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PFAFFIANS, HAFNIANS AND PRODUCTS OF REAL LINEAR
FUNCTIONALS

Péter E. Frenkel

Abstract. We prove pfaffian and hafnian versions of Lieb’s inequalities on determinants
and permanents of positive semi-definite matrices. We use the hafnian inequality to

improve the lower bound of Révész and Sarantopoulos on the norm of a product of

linear functionals on a real Euclidean space (this subject is sometimes called the ‘real
linear polarization constant’ problem).

-1. Introduction

The contents of this paper are as follows. In Section 0, we sketch one part of
the historic background: classical inequalities on determinants and permanents of
positive semi-definite matrices. In Section 1, we prove pfaffian and hafnian versions
of these inequalities, and we formulate Conjecture 1.5, another hafnian inequality. In
Section 2, we apply the hafnian inequality of Theorem 1.4 to our main goal: improving
the lower bound of Révész and Sarantopoulos on the norm of a product of linear
functionals on a real Euclidean space (this subject is sometimes called the ‘real linear
polarization constant’ problem, its history is sketched at the end of the paper). This
is achieved in Theorem 2.3. We point out that Conjecture 1.5 would be sufficient to
completely settle the real linear polarization constant problem.

0. Old inequalities on determinants and permanents

Recall that the determinant and the permanent of an n× n matrix A = (ai,j) are
defined by

det A =
∑

π∈Sn

(−1)π
n∏

i=1

ai,π(i), per A =
∑

π∈Sn

n∏
i=1

ai,π(i),

where Sn is the symmetric group on n elements. Throughout this section, we assume
that A is a positive semi-definite Hermitian n× n matrix (we write A ≥ 0). For such
A, Hadamard proved that

det A ≤
n∏

i=1

ai,i,
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with equality if and only if A has a zero row or is a diagonal matrix. Fischer generalized
this to

det A ≤ det A′ · detA′′

for

(1) A =
(

A′ B
B∗ A′′

)
≥ 0,

with equality if and only if det A′ · det A′′ ·B = 0.
Concerning the permanent of a positive semi-definite matrix, Marcus [Mar1, Mar2]

proved that

(2) per A ≥
n∏

i=1

ai,i,

with equality if and only if A has a zero row or is a diagonal matrix. Lieb [L]
generalized this to

(3) per A ≥ per A′ · per A′′

for A as in (1), with equality if and only if A has a zero row or B = 0. Moreover, he
proved that in the polynomial P (λ) of degree n′ (=size of A′) defined by

P (λ) = per
(

λA′ B
B∗ A′′

)
=

n′∑
t=0

ctλ
t,

all coefficients ct are real and non-negative. This is indeed a stronger theorem since
it implies

per A = P (1) =
n′∑

t=0

ct ≥ cn′ = per A′ · per A′′.

Doković [D, Mi] gave a simple proof of Lieb’s inequalities, and showed also that if A′

and A′′ are positive definite then cn′−t = 0 if and only if all subpermanents of B of
order t vanish. Lieb [L] also states an analogous (and analogously provable) theorem
for determinants: for A as in (1), let

D(λ) = det
(

λA′ B
B∗ A′′

)
=

n′∑
t=0

dtλ
t.

If det A′ · det A′′ = 0, then D(λ) = 0. If A′ and A′′ are positive definite, then
(−1)tdn′−t is positive for t ≤ rk B and is zero for t > rk B.

Remark. In all of Lieb’s inequalities mentioned above, the condition that the
matrix A is positive semi-definite can be replaced by the weaker condition that the
diagonal blocks A′ and A′′ are positive semi-definite. The proof goes through virtually
unchanged. Alternatively, this stronger form of the inequalities can be easily deduced
from the seemingly weaker form above.
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1. New inequalities on pfaffians and hafnians

For an n × n matrix A = (ai,j) and subsets S, T of N := {1, . . . , n}, we write
AS,T := (ai,j)i∈S,j∈T . If |T | = 2t is even, we write

(−1)T := (−1)t+
P

j∈T j .

