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TOTALLY GEODESIC SUBGRAPHS OF THE PANTS COMPLEX

Javier Aramayona, Hugo Parlier, and Kenneth J. Shackleton

Abstract. In recent work of Brock’s, the pants graph is shown to be a combinatorial
model for the completion of the Weil-Petersson metric on Teichmüller space. We prove

that every Farey graph embedded in the pants graph is totally geodesic, in analogy

with the extrinsic geometry of any 2-dimensional stratum inside the Weil-Petersson
completion.

1. Introduction

Let Σ be a compact, connected and orientable surface, possibly with non-empty
boundary, of genus g(Σ) and |∂Σ| boundary components, and refer to as the mapping
class group Map(Σ) the group of all self-homeomorphisms of Σ up to homotopy.

After Hatcher-Thurston [5], to the surface Σ one may associate a simplicial graph
P(Σ), the pants graph, whose vertices are all the pants decompositions of Σ and any
two vertices are connected by an edge if and only if they differ by an elementary
move; see Section 2.2 for an expanded definition. This graph is connected, and one
may define a path-metric d on P(Σ) by first assigning length 1 to each edge and then
regarding the result as a length space.

The pants graph, with its own geometry, is a fundamental object to study. Brock
[2] revealed deep connections with hyperbolic 3-manifolds and proved the pants graph
is the correct combinatorial model for the Weil-Petersson metric on Teichmüller space,
for the two are quasi-isometric. The isometry group of (P, d) is also correct in so far
as the study of surface groups is concerned, for Margalit [6] proved it is almost always
isomorphic to the mapping class group of Σ. In addition, Masur-Schleimer [9] proved
the pants graph to be one-ended for closed surfaces of genus at least 3. With only a
few exceptions, the pants graph is not hyperbolic in the sense of Gromov [3].

Our main result concerns the geometry of the pants graph.

Theorem 1. Let Σ be a compact, connected and orientable surface, and denote by F
a Farey graph. Let φ : F → P(Σ) be a simplicial embedding. Then, φ(F) is totally
geodesic in P(Σ).

The completion of the Weil-Petersson metric can be characterised by attaching so-
called strata [7]. These are totally geodesic subspaces of the completion, by a result
of Wolpert [10], and correspond to lower dimensional Teichmüller spaces, or products
thereof, each with their own Weil-Petersson metric, or product metric. Combining
this with Theorem 1.1 of Brock [2], one finds the Farey subgraphs of the pants graph
are uniformly quasi-isometrically embedded. This fact is also implicit in the earlier
work of Masur-Minsky [8].
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Theorem 1 offers a complete analogy between the geometry of the Farey subgraphs
in a pants graph and the geometry of the corresponding strata lying in the completed
Weil-Petersson space. In order to prove Theorem 1, we shall use Theorem 2 to project
paths in the pants graph to paths in the given Farey graph of no greater length. All
the notation of Theorem 2 will be explained in Section 2, but for now we point out
the finite set of curves πQ(ν) is the subsurface projection after Masur-Minsky [8] of
a pants decomposition ν to the Farey graph FQ determined by the codimension 1
multicurve Q. The intrinsic metric on this Farey graph, assigning length 1 to each
edge, is denoted by dQ.

Theorem 2. Let Σ be a compact, connected and orientable surface and denote by Q
a codimension 1 multicurve on Σ. Let (ν0, . . . , νn) be a path in the pants graph P(Σ).
For each index i ≤ n − 2 and for each δi ∈ πQ(νi), there exists an integer j ∈ {1, 2}
and a curve δi+j ∈ πQ(νi+j) such that dQ(δi, δi+j) ≤ j.

To the authors’ knowledge, it has yet to be decided whether there exists a distance
non-increasing projection from the whole pants graph to any one of its Farey sub-
graphs. In the absence of an affirmative result, Theorem 2 may well hold independent
interest.

Let us indicate two consequences of Theorem 1. First, note that for any hyperbolic
self-isometry f of a Farey graph, there exists a bi-infinite geodesic invariant under the
action of f2.

Corollary 3. Let f ∈ Map(Σ) be any mapping class leaving invariant a subgraph
of P(Σ) isomorphic to a Farey graph, on which it acts as a hyperbolic self-isometry.
Then, there exists a bi-infinite geodesic in P(Σ) invariant under the action of f2.

