2.8 does not hold in
general.

Let (R,m) be a local ring of dimension n with k = R/m an infinite field. Let
I1, . . . , In be ideals of R. Let us consider a generating system ai1, . . . , aisi of Ii, for
i = 1, . . . , n. Let s = s1 + · · · + sn. We say that a property holds for sufficiently
general elements of I1 ⊕ · · · ⊕ In if there exists a non-empty Zariski-open set U in ks

such that all elements (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In satisfy the said property provided
that gi =

∑
j uijaij , i = 1, . . . , n, where (u11, . . . , u1s1 , . . . , un1, . . . , unsn) ∈ U .

Proposition 2.9. Let I1, . . . , In be ideals of a Noetherian local ring (R,m) such that
the residue field k = R/m is infinite. Then σ(I1, . . . , In) < ∞ if and only if there
exist elements gi ∈ Ii, for i = 1, . . . , n, such that 〈g1, . . . , gn〉 has finite colength. In
this case, we have that σ(I1, . . . , In) = e(g1, . . . , gn) for sufficiently general elements
(g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

Proof. The if part is immediate. Let us suppose that σ(I1, . . . , In) < ∞. Then there
exists a positive integer r0 such that

σ(I1, . . . , In) = e(I1 + mr, . . . , In + mr),

for all r > r0. By the definition of joint reduction we have that if (a1, . . . , an) is a
joint reduction of (I1 + mr, . . . , In + mr) and P denotes the ideal

a1(I2 + mr) · · · (In + mr) + · · ·+ an(I1 + mr) · · · (In−1 + mr),
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then
(I1 + mr) · · · (In + mr) = P ⊆ 〈a1, . . . an〉.

Therefore, we observe that there exists an integer s > 1 such that ms ⊆ 〈a1, . . . , an〉,
for all joint reduction (a1, . . . , an) of (I1 + mr0 , . . . , In + mr0). We can suppose that
s > r0.

By the theorem of existence of joint reductions (see [17, p. 4] or [7, p. 336]), let us
consider elements gi ∈ Ii, for i = 1, . . . , n, and elements hi ∈ ms+1, for i = 1, . . . , n,
such that (g1, . . . , gn) is a joint reduction of (I1, . . . , In) and that (g1+h1, . . . , gn+hn)
is a joint reduction of (I1+ms+1, . . . , In+ms+1). Let J be the ideal of R generated by
g1+h1, . . . , gn+hn. Then J has finite colength and e(J) = e(I1+ms+1, . . . , In+ms+1).

Since s > r0, we have

e(I1 + mr0 , . . . , In + mr0) = e(I1 + ms+1, . . . , In + ms+1) = e(J).

Then it follows that (g1+h1, . . . , gn+hn) is a joint reduction of (I1+mr0 , . . . , In+mr0)
by Theorem 2.3. But this implies that ms ⊆ J , by the definition of s.

Hence we have

J ⊆ 〈g1, . . . , gn〉+ m ·ms ⊆ 〈g1, . . . , gn〉+ m · J.

By the integral Nakayama’s Lemma (see [18, p. 324]), we deduce that

J ⊆ 〈g1, . . . , gn〉.

Then 〈g1, . . . , gn〉 has also finite colength. Moreover we have

σ(I1, . . . , In) = e(J) > e(g1, . . . , gn) > e(I1 + mr0 , . . . , I1 + mr0) = σ(I1, . . . , In).

Hence we have

(8) e(g1, . . . , gn) = σ(I1, . . . , In).

By the construction of the elements g1, . . . , gn that we have considered, we observe
that equality (8) is satisfied for sufficiently general elements of I1 ⊕ · · · ⊕ In, as a
consequence of the theorem of existence of joint reductions. �

If σ(I1, . . . , In) < ∞ then I1 + · · · + In is an ideal of finite colength in R, by
Proposition 2.9. Obviously the converse does not hold. We also have that e(I1 + · · ·+
In) 6 σ(I1, . . . , In), by Lemma 2.2. As a consequence of Rees’ multiplicity theorem
(see [7, p. 222]) we have that e(I1 + · · · + In) = σ(I1, . . . , In) if and only if any n-
tuple (g1, . . . , gn) such that gi ∈ Ii, for all i = 1, . . . , n, and satisfying the equality
e(g1, . . . , gn) = σ(I1, . . . , In) generates a reduction of I1 + · · ·+ In.

Proposition 2.9 shows that, if σ(I1, . . . , In) < ∞, then σ(I1, . . . , In) is equal to
the mixed multiplicity of I1, . . . , In defined by Rees in [15, p. 181] via the notion of
general extension of a local ring (see [15, p. 145] and [16]). Therefore, we will refer to
σ(I1, . . . , In) as the Rees’ mixed multiplicity of I1, . . . , In.

By Propositions 2.5 and 2.8 we have that σ(I1, . . . , In) = e(g1, . . . , gn), where
(g1, . . . , gn) is a joint reduction of (I1, . . . , In). However, if σ(I1, . . . , In) < ∞, not
every joint reduction of I1, . . . , In generates an ideal of finite colength. Moreover, if
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I is the ideal generated by a joint reduction of I1, . . . , In and we suppose that I has
finite colength then it does not hold in general that e(I) = σ(I1, . . . , In). Both facts
are shown in the following example.