1.1. Pfaffians. As far as the applications in Section 2 are concerned, this subsection
may be skipped.

Recall that the pfaffian of a 2n× 2n antisymmetric matrix C = (ci,j) is defined by

pf C =
1

n!2n

∑
π∈S2n

(−1)πcπ(1),π(2) · · · cπ(2n−1),π(2n).

We have (pf C)2 = det C.
For antisymmetric A and symmetric B, both of size n × n, we consider the poly-

nomial

(−1)bn/2cpf
(
−λA B
−B A

)
=

bn/2c∑
t=0

ptλ
t.

Theorem 1.1. Let A and B be real n × n matrices with A antisymmetric and B
symmetric. If B is positive semi-definite, then pt ≥ 0 for all t. If B is positive
definite, then pt > 0 for t ≤ (rk A)/2 and pt = 0 for t > (rk A)/2.

Proof. If B = (bi,j) is positive semi-definite, then there exist vectors x1, . . . , xn in
a real Euclidean space V such that (xi, xj) = bi,j . Recall that in the exterior tensor
algebra

∧
V a positive definite inner product (and the corresponding Euclidean norm)

is defined by (∧
vi,
∧

wj

)
:= det((vi, wj)).

We have

pt =
∑

|S|=2t

∑
|T |=2t

(−1)S(−1)T pf AS,S · pf AT,T · detBN\S,N\T =

=
∑

|S|=2t

∑
|T |=2t

(−1)Spf AS,S ·
∧
i 6∈S

xi, (−1)T pf AT,T ·
∧
j 6∈T

xj

 =

=

∣∣∣∣∣∣
∑

|S|=2t

(−1)Spf AS,S ·
∧
i 6∈S

xi

∣∣∣∣∣∣
2

≥ 0.

Assume that B is positive definite. Then the vectors xi are linearly independent.
It follows that the tensors

∧
i 6∈S xi are also linearly independent as S runs over the

subsets of N . Thus pt = 0 if and only if pf AS,S = 0 for all |S| = 2t, i.e., if and only
if 2t > rk A. �

Theorem 1.2. Let A and B be real n × n matrices with A antisymmetric and B
symmetric. Let λ ≥ 0. If B is positive semi-definite, then

(−1)bn/2cpf
(
−λA B
−B A

)
≥ detB.
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If B is positive definite, then equality occurs if and only if λA = 0.

Proof. The left hand side is

p0 + p1λ + · · ·+ pbn/2cλ
bn/2c.

The right hand side is p0. �

I am grateful to the anonymous referee of this paper for the idea of the follow-
ing alternative proof of Theorems 1.1 and 1.2. We may assume B > 0, since ev-
ery positive semi-definite matrix is a limit of positive definite ones. The matrix
B−1/2AB−1/2 being real and antisymmetric, there exists a unitary matrix U such
that D := U−1B−1/2AB−1/2U is diagonal with purely imaginary eigenvalues a1

√
−1,

. . . , an

√
−1. The real multiset {a1, . . . , an} is invariant under a ↔ −a. We have(∑

ptλ
t
)2

= det
(
−λA B
−B A

)
= det

(
−λ
√

BUDU−1
√

B B

−B
√

BUDU−1
√

B

)
=

= det
((√

BU 0
0

√
BU

)(
−λD 1
−1 D

)(
U−1

√
B 0

0 U−1
√

B

))
=

= det
√

B
4
·

n∏
i=1

det
(
−λai

√
−1 1

−1 ai

√
−1

)
= det B2 ·

n∏
i=1

(1 + a2
i λ).

Extracting square roots, and choosing the sign in accordance with p0 = +detB, we
get ∑

ptλ
t = (−1)bn/2cpf

(
−λA B
−B A

)
= det B ·

∏
ai>0

(1 + a2
i λ),

whence both theorems immediately follow, since detB > 0.

1.2. Hafnians. Recall that the hafnian of a 2n× 2n symmetric matrix C = (ci,j) is
defined by

haf C =
1

n!2n

∑
π∈S2n

cπ(1),π(2) · · · cπ(2n−1),π(2n).

For symmetric A and B, both of size n× n, we consider the polynomial

haf
(

λA B
B A

)
=

bn/2c∑
t=0

htλ
t.