We remark that examples of such mapping classes include those whose restriction
to the complement of some complexity 1 subsurface Y is the identity and whose
restriction to Y is a pseudo-Anosov mapping class.

Second, let Q be a multicurve on Σ with the property that every complementary
component of Q is a surface of complexity 1. Then, the subgraph of P(Σ) spanned
by all pants decompositions containing Q is isomorphic to a product of Farey graphs,
each totally geodesic by Theorem 1. By considering one bi-infinite geodesic in each
Farey graph, we deduce the following. Note, by a line in the free abelian group Zr

we shall mean a coset of any one of the Z-factors.

Corollary 4. Let r denote the integer b(3g(Σ) + |∂Σ| − 2)/2c. There exists a quasi-
isometric embedding from Zr, given the L1-metric, into P(Σ) such that the image of
any line is a geodesic.

Thus, infinitely many of the maximal quasi-flats in P(Σ) identified by the Geo-
metric Rank Theorem [3, 1, 4] are convex in their principal directions. However,
establishing the existence of convex maximal flats remains an open problem.

The plan of this paper is as follows. In Section 2 we recall all the terminology we
need, much of which is already standard. In Section 3 we give an elementary proof
to Theorem 2. Indeed, if Q borders a 1-holed torus or a 4-holed sphere with only
one essential boundary component, it transpires that one may always take j = 1. In
Section 4 we apply Theorem 2 to give an elementary proof to Theorem 1.

Let us close the introduction by stating the following conjecture.
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Conjecture 5. Let Σ1 and Σ2 be a pair of compact and orientable surfaces. Let
φ : P(Σ1) → P(Σ2) be a simplicial embedding. Then, φ(P(Σ1)) is totally geodesic in
P(Σ2).

2. Background and definitions

We supply all the background and terminology needed both to understand the
statements of our main results, and to make sense of their proofs. Throughout, we
define a loop on Σ as the homeomorphic image of a standard circle.

2.1. Curves and multicurves. A loop on Σ is said to be trivial only if it bounds
a disc and peripheral only if it bounds an annulus whose other boundary component
belongs to ∂Σ. For a non-trivial and non-peripheral loop c, we shall denote by [c] its
free homotopy class. A curve is by definition the free homotopy class of a non-trivial
and non-peripheral loop. Given any two curves α and β, their intersection number
ι(α, β) is defined equal to min{|a ∩ b| : a ∈ α, b ∈ β}.

We shall say two curves are disjoint only if they have zero intersection number,
and otherwise say they intersect essentially. A pair of curves {α, β} is said to fill the
surface Σ only if ι(δ, α) + ι(δ, β) > 0 for every curve δ. In other words, every curve
on Σ intersects at least one of α and β essentially.

A multicurve is a collection of distinct and disjoint curves, and the intersection
number for a pair of multicurves is to be defined additively. We denote by κ(Σ) the
cardinality of any maximal multicurve on Σ, equal to 3g(Σ) + |∂Σ| − 3, and refer to
this as the complexity of Σ. Note, the only surfaces of complexity 1 are the 4-holed
sphere and the 1-holed torus.

Given a set of disjoint loops L, such as the boundary of some subsurface of Σ, we
denote by [L] the multicurve maximal among all multicurves whose every curve is
represented by some element of L. We shall say a multicurve ω has codimension k,
for some non-negative integer k, only if |ω| = κ(Σ)− k.

2.2. Pants decompositions. A pants decomposition of a surface is a maximal col-
lection of distinct and disjoint curves, in other words a maximal multicurve. Two
pants decompositions µ and ν are said to be related by an elementary move only if
µ ∩ ν is a codimension 1 multicurve and the remaining two curves together either fill
a 4-holed sphere and intersect twice or fill a 1-holed torus and intersect once; consider
Figure 1.

2.3. Arcs. An arc on Σ is the homotopy class, relative to ∂Σ, of an embedded
interval ending on ∂Σ that does not bound a disc with ∂Σ. There are broadly two
types of arc: those that end on only one component of ∂Σ, referred to as waves, and
those that end on two different components of ∂Σ, referred to as seams; see Figure 2
below.