Example 2.10. Let us consider in O3 the ideals I1 = I2 = 〈x, y〉 and I3 = 〈z〉 and
the elements g1 = g2 = x + y and g3 = z, where we have fixed the coordinates x, y, z

in C3. It is obvious that σ(I1, I2, I3) = 1 and that (g1, g2, g3) is a joint reduction of
(I1, I2, I3). However g1, g2, g3 do not generate an ideal of finite colength of O3.

Let us consider the elements g′1 = x + y + x3, g′2 = x + y + y3, g′3 = z. Then
we observe that (g′1, g

′
2, g

′
3) is also a joint reduction of (I1, I2, I3). These elements

generate an ideal of finite colength of O3 but σ(I1, I2, I3) = 1 and e(g′1, g
′
2, g

′
3) = 3.

Let (R,m) be a Noetherian local ring of dimension n such that the residue field
R/m is infinite. The mixed multiplicity of ideals, as introduced by Risler and Teissier
[18] and studied by Rees [14] and Swanson [17], is defined for n ideals I1, . . . , In of
finite colength in R. By the theorem of existence of joint reductions (see [7, p. 336]),
we have

(9) e(I1, . . . , In) = e(g1, . . . , gn),

where (g1, . . . , gn) is a sufficiently general element of I1 ⊕ · · · ⊕ In.
We observe that the function defined in (1) and that leads to the definition of

e(I1, . . . , In) is well defined if and only if Ii has finite colength, for all i = 1, . . . , n.
However, the multiplicity on the right hand side of (9) could be computed in cases
where some of the ideals Ii has not finite colength. By Proposition 2.9, this multi-
plicity is equal to σ(I1, . . . , In).

If I, J are two ideals of finite colength of R, then we can define for all i ∈
{0, 1, . . . , n} the multiplicity

(10) ei(I, J) = e(I, . . . , I, J, . . . , J),

where I is repeated n − i times and J is repeated i times, for all i = 0, 1, . . . , n. If
I and J are arbitrary ideals, we define analogously the number σi(I, J) by replacing
in (10) the mixed multiplicity e(I, . . . , I, J, . . . , J) by σ(I, . . . , I, J, . . . , J) (of course,
for arbitrary ideals I and J the resulting numbers are not always finite for all i =
0, 1, . . . , n).

If J is an ideal of R, let J∞ = {x ∈ R : xsJ = 0, for some s > 1}. As can be
seen in the paper [20] of Trung, one can also define a family of mixed multiplicities
{ei(I|J) : i = 0, 1, . . . , r} of a pair of ideals I, J , where I is assumed to have finite
colength, J is an arbitrary ideal of R and r = dim(R/(0 : J∞))− 1. These numbers
arise from the coefficients of the homogeneous part of highest degree of the polynomial
that coincides with the length function of the bigraded ring

R(I|J) =
⊕

(u,v)∈Z2
+

IuJv/Iu+1Jv.

We refer to [9], [20], [21] and [23] for the details about this definition.
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Let `(J) denote the analytic spread of J . The multiplicities ei(I|J) are not all
positive for all i = 0, 1, . . . , r. In fact, Trung proved that ei(I|J) = 0, for all i > `(J)
(see [20, Corollary 3.6]). Moreover, if i ∈ 0, 1, . . . ,ht(J)− 1, then it is proved in [20,
Proposition 4.1] that

(11) ei(I|J) = e
(
a1, . . . , an−i, b1, . . . , bi

)
,

where (a1, . . . , an−i, b1, . . . , bi) is a sufficiently general element of I⊕· · ·⊕I⊕J⊕· · ·⊕J .
We remark that relation (11) shows that ei(I|J) = σi(I, J), for all i ∈ 0, 1, . . . ,ht(J)−
1, by Proposition 2.9. However, we show a simple example where the multiplicity on
the right hand part of (11) can be positive for i = `(J) and therefore it can be
expressed as a Rees’ mixed multiplicity.

Example 2.11. Let I, J be the ideals in O3 given by I = 〈x, y, z〉, J = 〈x2, y2〉.
Then `(J) = 2 (see [2, Theorem 2.3]) and σ2(I, J) = σ(I, J, J) = 4.

3. Mixed multiplicities and non-degeneracy

Throughout the remaining text, if no confusion arises, we will denote the maximal
ideal of On by m instead of mn. We say that an ideal I of On is a monomial ideal
when I is generated by a family of monomials xk such that k ∈ Zn

+, k 6= 0. Let
I1, . . . , In be a sequence of monomial ideals in On such that σ(I1, . . . , In) < ∞. In
this section we characterize the sets of functions g1, . . . , gn ∈ On such that gi ∈ Ii, for
all i = 1, . . . , n, and that e(g1, . . . , gn) = σ(I1, . . . , In). In order to show our results
we will introduce first some definitions and notation.

Let h ∈ On, let us suppose that the Taylor expansion of h around the origin is
given by h =

∑
k akxk. We define the support of h, denoted by supp(h), as the set of

those k ∈ Zn
+ such that ak 6= 0. If A is a compact subset of Rn

+, then we denote by
hA the polynomial given by the sum of all terms akxk such that k ∈ supp(h) ∩ A. If
supp(h) ∩ A = ∅, then we set hA = 0. If I is a monomial ideal of On, we define the
support of I, denoted by supp(I), as the set of k ∈ Zn

+ such that xk ∈ I.
We say that a subset Γ of Rn

+ is a Newton polyhedron when there exists some B ⊆
Qn

+ such that Γ is equal to the convex hull in Rn
+ of the set {k + v : k ∈ B, v ∈ Rn

+}.
In this case we say that Γ is the Newton polyhedron determined by B and we also
denote Γ by Γ(B). A Newton polyhedron Γ is termed convenient when Γ intersects
each coordinate axis in a point different from the origin. In this case, we denote by
Vn(Γ) the n-dimensional volume of the set Rn

+ r Γ.
If h ∈ On, the Newton polyhedron of h is defined as Γ(h) = Γ

(
supp(h)

)
. Let J be

an ideal of On, let us suppose that J is generated by the elements h1, . . . , hp. Then
the Newton polyhedron of J , denoted by Γ(J), is defined as the convex hull of the
union Γ(h1) ∪ · · · ∪ Γ(hp). It is easy to check that the definition of Γ(J) does not
depend on the chosen generating system of J .

If Γ1, . . . ,Γp are Newton polyhedra in Rn
+, then we define the Minkowski sum of

Γ1, . . . ,Γp as

Γ1 + · · ·+ Γp = {k1 + · · ·+ kp : ki ∈ Γi, for all i = 1, . . . , p}.
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This set is again a Newton polyhedron, since it is known that Γ1 + · · · + Γp =
Γ(I1 · · · Ip), whenever Γi = Γ(Ii), for some monomial ideal Ii ∈ On, i = 1, . . . , p

(see for instance [6]).
Let us fix a Newton polyhedron Γ ⊆ Rn

+. Given a vector v ∈ Rn
+ r {0} we define

`(v,Γ) = min
{
〈v, k〉 : k ∈ Γ

}
.

We say that a subset ∆ of Γ is a face of Γ if there exists a vector v ∈ Rn
+ r {0} such

that ∆ is expressed as

(12) ∆ =
{
k ∈ Γ : 〈v, k〉 = `(v,Γ)

}
.

We will denote the set on the right hand side of (12) by ∆(v,Γ) and we will also say
that ∆ is the face of Γ supported by v. We have that ∆(v,Γ) is a compact face of Γ
if and only if all components of v are non-zero. If I is an ideal of On, then we denote
by Γ(I) the union of the compact faces of Γ(I). Moreover, we will denote the face
∆(v,Γ(I)), for a given v ∈ Rn

+ r {0}, by ∆(v, I).

Definition 3.1. Let I1, . . . , Ip be monomial ideals in On. Let g : (Cn, 0) → (Cp, 0)
be an analytic map germ such that gi ∈ Ii, for all i = 1, . . . , p. Let v ∈ Rn

+ r {0} and
let ∆i = ∆(v, Ii), for all i = 1, . . . , p. We say that g satisfies the (Kv) condition with
respect to I1, . . . , Ip when{

x ∈ Cn : (g1)∆1(x) = · · · = (gp)∆p
(x) = 0

}
⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Then the map g is termed non-degenerate with respect to I1, . . . , Ip when g satisfies
the (Kv) condition with respect to I1, . . . , Ip for all v ∈ (R+ r {0})n.

Under the conditions of the above definition, we observe that if there exists some
i0 ∈ {1, . . . , p} such that gi0 is equal to a monomial xk, for some k ∈ Zn

+, k 6= 0, and
Ii0 = 〈xk〉, then the map g is automatically non-degenerate with respect to I1, . . . , Ip.

If L ⊆ {1, . . . , n}, L 6= ∅, we define Cn
L = {x ∈ Cn : xi = 0, for all i /∈ L}. The set

Rn
L is defined analogously. If h ∈ On and the Taylor expansion of h around the origin

is given by h =
∑

k akxk, we denote by hL the function obtained as the sum of those
terms akxk such that k ∈ supp(h) ∩ Rn

L. If supp(h) ∩ Rn
L = ∅, then we set hL = 0. If

g = (g1, . . . , gp) : (Cn, 0) → (Cp, 0) is an analytic map germ, then we denote by gL

the map (gL
1 , . . . , gL

p ) : (Cn
L, 0) → (Cp, 0). In some occasions we will identify Cn

L with
Cr, where r = |L|.

Let L = {i1, . . . , ir} ⊆ {1, . . . , n}, then we denote by On,L the subring of On

generated by the functions of On depending, at most, on the variables xi1 , . . . , xir
.

We denote by mL the maximal ideal of On,L. We observe that the map On → On,L

given by h 7→ hL, h ∈ On, is a ring epimorphism. If I is a monomial ideal of On

then we denote by IL the ideal of On,L generated by all monomials xk such that
k ∈ supp(I) ∩ Rn

L. If supp(I) ∩ Rn
L = ∅, then we set IL = 0.

Definition 3.2. Let I1, . . . , Ip be monomial ideals of On such that I1 + · · ·+ Ip is an
ideal of finite colength in On. Let g : (Cn, 0) → (Cp, 0) be an analytic map germ such
that gi ∈ Ii, for all i = 1, . . . , p. We say that g is strongly non-degenerate with respect
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to I1, . . . , Ip when for all L ⊆ {1, . . . , n}, L 6= ∅, the map gL : (Cn
L, 0) → (Cp, 0) is

non-degenerate with respect to the non-zero ideals of the sequence of ideals IL
1 , . . . , IL

p .

We remark that, since we are assuming in the above definition that I1 + · · ·+ Ip is
an ideal of finite colength, then the set of non-zero ideals in the sequence IL

1 , . . . , IL
p

is non-empty, for all L ⊆ {1 . . . , n}, L 6= ∅.
Definitions 3.1 and 3.2 are motivated by the notion of Newton non-degenerate ideal

(see the paragraph after Remark 3.4), which in turn has its origin in the notion of New-
ton non-degenerate function. This kind of functions were studied by Kouchnirenko
[10] and Yoshinaga [24], among other authors, with the aim of obtaining information
about the topology of a given function h ∈ On (like the Milnor number of h, in the
case that h has an isolated singularity at the origin, or the topological determinacy
of h) in terms of the Newton polyhedron of h.

Under the conditions of Definition 3.2, we denote the set of analytic maps g :
(Cn, 0) → (Cp, 0) such that gi ∈ Ii, for all i = 1, . . . , p, and such that g is strongly
non-degenerate with respect to I1, . . . , Ip by R(I1, . . . , Ip). Let us remark that if
g ∈ R(I1, . . . , Ip) then gi does not need to have the same Newton polyhedron as Ii,
for all i = 1, . . . , p.

Example 3.3. Let us consider the ideals I1, I2, I3 of O3 and the polynomials g′1, g
′
2, g

′
3

given in Example 2.10. Then we have that the map g′ : (C3, 0) → (C3, 0) defined by
g′ = (g′1, g

′
2, g

′
3) is non-degenerate with respect to I1, I2, I3. If L = {1, 2}, then

{i : IL
i 6= 0} = {1, 2}. We observe that the map h = ((g′1)

L, (g′2)
L) is not non-

degenerate with respect to IL
1 , IL

2 , since h does not satisfy the (Kv) condition for
v = (1, 1). Therefore g′ is not strongly non-degenerate with respect to I1, I2, I3.

Remark 3.4. Let Γ1, . . . ,Γp be a family of Newton polyhedra in Rn
+. It is well

known that if ∆ is a compact face of Γ1 + · · · + Γp, then ∆ is uniquely expressed
as ∆1 + · · · + ∆p, where ∆i is face of Γi, for all i = 1, . . . , p. This expression is a
consequence of the following relations:

`(v,Γ1 + · · ·+ Γp) = `(v,Γ1) + · · ·+ `(v,Γp)

∆(v,Γ1 + · · ·+ Γp) = ∆(v,Γ1) + · · ·+ ∆(v,Γp),

for all v ∈ Rn
+ r {0}. Therefore, under the hypothesis of Definition 3.1, the set of

non-redundant (Kv) conditions that a non-degenerate map with respect to I1, . . . , Ip

must satisfy is parameterized by the set of compact faces of Γ(I1)+ · · ·+Γ(Ip). Hence
the definition of strongly non-degenerate map with respect to I1, . . . , Ip consists of a
finite set of conditions.

Here we recall the definition of Newton non-degenerate ideal (see [2] or [3]). Let I

be an ideal of On and let g1, . . . , gr be a generating system of I. Then the ideal I is
said to be Newton non-degenerate when for each compact face ∆ of Γ(I) we have{

x ∈ Cn : (g1)∆(x) = · · · = (gr)∆(x)
}
⊆ {x ∈ Cn : x1 · · ·xn = 0}.
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It is straightforward to see that this definition does not depend on the generating
system of I. We observe that any monomial ideal is Newton non-degenerate. We
recall that, given a function h ∈ On, then h is said to be Newton non-degenerate
when the ideal of On generated by x1

∂h
∂x1

, . . . , xn
∂h

∂xn
is Newton non-degenerate.

Moreover, we also have that an ideal I of On is Newton non-degenerate if and only
if I admits a generating system g1, . . . , gr such that the map (g1, . . . , gr) : (Cn, 0) →
(Cr, 0) is non-degenerate with respect to I, . . . , I, with I repeated r times (see Defini-
tion 3.1). If I is an ideal of finite colength, then this condition is equivalent to saying
that (g1, . . . , gr) ∈ R(I, . . . , I), where I is repeated r times (see also Corollary 3.8).

The next result shows a numerical characterization of the Newton non-degeneracy
condition (we refer to [1] for the definition and characterization of the Newton non-
degeneracy condition in the context of submodules of the free module Op

n, p > 1).

Theorem 3.5. [2, 3] Let I be an ideal of On of finite colength. Then e(I) >
n!Vn

(
Γ(I)

)
and equality holds if and only if I is a Newton non-degenerate ideal.

Given an ideal J of On and a fixed coordinate system in Cn, we denote by J0

the ideal of On generated by all monomials xk such that k ∈ Γ(J). The ideal J0 is
integrally closed (see [7, p. 11] or [19]). Therefore, from the inclusions J ⊆ J ⊆ J0 =
J0, we deduce that Γ(J) = Γ(J).

Proposition 3.6. Let I be a Newton non-degenerate ideal of On and let J ⊆ I. Then
the following conditions are equivalent:

(1) J is a reduction of I;
(2) J is Newton non-degenerate and Γ(J) = Γ(I);
(3) there exists a generating system g1, . . . , gr of J such that, for all compact face

∆ of Γ(I), we have

(13)
{
x ∈ Cn : (g1)∆(x) = · · · = (gr)∆(x)

}
⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Proof. We point out that the ideal I is not assumed to have finite colength. Let us
see (1) ⇒ (2). Suppose that J is a reduction of I. Then I = J and, in particular, we
have that Γ(I) = Γ(J). Moreover we also deduce that

(14) I + mr = I + mr = J + mr = J + mr,

for all r > 1. Using relation (14) and the fact that I + mr is a monomial ideal of
finite colength, it follows that

n!Vn

(
Γ(J + mr)

)
= n!Vn

(
Γ(I + mr)

)
= e(I + mr) = e(J + mr),

by Theorem 3.5. Therefore the ideal J + mr is Newton non-degenerate, for all r > 1,
by virtue of Theorem 3.5. Let r0 a positive integer such that each compact face ∆ of
Γ(J) is a compact face of Γ(J + mr), for all r > r0. Therefore, by writing down the
condition that J + mr is Newton non-degenerate, for all r > r0, we conclude that J

is Newton non-degenerate.
Let us see (2) ⇒ (1). We will see that item (2) implies that I = J . In particular,

we will have that J is a reduction of I, since J ⊆ I (see [7, p. 6]). As before, let
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us consider a big enough positive integer r0 such that each compact face of Γ(J) is
a compact face of Γ(J + mr), for all r > r0. Then we have that J + mr is Newton
non-degenerate, for all r > r0. Hence e(J + mr) = n!Vn(Γ(J + mr)), for all r > r0.
This implies, by Rees’ multiplicity theorem, that

J + mr = (J + mr)0 = (J0 + mr)0 = J0 + mr, for all r > r0.

By Lemma 2.7, we have

(15) J =
⋂

r>r0

J + mr =
⋂

r>r0

J0 + mr = J0 = J0.

Since J ⊆ I and Γ(I) = Γ(J), then J ⊆ I ⊆ I0 = J0. Then relation (15) implies that
I = J .

The implication (2) ⇒ (3) is obvious. In order to see the implication (3) ⇒ (2) it
suffices to prove that Γ(I) = Γ(J). Let g1, . . . , gr be a generating system of J verifying
the inclusion (13), for all compact face ∆ of Γ(I). In particular, if ∆ is a vertex of
Γ(I), then this condition must be satisfied for ∆. This implies that if ∆ is any vertex
of Γ(I), then some function (gi)∆ is not identically zero. Thus Γ(I) ⊆ Γ(J). But
since we assume that J ⊆ I, we have that Γ(I) = Γ(J). �

The previous proposition gives the family of all reductions of a given monomial
ideal. Rees and Sally [16] defined the core of an ideal I in a commutative ring as
the intersection of all reductions of I; it is denoted by core(I). In particular, by
Proposition 3.6, the computation of the core of a monomial and integrally closed
ideal I in On, or in C[[x1, . . . , xn]], reduces to compute the intersection of all ideals J

of On such that Γ(I) = Γ(J) and J is Newton non-degenerate. We remark that the
study of the core of an ideal is quite an active research topic in commutative algebra
(see for instance [8] or [12]).

In the next result we show a characterization of the joint reductions of a family of
monomial ideals.

Proposition 3.7. Let I1, . . . , Ip be monomial ideals of On. Let g1, . . . , gp ∈ On such
that gi ∈ Ii, for all i = 1, . . . , p. Then the following conditions are equivalent:

(1) (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip);
(2) the map g = (g1, . . . , gp) : (Cn, 0) → (Cp, 0) is non-degenerate with respect to

I1, . . . , Ip.

Proof. Let us consider the ideal J of On given by

(16) J = g1I2 · · · Ip + g2I1I3 · · · Ip + · · ·+ gpI1 · · · Ip−1.

By Definition 2.1, we have that (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip) if and
only if J is a reduction of the monomial ideal I1 · · · Ip. Let I denote the ideal I1 · · · Ip,
then J ⊆ I. Therefore, item (1) holds if and only if J satisfies item (3) of Proposition
3.6 with respect to Γ(I).
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Let Γ = Γ(I), we remark that Γ is equal to the Minkowski sum Γ(I1)+ · · ·+Γ(Ip).
Let B denote the set {1, . . . , p}. From the definition of J we have that there exist
finite subsets S1, . . . , Sp ⊆ Zn

+ such that the set J of functions given by

J =
{
g1x

k2+···+kp : ki ∈ Si, i ∈ B, i 6= 1
}
∪

{
g2x

k1+k3+···+kp : ki ∈ Si, i ∈ B, i 6= 2
}

∪ · · · ∪
{
gpx

k1+···+kp−1 : ki ∈ Si, i ∈ B, i 6= p
}

is a generating system of J . Let us fix a compact face ∆ of Γ(I). Then ∆ is expressed
univocally as ∆ = ∆1+· · ·+∆p, where ∆i is a compact face of Γ(Ii), for all i = 1, . . . , p.

If h is an element of J, then there exists an i0 ∈ B such that

h = gi0x
k1+···+ki0−1+ki0+1+···+kp ,

for some ki ∈ Si, i 6= i0. Therefore h∆ is expressed as

h∆ =
(
gi0

)
∆i0

(
xk1

)
∆1
· · ·

(
xki0−1

)
∆i0−1

(
xki0+1

)
∆i0+1

· · ·
(
xkp

)
∆p

.

Then the set of common zeros of {h∆ : h ∈ J} in (C r {0})n is equal to the set
of common zeros of {(gi)∆i

: i = 1, . . . , p} in (C r {0})n. This fact shows that item
(3) of Proposition 3.6 applied to the ideals J and I holds if and only if the map g is
non-degenerate with respect to I1, . . . , Ip. Thus the equivalence between (1) and (2)
follows. �

Corollary 3.8. Let I1, . . . , Ip be monomial ideals of finite colength of On. Let
g1, . . . , gp ∈ On such that gi ∈ Ii, for all i = 1, . . . , p. Let g = (g1, . . . , gp), then
g ∈ R(I1, . . . , Ip) if and only if g is non-degenerate with respect to I1, . . . , Ip.

Proof. The only if part is obvious. Let us suppose that g is non-degenerate with
respect to I1, . . . , Ip. Therefore (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip), by
Proposition 3.7. This means that J is a reduction of I1 · · · Ip, where J is the ideal
defined in (16). In particular, for a given L ⊆ {1, . . . , n}, L 6= ∅, we have that JL is a
reduction of (I1 · · · Ip)L = IL

1 · · · IL
p , since reductions are stable under ring morphisms.

Therefore (gL
1 , . . . , gL

p ) is a joint reduction of (IL
1 , . . . , IL

p ). We have that IL
i 6= 0, for

all i = 1, . . . , p, since each ideal Ii has finite colength. Then the result follows as a
consequence of Proposition 3.7. �

Given an integer r > 1 and a subset L ⊆ {1, . . . , n}, we denote by δL,r the convex
hull in Rn of {rei : i ∈ L}, where e1, . . . , en denotes the canonical basis in Rn.

If I is an ideal of On, I 6= 0, then we denote by ord(I) the maximum of those
integers s > 1 such that I ⊆ ms.

Lemma 3.9. Let I1, . . . , In be monomial ideals in On such that I1+ · · ·+In has finite
colength. Let us consider, for a given integer r > 1, the ideal Qr = (I1 +mr) · · · (In +
mr). Then, there exists an integer r0 > 1 such that for all r > r0 the following hold:

(1) every compact face of Γ(I1 · · · In) is a compact face of Qr;
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(2) let ∆ be a face of Γ(Qr) not intersecting Γ(I1 · · · In), let us write ∆ as ∆ =
∆1 + · · · + ∆n, where ∆i is a face of Ii + mr, for all i = 1, . . . , n, and let
S = {i : ∆i ∩ Γ(Ii) 6= ∅}; then S 6= ∅ and there exists some L ( {1, . . . , n}
such that

∆ =
∑
i∈S

∆i +
(
n− |S|

)
δL,r

and ∆i is a face of Γ(IL
i ) if IL

i 6= 0.

Proof. Let us define, for a given integer j ∈ {1, . . . , n}, the ideal

Lj =
∑

16i1<···<ij6n

Ii1 · · · Iij .

Since the ideal L1 has finite colength, then there exists an integer r0 > 1 such that
mr0 ⊆ L1. Then, for any integer r > r0, we observe that Qr is expressed as

(17) Qr = Ln + mrLn−1 + · · ·+ mr(n−1)L1.

Relation (17) shows that we can increase the integer r in order to have that any
compact face of Ln is a compact face of Qr. Then item (1) holds.

If v = (v1, . . . , vn) ∈ Rn then we define v0 = mini vi. We also define L(v) = {i :
vi = v0}. For any vector v ∈ (R+ r {0})n and any r > 1 we have

(18) `(v,mr) = rv0 and ∆(v,mr) = δL(v),r.

Let us suppose that r > ord(IL
i ), for all i = 1, . . . , n and all L ⊆ {1, . . . , n}, L 6= ∅.

Let v ∈ (R+ r {0})n and let i ∈ {1, . . . , n} such that I
L(v)
i 6= 0. Then

`(v, Ii) 6 `(v, I
L(v)
i ) = ord(IL(v)

i )v0 < rv0 = `(v,mr).

In particular, there exists an integer r1 > r0 such that for all r > r1 we have

(19) ∆(v, Ii + mr) ∩∆(v, Ii) 6= ∅,

for all vector v ∈ (R+ r {0})n and all i such that I
L(v)
i 6= 0.

Let us consider an integer r2 > r1 such that each compact face of Γ(Ii) is a compact
face of Γ(Ii + mr), for all i = 1, . . . , n and all r > r2. Then the number of compact
faces of Γ(Ii + mr) does not depend on r, if r > r2, for all i = 1, . . . , n. In particular,
there exists an integer r3 > r2 such that the number of compact faces of Γ(Qr) does
not depend on r if r > r3.

For each face ∆ of Γ(Qr3), let us choose a vector v∆ such that ∆ = ∆(v∆, Qr3).
Let us consider the decomposition ∆ = ∆1 + · · ·+ ∆n, where ∆i = ∆(v∆, Ii + mr3),
for all i = 1, . . . , n.

Let us suppose that ∆ is face of Γ(Qr3) such that ∆∩Γ(I1 · · · In) = ∅. Then the set
S = {i : ∆i ∩Γ(Ii) 6= ∅} is non-empty, by (17). Moreover, if L denotes the set L(v∆),
then {i : IL

i 6= 0} ⊆ S, by (19). In particular, if i /∈ S then IL
i = 0 and ∆i = δL,r3 , by

(18).
We remark that, for a given i ∈ {1, . . . , n}, any face of Γ(Ii + mr), for r > r2, is

determined by its intersection with Γ(Ii) and its intersection with the family of the
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coordinate axis. Then the vector v∆ is integrated in a natural way in a family of
vectors vr

∆, for r > r3, satisfying

∆(vr
∆, Ii + mr) ∩ Γ(Ii) = ∆i ∩ Γ(Ii), for all i ∈ S

∆(vr
∆, Ii + mr) ∩ Γ(mr) = δL,r, for all i /∈ S

L(vr
∆) = L.

Then we can consider an integer r∆ > r3 such that if i ∈ S verifies that IL
i 6= 0,

then

∆(vr
∆, Ii + mr) ⊆ ∆(vr

∆, Ii) ∩ Rn
L,

for all r > r∆. Hence, if r > r∆, the face ∆ is written as

∆ =
∑
i∈S

∆i + (n− |S|)δL,r,

where ∆i is a face of Γ(IL
i ) for all i ∈ S such that IL

i 6= 0. �

Theorem 3.10. Let I1, . . . , In be monomial ideals of On. Suppose that σ(I1, . . . , In)
is finite. Let g1, . . . , gn ∈ On such that gi ∈ Ii, for all i = 1, . . . , n. Then the following
conditions are equivalent:

(1) the ideal 〈g1, . . . , gn〉 has finite colength and σ(I1, . . . , In) = e(g1, . . . , gn);
(2) g ∈ R(I1, . . . , In).

Proof. Let g denote the map (Cn, 0) → (Cn, 0) given by g = (g1, . . . , gn). For a given
r > 1 we define the ideals

Pr = g1(I2 + mr) · · · (In + mr) + · · ·+ gn(I1 + mr) · · · (In−1 + mr)

Qr = (I1 + mr) · · · (In + mr).

Let us see that (1) implies (2). By Nakayama’s Lemma we can suppose that gi is a
polynomial, for all i = 1, . . . , n. By Proposition 2.5, (g1, . . . , gn) is a σ-joint reduction
of (I1, . . . , In). In particular, it is a joint reduction of (I1, . . . , In), by Proposition 2.8.
Therefore g is non-degenerate with respect to (I1, . . . , In), by Proposition 3.7.

Let r0 be an integer such that Pr is a joint reduction of Qr, for all r > r0. Let us
fix a subset L ( {1, . . . , n}, L 6= ∅, and an integer r > r0. Since reductions are stable
under ring morphisms, we have that PL

r is a reduction of QL
r . Therefore the map gL

is non-degenerate with respect to (I1 +mr)L, . . . , (In +mr)L, by Proposition 3.7. Let
us remark that (Ii + mr)L 6= 0, for all i = 1, . . . , n.

Let C = {i : IL
i 6= 0}. The condition σ(I1, . . . , In) < ∞ implies that I1 + · · ·+ In

has finite colength. Therefore C 6= ∅. Without loss of generality we can suppose that
C = {1, . . . , s}, for some 1 6 s 6 n. We have to see that (gL

1 , . . . , gL
s ) : (Cn

L, 0) →
(Cs, 0) is non-degenerate with respect to IL

1 , . . . , IL
s .

Since gi is a polynomial, for all i = 1, . . . , n, let us assume that

(20) supp(gi) ∩ Γ(mr) = ∅, for all i = 1, . . . , n.
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Let H = (IL
1 + mr

L) · · · (IL
s + mr

L). Then QL
r = Hm

r(n−s)
L . In particular, we have

(21) Γ(QL
r ) = Γ(H) + Γ(mr(n−s)

L ).

By Lemma 3.9 (1) we can suppose that r0 is big enough in order to have that each
compact face of IL

1 · · · IL
s is a compact face of H. This fact together with (21) implies

that if v is a vector of (R+ r {0})q, where q = |L|, then the set

(22) ∆(v, IL
1 · · · IL

s ) + ∆(v,m
r(n−s)
L )

is a compact face of Γ(QL
r ).

By hypothesis the map gL is non-degenerate with respect to (I1 + mr)L, . . . , (In +
mr)L. Then gL verifies the (Kv) condition with respect to these ideals (see Definition
3.1). Therefore, writing down this condition and considering (20) and (22), we have{

x ∈ Cn
L : (gL

1 )∆1
(x) = · · · = (gL

s )∆s
(x) = 0

}
⊆

{
x ∈ Cn

L :
∏
i∈L

xi = 0
}
,

where ∆i = ∆(v, IL
i ), for all i = 1, . . . , s. This shows that the map (gL

1 , . . . , gL
s ) :

(Cn
L, 0) → (Cs, 0) is non-degenerate with respect to IL

1 , . . . , IL
s . Since we started from

an arbitrary L ( {1, . . . , n}, it follows that g ∈ R(I1, . . . , In).
Let us see that (2) implies (1). Let us suppose that g ∈ R(I1, . . . , In). By Propo-

sition 2.5 and Proposition 3.7, item (1) holds if and only if there exists an integer r0

such that g is non-degenerate with respect to I1 + mr, . . . , In + mr, for all r > r0.
Let r0 be an integer such that items (1) and (2) of Lemma 3.9 hold for all r > r0.

Let us fix an integer r > r0 and let us fix a compact face ∆ of Γ(Qr). Let us write ∆
as ∆ = ∆1 + · · ·+ ∆n, where ∆i is a face of Γ(Ii + mr), for all i = 1, . . . , n. We have
to see that

(23)
{
x ∈ Cn : (g1)∆1(x) = · · · = (gn)∆n(x) = 0

}
⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Let ∆′ = ∆ ∩ Γ(I1 · · · In) and let ∆′
i = ∆i ∩ Γ(Ii), for all i = 1, . . . , n. If ∆′ 6= ∅,

then ∆′ = ∆′
1 + · · ·+∆′

n and (gi)∆i = (gi)∆′
i
, for all i = 1, . . . , n. Thus inclusion (23)

holds, since g is non-degenerate with respect to I1, . . . , In by hypothesis.
Let us suppose that ∆′ = ∅. By Lemma 3.9, there exists a subset L ( {1, . . . , n}

such that, if S = {i : ∆′
i 6= ∅} and CL = {i : IL

i 6= 0}, then CL ⊆ S and ∆ is written
as

∆ =
∑
i∈S

∆i + (n− |S|)δL,r.

Let us suppose that CL = {i1, . . . , is}, for some 1 6 i1 < · · · < is 6 n, s 6 t, where
t = |S|. Therefore we have

∆ = ∆1 + ∆2,

where ∆1 is a face of mr(n−t)IL
i1
· · · IL

is
and ∆2 =

∑
i∈SrCL

∆i.
Then we observe that the set of common zeros of (g1)∆1 , . . . , (gn)∆n is contained

in the set of common zeros of (gi1)∆′
i1

, . . . , (gis
)∆′

is
.
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Since ∆′
i is a face of IL

i , for all i ∈ CL, then (gi)∆′
i

= (gL
i )∆′

i
, for all i ∈ CL.

Then the inclusion (23) follows, since the map (gL
i1

, . . . , gL
is

) : (Cn
L, 0) → (Cs, 0) is

non-degenerate with respect to IL
i1

, . . . , IL
is

, by hypothesis. �

Let us suppose that I1, . . . , In are ideals of finite colength of On. Then Rees showed
in [14] that the mixed multiplicity e(I1, . . . , In) can be computed in terms of Samuel
multiplicities via the following formula:

e(I1, . . . , In) =
1
n!

∑
J⊆{1,...,n}

J 6=∅

(−1)n−|J|e

( ∏
j∈J

Ij

)
.

If we assume that Ii is a monomial ideal for all i = 1, . . . , n, then e(
∏

j∈J Ij) can be
computed effectively using [2], for all J ⊆ {1, . . . , n}, J 6= ∅. That is, we can apply
[2, Theorem 5.1] to deduce that if fJ denotes the polynomial given by the sum of all
xk such that k is a vertex of Γ(

∏
j∈J Ij), for all non-empty J ⊆ {1, . . . , n}, then

e(I1, . . . , In) =
1
n!

∑
J⊆{1,...,n}

J 6=∅

(−1)n−|J| dimC
On

〈x1
∂fJ

∂x1
, . . . , xn

∂fJ

∂xn
〉
.

Thus we have an effective method to compute the mixed multiplicity e(I1, . . . , In)
when Ii are monomial ideals of finite colength of On. Let us suppose now that some of
these ideals do not have finite colength but still σ(I1, . . . , In) < ∞. Then, by the above
discussion, the effective computation of σ(I1, . . . , In) reduces to compute some r > 1
such that σ(I1, . . . , In) = e(I1 + mr, . . . , In + mr). If g = (g1, . . . , gn) ∈ R(I1, . . . , In),
then we found in the proof of Theorem 3.10 that g is non-degenerate with respect
to I1 + mr, . . . , In + mr, when r is an integer such that Γ(Qr) satisfy conditions (1)
and (2) of Lemma 3.9. Hence e(g1, . . . , gn) = e(I1 + mr, . . . , In + mr) and therefore
σ(I1, . . . , In) = e(I1 + mr, . . . , In + mr). Obviously, the problem of finding an integer
r satisfying these conditions is easy when n = 2, and needs a more careful analysis in
higher dimensions.

To end the paper we show a result about the computation of the monomials
which are integral over the ideal generated by the components of a given map of
R(I1, . . . , In).

Proposition 3.11. Let I1, . . . , In monomial ideals of On such that σ(I1, . . . , In) < ∞.
Let g = (g1, . . . , gn) ∈ R(I1, . . . , In). Then

I1 ∩ · · · ∩ In ⊆ 〈g1, . . . , gn〉.

Proof. Let J be the ideal of On generated by g1, . . . , gn. Let xk be a monomial in
On. By Rees’ multiplicity theorem we know that xk ∈ J if and only if e(J) = e(J, xk)
(see [7, p. 222]).

By a result of Northcott-Rees (see [7, p. 166] or [11]), we can consider general
C-linear combinations h1, . . . , hn of g1, . . . , gn, xk such that the ideal H generated by
h1, . . . , hn is a reduction of J + 〈xk〉. Then e(H) = e(J, xk). Therefore, let A be a
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squared matrix of size n with entries in C and let B be a row matrix with n columns
with entries in C such that

(24)
[
g1 · · · gn xk

] [
A

B

]
=

[
h1 · · · hn

]
.

Since the coefficients of A are generic, we can suppose that A is invertible. In partic-
ular, multiplying both sides of (24) by A−1, we obtain

(25)
[
g1 · · · gn xk

] [
In

BA−1

]
=

[
h1 · · · hn

]
A−1,

where In denotes the identity matrix of size n. We observe that the entries of the left
hand side of (25) are of the form g1 + α1x

k, . . . , gn + αnxk, for some α1, . . . , αn ∈ C.
Relation (25) implies that H = 〈g1 + α1x

k, . . . , gn + αnxk〉. Then, we have

(26) e(J) > e(J, xk) = e(H) = e(g1 + α1x
k, . . . , gn + αnxk),

for some α1, . . . , αn ∈ C. If xk ∈ I1 ∩ · · · ∩ In, then e(g1 + α1x
k, . . . , gn + αnxk) >

σ(I1, . . . , In), by Lemma 2.2. But by Theorem 3.10, the equality e(J) = σ(I1, . . . , In)
holds, since we assume that g ∈ R(I1, . . . , In). Then (26) implies that e(J) = e(J, xk)
and hence xk ∈ J . �
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