Theorem 1.3. Let A and B be symmetric real n×n matrices. If B is positive semi-
definite, then ht ≥ 0 for all t. If B is positive definite, then ht = 0 if and only if all
2t× 2t subhafnians of A vanish.

Proof. If B = (bi,j) is positive semi-definite, then there exist vectors x1, . . . , xn in
a real Euclidean space V such that (xi, xj) = bi,j . Recall [Mar1, Mar2, MN, Mi]
that in the symmetric tensor algebra SV a positive definite inner product (and the
corresponding Euclidean norm) is defined by(∏

vi,
∏

wj

)
:= per ((vi, wj)).
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We have

ht =
∑

|S|=2t

∑
|T |=2t

haf AS,S · haf AT,T · per BN\S,N\T =

=

∣∣∣∣∣∣
∑

|S|=2t

haf AS,S ·
∏
i 6∈S

xi

∣∣∣∣∣∣
2

≥ 0.

Assume that B is positive definite. Then the vectors xi are linearly independent.
It follows that the tensors

∏
i 6∈S xi are also linearly independent as S runs over the

subsets of N . Thus ht = 0 if and only if haf AS,S = 0 for all |S| = 2t. �

Theorem 1.4. Let A and B be symmetric real n × n matrices. Let λ ≥ 0. If B is
positive semi-definite, then

haf
(

λA B
B A

)
≥ per B.

If B is positive definite, then equality occurs if and only if A is a diagonal matrix or
λ = 0.

Proof. The left hand side is

h0 + h1λ + · · ·+ hbn/2cλ
bn/2c.

The right hand side is h0. �

Setting A = B and λ = 1, and combining with Marcus’s inequality (2), we arrive
at case p = 1 of

Conjecture 1.5. If A = (ai,j) is a positive semi-definite symmetric real n×n matrix,
then the hafnian of the 2pn × 2pn matrix consisting of 2p × 2p blocks A is at least
(2p− 1)!!n

∏
ap

i,i, with equality if and only if A has a zero row or is a diagonal matrix.

2. Products of real linear functionals

In this section, we apply Theorem 1.4 to products of jointly normal random vari-
ables and then to products of real linear functionals, which was the main motivation
for this work. The ideas in this section are analogous to those that Arias-de-Reyna
[A] used in the complex case.

Let ξ1, . . . , ξd denote independent random variables with standard Gaussian dis-
tribution, i.e., with joint density function (2π)−d/2 exp(−|ξ|2/2), where |ξ|2 =

∑
ξ2
k.

We write Ef(ξ) for the expectation of a function f = f(ξ) = f(ξ1, . . . , ξd). Recall
that

Eξ2p
k = (2p− 1)!! = (2p− 1)(2p− 3) · · · 3 · 1

for k = 1, . . . , d (easy inductive proof via integration by parts), and thus

E
d∏

k=1

ξ2pk

k =
d∏

k=1

(2pk − 1)!!.

On Rd, we write (·, ·) for the standard Euclidean inner product. We recall the
well-known [B2, G, S, Z]



356 PÉTER FRENKEL

Wick formula. Let x1, . . . , xn be vectors in Rd with Gram matrix A = ((xi, xj)).
Then

(4) E
n∏

i=1

(xi, ξ) = haf A.

(For odd n, we define haf A = 0.)

Proof. Both sides are multilinear in the xi, so we may assume that each xi is an
element of the standard orthonormal basis e1, . . . , ed. If there is an ek that occurs
an odd number of times among the xi, then both sides are zero. If each ek occurs 2pk

times, then the left hand side is E
∏d

k=1 ξ2pk

k , and the right hand side is
∏d

k=1(2pk −
1)!!, which are equal. �

The following theorems are easy corollaries of Theorem 1.4 together with the Wick
formula (4) and Marcus’s theorem (2).

Theorem 2.1. If X1, . . . , Xn are jointly normal random variables with zero expec-
tation, then

E
(
X2

1 · · ·X2
n

)
≥ EX2

1 · · ·EX2
n.