Typically, our arcs will live on proper subsurfaces of complexity 1, noting every
arc on a 1-holed torus is a wave. We may similarly define the intersection number
of a pair of arcs, or an arc and a curve, and say two arcs are disjoint or intersect
essentially.
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Figure 1. The two types of elementary move.

Figure 2. The two types of arc, respectively a wave and a seam.

2.4. Graphs and paths. For us, a path in a graph shall be a finite sequence of
vertices such that any consecutive pair spans an edge; one can recover a topological
path by joining up the dots. A geodesic is then a path realising distance. Finally,
a subgraph F of a graph G is said to be totally geodesic only if every geodesic in G
whose two endpoints belong to F is in fact entirely contained in F .

2.5. Farey graphs. There are numerous ways to build a Farey graph F , any two
producing isomorphic graphs. One can start with the rational projective line Q̂ :=
Q∪{∞}, identifying 0 with 0

1 and ∞ with 1
0 , and take this to be the vertex set of F .

Then, two projective rational numbers p
q , r

s ∈ Q̂, where p and q are coprime and r and
s are coprime, are deemed to span an edge, or 1-simplex, if and only if |ps− rq| = 1.
The result is a connected graph in which every edge separates. The graph F can be
represented on a disc; see Figure 3 below. We shall say a graph is a Farey graph if it
is isomorphic to F .

It should be noted that both the pants graph of the 4-holed sphere and the pants
graph of the 1-holed torus are Farey graphs. It follows that any codimension 1 mul-
ticurve Q on Σ determines a unique Farey graph FQ in P(Σ); the converse is Lemma
6 from Section 3. We shall always denote by dQ the intrinsic combinatorial metric on
FQ, assigning length 1 to each edge.
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Figure 3. The Farey graph can be represented on a disc.

2.6. Subsurface projections. Given a curve α and an incompressible subsurface
Y of Σ, we shall write α ⊂ Y only if α can be represented by a non-peripheral loop
on Y . If every loop representing α has non-empty intersection with Y we can say
α and Y intersect, otherwise we say they are disjoint. If every loop representing α
intersects Y in at least one interval, we can say α crosses Y . We may similarly speak
of a multicurve crossing Y , if one of its curves crosses Y .

For a codimension 1 multicurve Q, let Y denote the unique, up to isotopy, com-
plexity 1 incompressible subsurface of Σ such that each curve in Q is disjoint from Y .
Let α be any curve intersecting Y , and choose any simple representative c ∈ α such
that #(c ∩ ∂Y ) is minimal. We refer to each component of c ∩ Y as a footprint of c
on Y , and to the homotopy class of such a footprint as a footprint of α on Y . Note,
footprints of a curve can be arcs or curves.

Given a footprint b for the curve α there exists a unique curve on Y disjoint from
b, and such a curve shall be referred to as a projection of α. Note the set of all α
projections, each counted once, depends only on α and the original multicurve Q, and
we denote this set by πQ(α). For a multicurve ν we define πQ(ν) to be equal to the
union

⋃
ν πQ(α). The set πQ(ν) is an example of a subsurface projection, as defined

by Masur-Minsky in Section 1.1 of [8]. See Figure 4 below for an illustration.

Remark. We note that πQ(Q) = ∅ and that πQ(δ) = {δ} for any curve δ ⊂ Y .
Moreover, if δ ⊂ Y is a curve and ν is a multicurve crossing Y and disjoint from δ,
then πQ(ν) = {δ}.

3. Proof of Theorem 2

Let us start with two elementary results, the first characterising the Farey sub-
graphs of any given pants graph and the second relating low intersection numbers to
distances for a pair of curves on a 4-holed sphere.
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Figure 4. A seam and a projected curve.

Lemma 6. Let φ : F → P(Σ) be a simplicial embedding. Then, there exists a codi-
mension 1 multicurve on Σ contained in every vertex of φ(F).

Proof. This is a consequence of the following two remarks. First, note the vertices
of any 3-cycle from φ(F) always intersect in a common codimension 1 multicurve.
Second, note for any two vertices µ and ν of φ(F) there exists a finite sequence of
3-cycles ∆0, . . . ,∆n such that µ is a vertex of ∆0, such that ν is a vertex of ∆n, and
such that ∆i ∩∆i+1 is an edge for each index i. One can then prove Lemma 6 by an
induction. �

Lemma 7. Let Y be a 4-holed sphere. Then, any two vertices δ0, δ2 of P(Y ) of
intersection number at most 4 are at distance d(δ0, δ2) at most 2.

Proof. There exists a curve δ1 on Y such that ι(δ1, δj) ≤ 2 for both j ∈ {0, 2}; if
ι(δ0, δ2) = 4 then such a curve can be explicitly constructed by performing a standard
surgery on either of δ0 or δ2. It follows that d(δ0, δ2) ≤ d(δ0, δ1) + d(δ1, δ2) ≤ 1 + 1 =
2. �

The following two results shall be applied in what will become known as Case B
for the 4-holed sphere, Lemma 9 playing an especially important role.

Lemma 8. Let P be a pants decomposition of Σ, and let Y be a connected complexity
1 incompressible subsurface of Σ. If P does not contain [∂Y ], then P contains at least
two curves intersecting Y .

Proof. We shall denote by κ∗(Y ) the cardinality of a maximal multicurve on Σ whose
every curve does not intersect Y . Let ω ⊂ P be the set of all curves in P that do not
intersect Y . We have

|P | = κ(Σ) = κ(Y ) + κ∗(Y ) = 1 + κ∗(Y ) ≥ 1 + |ω|+ 1 = 2 + |ω|,

and so |P | ≥ 2 + |ω| as required. �
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Lemma 9. Let P be a pants decomposition of Σ, and let Y be an incompressible
subsurface of Σ homeomorphic to a 4-holed sphere. If there exist two distinct curves
in [∂Y ] not contained in P , then P contains at least three curves intersecting Y .

Proof. Let ω ⊂ P be the set of all curves in P that do not intersect Y . We have

|P | = κ(Σ) = κ(Y ) + κ∗(Y ) = 1 + κ∗(Y ) ≥ 1 + |ω|+ 2 = 3 + |ω|,

and so |P | ≥ 3 + |ω| as required. �

We now turn to proving Theorem 2, denoting by Y the complexity 1 subsurface of
Σ complementary to Q. Note the statement of Theorem 2 holds vacuously if κ(Σ) ≤ 0
and trivially if κ(Σ) = 1, since then φ is an isomorphism. When κ(Σ) = 2, the surface
Σ is either a 5-holed sphere or a 2-holed torus. If the genera g(Y ) and g(Σ) are equal,
then each footprint of νi+1 on Y is therefore either a curve or a wave. As such, there
exists a curve δi+1 ∈ πQ(νi+1) such that δi and δi+1 are either equal or intersect
minimally. We can then take j = 1, noting dQ(δi, δi+1) = 1. The remaining case, Σ
the 2-holed torus and Y the 4-holed sphere, is deferred to Appendix.

For the remainder of this section, it is to be assumed that κ(Σ) ≥ 3. Let δi ∈
πQ(νi). In constructing a curve δi+1 or δi+2, as per the statement of Theorem 2,
we note Lemma 6 tells us it is enough to consider separately the case Y is a 4-holed
sphere and the case Y is a 1-holed torus.

Y IS A 4-HOLED SPHERE

The case Y is a 4-holed sphere separates into two main cases, according as δi be-
longs to νi or does not belong to νi.

Case A: δi ∈ νi.

I. δi ∈ νi+1. Take j = 1 and δi+1 = δi.

II. δi /∈ νi+1. We may still take j = 1 and choose any δi+1 ∈ πQ(νi+1), for δi is
a curve and, as such, is disjoint from [∂Y ]. Now ι(δi, δi+1) ≤ 2 and so dQ(δi, δi+1) ≤ 1.

Case B: δi /∈ νi.

By definition, there exists a Y -footprint ai of νi such that ι(ai, δi) = 0. We denote
by αi any curve from νi having ai as a footprint. Let ai+1 be any footprint of νi+1

on Y , and let αi+1 be any element of νi+1 having ai+1 as a footprint.

I. ai and ai+1 intersect essentially. Since ai and ai+1 intersect essentially, so must
the two curves αi and αi+1. Moreover, as δi /∈ νi, so ai can only be an arc.

Suppose first that ai+1 is a curve. Then, αi+1 and ai+1 are equal. According to
Lemma 8 there exists a curve α′

i ∈ νi such that αi 6= α′
i and such that α′

i intersects Y .
Since d(νi, νi+1) = 1 and since ι(αi, αi+1) 6= 0, so α′

i ∈ νi+1. The set {α′
i, αi+1}∩νi+2

is therefore non-empty. Let γ ∈ {α′
i, αi+1} ∩ νi+2 and take j = 2. There exists

δi+2 ∈ πQ(γ) such that ι(δi, δi+2) ≤ 4 and so, according to Lemma 7, dQ(δi, δi+2) ≤ 2.
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Henceforth, ai+1 shall always be an arc. Appealing to Lemma 8, there exists a Y -
footprint a′

i+1 of νi+1 and a corresponding curve α′
i+1 ∈ νi+1 such that α′

i+1 6= αi+1.
Since d(νi, νi+1) = 1 it follows that ι(ai, a

′
i+1) = 0. Note, if a′

i+1 is a curve then
α′

i+1 = a′
i+1 and we may take j = 1 and δi+1 = α′

i+1.
Henceforth, a′

i+1 is assumed to be an arc. We observe ai+1 and a′
i+1 are distinct

arcs, since ai+1 intersects ai essentially whereas a′
i+1 is disjoint from ai. The first

case, B.I., will now be completed by considering in turn the two topological possibil-
ities for ai.

I.(i) ai is a wave. Let γ′
i+1 ∈ πQ(νi+1) be such that ι(γ′

i+1, a
′
i+1) = 0. Then,

ι(δi, γ
′
i+1) ≤ 2 and therefore dQ(δi, γ

′
i+1) ≤ 1. We can thus take j = 1 and δi+1 = γ′

i+1.

I.(ii) ai is a seam. If in addition a′
i+1 is a wave, then we may argue as per Case

B.I(i) where the types of ai and a′
i+1 are interchanged. Henceforth, a′

i+1 shall be a
seam.

Suppose {ai, a
′
i+1} ends on at least three different components of ∂Y . Let γ′

i+1 ∈
πQ(νi+1) be such that ι(γ′

i, a
′
i+1) = 0. Then, ι(δi, γ

′
i+1) ≤ 2 and so dQ(δi, γ

′
i+1) ≤ 1.

We now take j = 1 and δi+1 = γ′
i+1.

Suppose instead {ai, a
′
i+1} now ends on at most two, and therefore exactly two, dif-

ferent components of ∂Y . Since a′
i+1 is a seam and since αi+1 ∈ νi+1, so νi+1 fails to

contain at least two curves from [∂Y ]. If the two components of ∂Y on which ai ends
are not homotopic on Σ, then by Lemma 9 there exists a curve α′′

i+1 ∈ νi+1 such that
α′′

i+1 /∈ {αi+1, α
′
i+1} and such that α′′

i+1 intersects Y . (The remaining case, namely
the two components of ∂Y on which ai ends are homotopic, seems to require special
consideration, and so we prefer to postpone this to Appendix.) Since d(νi, νi+1) = 1
and since ι(αi, αi+1) 6= 0, so ι(αi, α

′′
i+1) = 0. Moreover, since αi /∈ νi+1, so αi 6= α′′

i+1.
As d(νi+1, νi+2) = 1, so {α′

i+1, α
′′
i+1}∩νi+2 6= ∅. Let γ ∈ {α′

i+1, α
′′
i+1}∩νi+2. We now

take j = 2 and δi+2 ∈ πQ(γ), noting that ι(δi, δi+2) ≤ 4 and, as such, dQ(δi, δi+2) ≤ 2.

II. ai and ai+1 are disjoint. First note that, if either of ai and ai+1 is a wave, we
may take j = 1 and δi+1 ∈ πQ(αi+1) such that ι(δi+1, ai+1) = 0. Then, ι(δi, δi+1) ≤ 2
and, as such, dQ(δi, δi+1) ≤ 1. Henceforth, we assume that ai and ai+1 are both
seams.

If {ai, ai+1} ends on at least three components of ∂Y we may take j = 1 and
δi+1 ∈ πQ(αi+1) such that ι(δi+1, ai+1) = 0. Then, ι(δi, δi+1) ≤ 2 and, as such,
dQ(δi, δi+1) ≤ 1.

Thus, we may assume that {ai, ai+1} ends on at most two, and therefore exactly
two, components of ∂Y . By assumption, νi+1 does not contain [∂Y ]. According to
Lemma 8, there exists a second Y -footprint a′

i+1 for some curve α′
i+1 ∈ νi+1 such

that αi+1 and α′
i+1 are distinct. If ai and a′

i+1 are equal then δi ∈ πQ(νi+1), and we
may take j = 1 and δi+1 = δi. We may therefore assume ai and a′

i+1 are not equal.
If ai and a′

i+1 intersect essentially, then we may appeal to Case B.I. with a′
i+1

substituted for ai+1. We may thus assume that ai and a′
i+1 are disjoint. Since three

homotopically distinct and disjoint arcs on Y cannot end on at most two components
of ∂Y , it follows {ai, a

′
i+1} ends on at least three different components of ∂Y . We can

now take j = 1 and δi+1 ∈ πQ(α′
i+1) such that ι(δi+1, a

′
i+1) = 0.
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This concludes the case Y is a 4-holed sphere.

Y IS A 1-HOLED TORUS

The case of the 1-holed torus is more straightforward, for here each arc is a wave,
and can be treated by considering separately four mutually exclusive cases.

I. νi, νi+1 contain [∂Y ]. Let δi+1 denote the only curve contained in πQ(νi+1). We
may then take j = 1 and note dQ(δi, δi+1)) ≤ 1.

II. νi contains [∂Y ], whereas νi+1 does not. Then, δi ∈ νi+1. We may take j = 1
and δi+1 = δi.

III. νi+1 contains [∂Y ], whereas νi does not. Then, νi+1 contains a single curve
γi+1 such that γi+1 ⊂ Y . Since d(νi, νi+1) = 1, so γi+1 ∈ νi and hence γi+1 ∈ πQ(νi).
As πQ(νi) contains only one element, so γi+1 = δi. We may now take j = 1 and
δi+1 = δi.

IV. Neither νi nor νi+1 contains [∂Y ]. By definition, there exists a Y -footprint ai

of νi such that ι(δi, ai) = 0. According to Lemma 8, there exist two footprints ai+1

and a′
i+1 of νi+1 corresponding to different elements of νi+1. Since d(νi, νi+1) = 1,

so at least one of these footprints, say ai+1, is disjoint from ai. We may take j = 1
and δi+1 ∈ πQ(νi+1) such that ι(δi+1, ai+1) = 0. Note, ι(δi, δi+1) ≤ 1 and, as such,
dQ(δi, δi+1) ≤ 1.

This concludes the case Y is a 1-holed torus, and a proof of Theorem 2.

4. Proof of Theorem 1

Let F be a Farey graph and let φ : F → P(Σ) be a simplicial embedding. There
exists a unique codimension 1 multicurve Q on Σ such that Q is contained in every
vertex of φ(F); see Lemma 6.

Suppose, for contradiction, that φ(F) is not totally geodesic. Then, there exists
a geodesic ν0, ν1, . . . , νn in P(Σ) such that {ν0, νn} ⊂ φ(F) but νj /∈ φ(F) for each
j ∈ {1, 2, . . . , n−1}. Applying Theorem 2 inductively, we find an increasing sequence
of integers {k1, k2, . . . , km} ⊆ {1, 2, . . . , n}, containing 1 and at least one of n−1 and n,
and a corresponding sequence of curves δkj ∈ πQ(νkj ) such that 0 < kj+1−kj ≤ 2, for
each j, and such that dQ(δkj , δkj+1) ≤ kj+1 − kj , for each j. Necessarily, φ(δk1) = ν0

and φ(δkm
) = νn, by the closing remark of Section 2.6. We note that

dQ(δk1 , δkm
) ≤

∑
j

dQ(δkj
, δkj+1) ≤

∑
j

kj+1 − kj ≤ n− 1,

and, since paths in F determine paths in P(Σ) via φ, so it follows that

d(ν0, νn) ≤ dQ(δk1 , δkm) ