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SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS

Van H. Vu

Abstract. Let Fq be a finite field of order q and P be a polynomial in Fq [x1, x2].

For a set A ⊂ Fq , define P (A) := {P (x1, x2)|xi ∈ A}. Using certain constructions of

expanders, we characterize all polynomials P for which the following holds

If |A + A| is small (compared to |A|), then |P (A)| is large.

The case P = x1x2 corresponds to the well-known sum-product problem.

1. Introduction

Let Z be a ring and A be a finite subset of Z. The sum-product phenomenon, first
investigated in [8], can be expressed as follows

If |A + A| is small, then |A ·A| is large. (∗)

Here ”small” and ”large” are with respect to |A|.

Earlier works on the problem focused on the case Z is R or Z. In the last few years,
starting with [2], the case when Z is a finite field or a modular ring has been studied
extensively. This study leads to many important contributions in various areas of
mathematics (see [4] for a partial survey).

One of the main applications of sum-product estimates is new constructions of ex-
panders (see, e.g., [3]). In this paper, we investigate the reversed direction and derive
sum-product estimates from certain constructions of expanders. In fact, our argu-
ments lead to more general results, described below.

Let Fq be a finite field and P be a polynomial in Fq[x1, x2]. For a set A ⊂ Fq, define
P (A) := {P (x1, x2)|xi ∈ A}. As a generalization of (∗) (which is the case P = x1x2),
it is tempting to conjecture the following statement

If |A + A| is small, then |P (A)| is large. (∗′)

A short consideration reveals, however, that (∗′) does not hold for some classes of
polynomials. For instance, if P is linear then both |A + A| and |P (A)| can be small
at the same time.
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Example. Set P1 := 2x1 + 3x2. Let A = {1, . . . , n} ⊂ Fq, where q is a prime and
1 ≤ n ≤ q/10. Then |A + A| = 2n− 1 and |P1(A)| = 5n− 4.

More generally, if P has the form P := Q(L(x1, x2)) where Q is a polynomial in one
variable and L is a linear form, then both A and |P (A)| can be small at the same
time.

Example. Set P2 := (2x1 + 3x2)2 − 5(2x1 + 3x2) + 3. Let A = {1, . . . , n} ⊂ Fq,
where q is a prime and 1 ≤ n ≤ q/10. Then |A + A| = 2n− 1 and |P2(A)| = 5n− 4.
In this case, Q = z2 − 5z + 3 and L = P1 = 2x1 + 3x2.

Our main result shows that P := Q(L(x1, x2)) is the only (bad) case where the more
general phenomenon (∗)′ fails.

Definition 1.1. A polynomial P ∈ Fq[x1, x2] is degenerate if it is of the form
Q(L(x1, x2)) where Q is an one-variable polynomial and L is a linear form in x1, x2.

The following refinement of (∗′) holds

If |A + A| is small and P is non-degenerate, then |P (A)| is large. (∗∗)

Theorem 1.2. There is a positive constant δ such that the following holds. Let P be
a non-degenerate polynomial of degree k in Fq[x1, x2]. Then for any A ⊂ Fq

max{|A + A|, |P (A)|} ≥ |A|min{δ( |A|
2

k4q
)1/4, δ(

q

k|A|
)1/3}.

Remark 1.3. The estimate in Theorem 1.2 is non-trivial when k2q1/2 � |A| � q/k.
In the case when P has fixed degree, this means q1/2 � |A| � q. This assumption
is necessary as if A is a subfield of size q or q1/2 then |A + A| = |A| and |P (A)| is at
most |A|. Here and later on a � b means a = o(b).

Remark 1.4. Since P = x1x2 is clearly non-degenerate, we obtain the following sum-
product estimate, reproving a result from [10]

max{|A + A|, |A ·A|} ≥ |A|min{δ( |A|
2

q
)1/4, δ(

q

|A|
)1/3}.

Our arguments can be extended to modular rings. Let m be a large integer and Zm

be the ring consisting of residues mod m. Let γ(m) be the smallest prime divisor of
m and τ(m) be the number of divisors of m. Define g(m) :=

∑
n|m τ(m)τ(m/n).

Theorem 1.5. There is a positive constant δ such that the following holds. Let A be
a subset of Zm. Then

max{|A + A|, |A ·A|} ≥ |A|min{δ γ(m)1/4|A|1/2

g(m)1/2m1/2
, δ(

m

|A|
)1/3}.
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Remark 1.6. This theorem is effective when m is the product of few large primes.

Our study was motivated by two papers [14] and [10]. In these papers, the authors
used an argument based on Kloosterman sums estimates to study Cayley graphs and
the sum-product problem, respectively. Our approach here relies on a combination of
a generalization of this argument and the spectral method from graph theory.

2. Erdős’ distinct distances problem

The following question, asked by Erdős in the 1940’s [7], is among the most well
known problems in discrete geometry

Question 2.1. What is the minimum number of distinct distances (in euclidean
norm) determined by n points on the plane ?

For a point set A, we denote by ∆(A) the set of distinct distances in A. It is easy to
show that |∆(A)| = Ω(|A|1/2). To see this, consider an arbitrary point a ∈ A. If from
a there are |A|1/2 different distances, then we are done. Otherwise, by the pigeon hole
principle, there is a circle centered at a containing at least |A|1/2 other points. Take
a point a′ on this circle. Since two circles intersect in at most 2 points, there are at
least |A|1/2−1

2 distinct distances from a′ to the other points on the circle.

It has been conjectured that |∆(A)| ≥ |A|1−o(1) (the o(1) term is necessary as shown
by the square grid). This conjecture is still open. For the state of the art of this
problem, we refer to [15, Chapter 6].

What happens if one replaces the euclidean distance by other distances ? One can
easily see that for the l1 distance, the conjectured bound |∆(A)| ≥ |A|1−o(1) fails,
as the square grid determines only |A|1/2 distances. On the other hand, it seems
reasonable to think that there is no essential difference between the l2 and (say) the
l4 norms. In fact, in [9], it was shown that certain arguments used to handle the l2
case can be used, with some more care, to handle a wide class of other distances.

The finite field version of Erdős problem was first considered in [2], with the euclidean
distance (see also [11] for more recent development). Here we extend this work for a
general distance. Let P be a symmetric polynomial in two variables. (By symmetry,
we mean that P is symmetric around the origin, i.e., P (x, y) = P (−x,−y).) Define
the P -distance between two points x = (x1, x2) and y = (y1, y2) in the finite plane
F2

q as P (y1 − x1, y2 − x2). Let ∆P (A) be the set of distinct P -distances in A.

Theorem 2.2. There is a positive constant δ such that the following holds. Let P
be a symmetric non-degenerate polynomial of degree k and A be a subset of the finite
plane F2

q, then

|∆P (A)| ≥ δ min{ |A|
k2√q

,
q

k
}.



378 VAN H. VU

Remark 2.3. The polynomial P = xp + yp, which corresponds to the lp norm, is
non-degenerate for any positive integer p ≥ 2.

Remark 2.4. Assume that k = O(1). For |A| � q, the term |A|√
q � |A|1/2, and so

|∆P (A)| � |A|1/2. If A| ≤ q, one cannot expect a bound better than |A|1/2, as A can
be a sub-plane.

Remark 2.5. The proof also works for a non-symmetric P . In this case, dist(x, y) and
dist(y, x) may be different.

3. Directed expanders and spectral gaps

Let G be a d-regular graph on n vertices and AG be the adjacency matrix of G. The
rows and columns of AG are indexed by the vertices of G and the entry aij = 1 if i is
adjacent to j in G and zero otherwise. Let d = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) be the
eigenvalues of AG. Define

λ(G) := max{|λ2|, |λn|}.

It is well known that if λ(G) is significantly less than d, then G behaves like a random
graphs (see, for example, [6] or [1]). In particular, for any two vertex sets B and C

|e(B,C)− d

n
|B||C|| ≤ λ(G)

√
|B||C|.

where e(B,C) is the number of edges with one end point in B and the other in C.

We are going to develop a directed version of this statement. Let G be a directed
graph (digraph) on n points where the out-degree of each vertex is d. The adjacency
matrix AG is defined as follows: aij = 1 if there is a directed edge from i to j and
zero otherwise. Let d = λ1(G), λ2(G), . . . , λn(G) be the eigenvalues of AG. (These
numbers can be complex so we cannot order them, but by Frobenius’ theorem all
|λi| ≤ d.) Define

λ(G) := max
i≥2

|λi|.

An n by n matrix A is normal if A>A = AA>. We say that a digraph is normal
if its adjacency matrix is a normal matrix. There is a simple way to test whether a
digraph is normal. In a digraph G, let N+(x, y) be the set of vertices z such that
both xz and yz are (directed) edges. Similarly, let N−(x, y) be the set of vertices z
such that both zx and zy are (directed) edges. It is easy to see that G is normal if
and only if
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(1) |N+(x, y)| = |N−(x, y)|

for any two vertices x and y.

Lemma 3.1. Let G be a normal directed graph on n vertices with all out-degree equal
d. Let d = λ1(G), λ2(G), . . . , λn(G) be the eigenvalues of AG. Then for any two
vertex sets B and C

∣∣∣e(B,C)− d

n
|B||C|

∣∣∣ ≤ λ(G)
√
|B||C|.

where e(B,C) is the number of (directed) edges from B to C.

Proof. The eigenvector of λ1 = d is 1, the all-one vector. Let vi, 2 ≤ i ≤ n, be the
eigenvectors of λi. A well known fact from linear algebra asserts that if A is normal
then its eigenvectors form an orthogonal basis of Kn (where K denotes the field of
complex numbers). It follows that any vector x orthogonal to 1 can be written as a
linear combination of these vi. By the definition of λ we have that for any such vector
x

‖AGx‖2 =< AGx, AGx >≤ λ2‖x‖2.

From here one can use the same arguments as in the non-directed case to conclude
the proof. We reproduce these arguments (from [1]) for the reader’s convenience.

Let V := {1, . . . , n} be the vertex set of G. Set c := |C|/n and let x := (x1, . . . , xn)
where xi := Ii∈C − c. It is clear that x is orthogonal to 1. Thus,

< Ax,Ax >≤ λ(G)2‖x‖2.

The right hand side is λ2
Gc(1 − c)n ≤ λ2

Gcn = λ(G)2|C|. The left hand side is∑
v∈V (|NC(v)| − cd)2, where NC(v) is the set of v′ ∈ C such that vv′ is an directed

edge. It follows that

(2)
∑
v∈B

(|NC(v)− cd)2 ≤
∑
v∈V

(|NC(v)| − cd)2 ≤ λ2|C|.

On the other hand, by the triangle inequality
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(3) |e(B,C)− d

n
|B||C|| = |e(B,C)− cd|B|| ≤

∑
v∈B

|NC(v)− cd|.

By Cauchy-Schwartz and (2), the right hand side of (3) is bounded from above by

√
|B|(

∑
v∈B

(NC(v)− cd)2)1/2 ≤ λ
√
|B||C|,

concluding the proof. �

Now we are ready to formalize our first main lemma:

Lemma 3.2. (Expander decomposition lemma) Let
−→
Kn be the complete digraph on

V := {1, . . . , n}. Assume that
−→
Kn is decomposed in to k + 1 edge-disjoint digraphs

H0,H1, . . . ,Hk such that

• For each i = 1, . . . , k, the out-degrees in Hi are the same and at most d and
λ(Hi) ≤ λ.

• The out-degrees in H0 are at most d′.

Let B and C be subsets of V and K be a subgraph of
−→
Kn with L (directed) edges

going from B to C. Then K contains edges from at least

min{ L− |B|d′

2λ
√
|B||C|

,
(L− |B|d′)n

2d|B||C|
}

different Hi, i ≥ 1.

Proof. By the previous lemma, each Hi, 1 ≤ i ≤ k has at most

d

n
|B||C|+ λ

√
|B||C|

edges going from B to C. Furthermore, H0 has at most |B|d′ edges going from B to
C. Thus the number of Hi, i ≥ 1, having edges in K is at least

(
d

n
|B||C|+ λ

√
|B||C|)−1(L− d′|B|) ≥ min{ L− d′|B|

2λ
√
|B||C|

,
(L− d′|B|)n

2d|B||C|
}

completing the proof. �
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4. Directed Cayley graphs

Let H be a finite (additive) abelian group and S be a subset of H. Define a directed
graph GS as follows. The vertex set of G is H. There is a direct edge from x to y
if and only if y − x ∈ S. It is clear that every vertex in GS has out-degree |S|. (In
general H can be non-abelian, but in this paper we restrict ourselves to this case.)

Let χξ, ξ ∈ H, be the (additive) characters of H. It is well known that for any ξ ∈ H,∑
s∈S χξ(s) is an eigenvalue of GS , with respect the eigenvector (χξ(x))x∈H .

It is important to notice that the graph GS , for any S, is normal, by (1). Indeed, for
any two vertex x and y

|N+(x, y)| = |N−(x, y)| = |(x + S) ∩ (y + S)|.

We are going to focus on the following two cases

Special case 1. H = F2
q, with Fq being a finite field of q = pr elements, p prime.

Using e(α) to denote exp( 2πi
p α), we have

χξ(x) = exp(
2πi

p
Trace ξ · x) = e(Trace ξ · x),

where Trace z := z + zp + · · ·+ zpr−1
and ξ · x is the inner product of ξ and x.

Special case 2. H = Z2
m. In this case we use e(α) to denote exp( 2πi

m α). We have

χξ(x) = exp(
2πi

m
ξ · x) = e(ξ · x).

Our second main ingredient is the following theorem, which is a corollary of [12,
Theorem 5.1.1]. (We would like to thank B. C. Ngo for pointing out this reference.)

Theorem 4.1. Let P be a polynomial of degree k in Fq[x1, x2] which does not contain
a linear factor. Let Root(P) be the set of roots of P in F2

q. Then for any 0 6= y ∈ F2
q,

|
∑

x∈Root(P)

e(x · y)| = O(k2q1/2).

Given a polynomial P and an element a ∈ Fq, we denote by Ga the Cayley graph
defined by the set Root(P− a). As a corollary of the theorem above, we have

Corollary 4.2. Let P be a polynomial of degree k in Fq[x1, x2] and a be an element
of Fq such that P − a does not contain a linear factor. Then λ(Ga) = O(k2q1/2).
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It is plausible that a ring analogue of Theorem 4.1 can be derived (with Fq replaced
by Zm). However, the (algebraic) machinery involved is heavy. We shall give a direct
proof for Corollary 4.2 in the special case when P is quadratic.

Let Ω be the set of those quadratic polynomials which (after a proper changing
of variables) can be written in the form A1x

2 + A2y
2 with A1, A2 ∈ Z∗m, the set

of elements co-prime with m. (For example, both Q = x2 + y2 and Q = 2xy =
(x+ y)2− (x− y)2 belong to Ω.) Fix a Q in Ω and for each a ∈ Zm define the Cayley
graph Ga as before.

Theorem 4.3. For any 0 6= a ∈ Zm,

λ(Ga) ≤ g(m)
m

γ(m)1/2
.

The proof of this theorem will appear in Section 6.

5. Proofs of Theorems 1.2 and 1.5

To prove Theorem 1.2, consider a set A ⊂ Fq and set B := A ⊕ A ⊂ F2
q. Since our

estimate is trivial if |A| = O(k2q1/2), we assume that |A| � k2q1/2.

For each a ∈ Fq, consider the polynomial Pa = P − a and define a Cayley graph Ga

accordingly. The out-degree in this graph is O(q). We say that an element a is good
if P − a does not contain a linear factor and bad other wise.

Lemma 5.1. Let P be a polynomial of degree k in Fq[x1, . . . , xd]. Assume that P
cannot be written in the form P = Q(L), where Q a polynomial with one variable and
L is a linear form of x1, . . . , xd. Then there are at most k − 1 elements ai such that
the polynomial P − ai contains a linear factor.

Proof. Let a1, . . . , ak be different elements of Fq such that there are linear forms
L1, . . . , Lk and polynomials P1, . . . , Pk ∈ Fq[x1, . . . , xd] such that P − ai = LiPi.

If Li and Lj had a common root x, then P (x)− ai = P (x)− aj = 0, a contradiction
as ai 6= aj . It follows that for any 1 ≤ i < j ≤ d, L− i and Lj do not have a common
root. But since the Li are linear forms, we can conclude that they are translates of
the same linear form L, i.e., Li = L− bi, for some b1, . . . , bk ∈ Fq.

It now suffices to prove the following claim

Lemma 5.2. Let P be a polynomial in Fq[x1, . . . , xd] of degree k. Assume that
there is a non-zero linear form L, a sequence a1, . . . , ak of (not necessarily distinct)
elements of Fq and a set {b1, . . . , bk} ⊂ Fq such that P (x) = ai whenever L(x) = bi.
Then there is a polynomial Q in one variable such that P = Q(L).
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Assume, without loss of generality, that the coefficient of x1 in L is non-zero. We are
going to induct on the degree of x1 in P (which is at most k). If this degree is 0 (in
other words P does not depend on x1), then P is a constant, since for any sequence
x2, . . . , xd, we can choose an x1 such that L(x1, . . . , xd) = b1, so

P (x1, . . . , xd) = a1.

If the degree in concern is not zero, then we can write

P = (L− b1)P ′
1(x) + Q1,

where Q1 does not contain x1. By the above argument, we can show that Q1 = a1.
Furthermore, if L(x) = bi, 2 ≤ i ≤ k, then P ′

1 = (ai − a1)/(bi − b1). Now apply the
induction hypothesis on P ′

1, whose x1-degree is one less than that of P1. �

If a is good, then λ(Ga) = O(k2q1/2). Let the graph H0 be the union of bad Ga. By
the above lemma, the maximum out-degree of this graph is d′ = O(k2q).

In F2
q, define a directed graph K by drawing a directed edge from (x, y) to (x′, y′) if

and only if either both x′ − x and y′ − y are in A or both x− x′ and y − y′ are in A.
Consider the set C := (A + A)⊕ (A + A) ⊂ F2

q. Notice that in K any point from B

has at least |A|2 edges going into C. Thus L, the number of directed edges from B
to C, is at least |A|4. Since |A| ≥ k2q1/2, we have

L− |B|d′ ≥ |A|4 − |B|d′ = |A|4 − |A|2O(k2q) = (1− o(1))|A|4.

Applying the Expander Decomposition Lemma and Corollary 4.2, we can conclude
that the number of Pa having edges from B to C (which, by definition of B and C,
is |P (A)|), is at least

Ω
(

min{(1− o(1))
|A|4

k2q1/2|A||A + A|
,
(1− o(1))|A|4q2

kq|A|2|A + A|2
}
)
.

from which the desired estimate follows by Hölder inequality. The proof of Theorem
1.5 (using Theorem 4.3 instead of Corollary 4.2) is similar and is left as an exercise.

To prove Theorem 2.2, consider a set A ⊂ F2
q where |A| � kq. Let B = C = A

and K be the complete digraph on A. We can assume that |A � q. We have
L = (1 + o(1))|A|2 and d′ = O(kq). Thus L − d′|B| = L − d′|A| = (1 + o(1))L =
(1 + o(1))|A|2. By the Expander Decomposition Lemma,
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|∆P (A)| = Ω
(

min{(1− o(1))
|A|2

k2q1/2|A|
,
(1− o(1))|A|2q2

kq|A|2
}
)
.

The right hand side is

Ω
(

min{ |A|
k2q1/2

,
q

k
}
)
,

completing the proof.

6. Proof of Theorem 4.3

We are going to follow an approach from [14]. We need to use the following two
classical estimates (see, for example, [13, page 19])

Theorem 6.1. (Gauss sum) Let m be an positive odd integer. Then for any integer
z co-prime to m

|
∑

y∈Zm

e(zy2)| =
√

m.

Theorem 6.2. (Kloosterman sum) Let m be an positive odd integer. Then

|
∑

y∈Z∗
m

e(ay + bȳ)| ≤ τ(m)(a, b, m)1/2
√

m,

where (a, b, m) is the greatest common divisor of a, b and m, τ(m) is the number of
divisors of m, and ȳ is the inverse of y.

Let p1 < · · · < pk be the prime divisors of m and set Ω(m) := {
∏

i∈I pi|I ⊂
{1, . . . , k}, I 6= ∅}. Notice that g(m) satisfies the following recursive formula: g(1) :=
0 and g(m) := τ(m) +

∑
d∈Ω(m) g(m/d).

Let S be the set of roots of Q − a. We are going to use the notation GS instead of
Ga.

We use induction on m to show that

|λ(GS)| ≤ g(m)
m

γ(m)1/2
.

The case m = 1 is trivial, so from now on we assume m > 1. By properties of
Cayley’s graphs, the eigenvalues of GS are
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λξ =
∑
s∈S

e(ξ · s),

where ξ ∈ Z2
m. For ξ = 0, we obtain the largest eigenvalue |S|, which is the degree of

the graph. In what follows, we assume that ξ 6= 0. Recall that s ∈ S if and only if
Q(s) = a. We have

(4) mλξ =
∑

x∈Z2
m

∑
v∈Zm

e(−av)e(ξ · x + vQ(x)) =
∑

v∈Zm\{0}

F (v)

where F (v) :=
∑

x∈Z2
m

e(−av)e(ξ · x + vQ(x)), taking into account the fact that
F (0) = 0.

For d =
∏

i∈I pi ∈ Ω(m), let η(d) = |I|+ 1. By the exclusion-inclusion formula,

(5)
∑

v∈Zm\0

F (v) =
∑

v∈Z∗
m

F (v) +
∑

d∈Ω(m)

(−1)η(d)
∑
d|v

F (v).

Let us first bound S0 :=
∑

v∈Z∗
m

F (v). We write x = (x1, x2) where x1, x2 ∈ Zm.
As Q is non-degenerate, by changing variables we can rewrite e(ξ · x + vQ(x)) as
e(v(A1x

2
1 + A2x

2
2) + (B1x1 + B2x2 + C)) where B1, B2, C may depend on ξ, but

A1, A2 ∈ Z∗m depends only on Q. We have (thanks to the fact that v,A1, A2, 2, 4 are
all in Z∗m)

v(A1x
2
1 + A2x

2
2) + (B1x1 + B2x2 + C)

=vA1(x1 +
B1

2vA1
)2 + vA2(x2 +

B2

2vA2
)2 + (C − B2

1

4vA1
− B2

2

4vA2
).

It follows that

S0 =
∑

v∈Z∗
m

e(C)e(−av − (
B2

1

4A1
+

B2
2

4A2
)v̄)(6)

×
∑

x1,x2∈Zm

e(vA1(x1 +
B1

2vA1
)2 + vA2(x2 +

B2

2vA2
)2).

Notice that
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(7) ∑
x1,x2∈Zm

e(vA1(x1 +
B1

2vA1
)2 + vA2(x2 +

B2

2vA2
)2) =

∑
y∈Zm

e(vA1y
2)

∑
y∈Zm

e(vA2y
2).

Set b := B2
1

4vA1
+ B2

2
4vA2

, we have

(8) S0 = e(C)
( ∑

y∈Zm

e(vA1y
2)

∑
y∈Zm

e(vA2y
2)

) ∑
v∈Z∗

m

e(−av − bv̄).

By Theorems 6.1 and 6.2 and the fact that (a, b, m) ≤ m
γ(m) (since a 6= 0), we have

(9) |S0| ≤ mτ(m)(a, b, m)1/2m1/2 ≤ τ(m)
m2

γ(m)1/2
.

Now we bound the second term in the right hand side of (5), using the induction
hypothesis. Fix d ∈ Ω(m) and consider

Sd :=
∑
d|v

F (v) =
∑

x∈Z2
m

e(ξ · x)
∑
d|v

e(v(Q(x)− a)).

Write m = dmd, v = dv′, where md := m/d and v′ ∈ Zmd
. Each vector x in Z2

m has
a unique decomposition x = x[1] + mdx

[2] where x[1] ∈ Z2
md

and x[2] ∈ Z2
d. Finally,

there is a′ ∈ Zmd
such that a ≡ a′ (mod md). Since Q(x) ≡ Q(x[1]) (mod md), we

have

e(v(Q(x)− a)) = exp
(2πi

md
v′(Q(x[x1] − a′)

)
.

Therefore,

(10)
∑
d|v

e(v(Q(x)− a)) =
∑

v′∈Zmd

exp
(2πi

md
v′(Q(x[1] − a′

)

which equals md if Q(x[1]) ≡ a′ (mod md) and zero otherwise. It follows that
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Sd = md

∑
x∈Z2

m,Q(x[1])=a′(modmd)

e(ξ · x).

Next, we rewrite e(ξ · x) as exp( 2πi
m (ξ · x[1] + mdξ · x[2])). This way, we have

(11) Sd = md

∑
x[1]∈Z2

md
,Q(x[1])=a′

e(ξ · x[1])
∑

x[2]∈Z2
d

exp(
2πi

d
ξ · x2).

The sum
∑

x[2]∈Z2
d
exp( 2πi

d ξ · x2) is d2 if both coordinates of ξ are divisible by d and
zero other wise. Set ξd = ξ/d, we have

Sd = mdd
2

∑
Q(x[1])=a′

exp(
2πi

md
ξd · x[1]).

Notice that
∑

Q(x[1])=a′ exp( 2πi
md

ξd ·x[1] is a (non-trivial) eigenvalue of a Cayley’s graph
defined by Q on Z2

md
, where md = m/d. Thus, by the induction hypothesis,

|
∑

Q(x[1])=a′

exp(
2πi

md
ξd · x[1])| ≤ g(m/d)

m/d

γ(m/d)1/2
≤ g(m/d)

m/d

γ(m)1/2
.

This implies

(12) |Sd| ≤ g(m/d)
m2

γ(m)1/2
.

By (5), (9), (12) and the triangle inequality

mλξ ≤
m2

γ(m)1/2

(
τ(m) +

∑
d∈Ω(m)

g(m/d)
)

= g(m)
m2

γ(m)1/2

completing the proof.

7. Open questions

Our study leads to several questions:
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Problem 1. What happens if |A| ≤ q1/2 in the case q is a prime?

Problem 2. If q is not a prime and both |A+A| and |P (A)| is small, can one prove
that most of A is contained in a subfield ?

Problem 3. Characterize all pairs P1, P2 of polynomials such that the following
generalization of (∗) holds:

If |P1(A)| is small, then |P2(A)| is large.

Problem 4. Assume that q is a prime. Let ε be a small positive constant. A
polynomial in Fq[x1, x2] is generic if for any sufficiently large A ⊂ Fq, |P (A)| ≥
min{q, |A|1+ε}. Can one characterize all generic polynomials ?
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