Equality holds if and only if they are independent or at least one of them is almost
surely zero.

Proof. The variables can be written as Xi = (xi, ξ) with ξ of standard normal dis-
tribution and the xi constant vectors with a positive semi-definite Gram matrix
A = (ai,j) = ((xi, xj)). Then

E
n∏

i=1

X2
i = E

n∏
i=1

(xi, ξ)2 =

= haf
(

A A
A A

)
≥ per A ≥

n∏
i=1

ai,i =

=
n∏

i=1

E(xi, ξ)2 =
n∏

i=1

EX2
i ,

with equality if and only if A is a diagonal matrix or has a zero row, i.e., the xi are
pairwise orthogonal or at least one of them is zero. �

The generalization of Theorem 2.1 to an arbitrary even exponent 2p is equivalent
to Conjecture 1.5.

Theorem 2.2. For any x1, . . . , xn ∈ Rd, |xi| = 1, the average of
∏

(xi, ξ)2 on the
unit sphere {ξ ∈ Rd : |ξ| = 1} is at least

Γ(d/2)
2nΓ(d/2 + n)

=
(d− 2)!!

(d + 2n− 2)!!
=

1
d(d + 2)(d + 4) . . . (d + 2n− 2)

,

with equality if and only if the vectors xi are pairwise orthogonal.

Proof. The average on the unit sphere is the constant in the theorem times the ex-
pectation w.r.t. the standard Gaussian measure (see e.g. [B1]). By Theorem 2.1, the
latter expectation is minimal if and only if the xi are pairwise orthogonal, in which
case it is 1. �
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Theorem 2.3. For real linear functionals fi on a real Euclidean space,

||f1 · · · fn|| ≥
||f1|| · · · ||fn||√

n(n + 2)(n + 4) · · · (3n− 2)
.

Here || · || means supremum of the absolute value on the unit sphere. In the infinite-
dimensional case, functionals with infinite norm may be allowed. Then the convention
0 · ∞ = 0 should be used on the right hand side.

Proof. We may assume that the space is Rd with d ≤ n, and the functionals are given
by fi(ξ) = (xi, ξ) with ||fi|| = |xi| = 1. Then ||f1 · · · fn||2 is at least the average of∏

f2
i (ξ) =

∏
(xi, ξ)2 on the unit sphere, which by Theorem 2.2 and d ≤ n is at least

1/(n(n + 2)(n + 4) · · · (3n− 2)). �

It is an unsolved problem, raised by Beńıtez, Sarantopoulos and Tonge [BST]
(1998), whether Theorem 2.3 is true with nn under the square root sign in the de-
nominator on the right hand side. This is called the ‘real linear polarization constant’
problem. In the complex case, the affirmative answer was proved by Arias-de-Reyna
[A] in 1998, based on the complex analog of the Wick formula [A, B2, G] and on
Lieb’s inequality (3).1 Keith Ball [Ball] gave another proof of the affirmative answer
in the complex case by solving the complex plank problem.

In the real case, the affirmative answer for n ≤ 5 was proved by Pappas and Révész
[PR] in 2004. For general n, the best estimate known before the present paper was
that of Révész and Sarantopoulos [RS] (2004), based on results of [MST], with (2n)n/4
under the square root sign. See [Mat1, Mat2, MM, R] for accounts on this and related
questions. Note that

n(n + 2)(n + 4) · · · (3n− 2) =

= exp (log n + log(n + 2) + log(n + 4) + · · ·+ log(3n− 2)) <

< exp
(

1
2

∫ 3n

n

log u · du

)
=

= exp
(
[u(log u− 1)]3n

n /2
)

= exp((3n log 3n− 3n− n log n + n)/2) =

= exp
n(2 log n + 3 log 3− 2)

2
=

(
3
√

3
e

n

)n

,

and 3
√

3/e < 3 · 1.8/2.7 = 2, so Theorem 2.3 is an improvement. Note also that the
statement with nn under the square root sign would follow from Conjecture 1.5.
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it can be proved essentially by the argument Marcus used in [Mar1, Mar2] to prove the even more
special case n′ = 1, which still implies inequality (2).
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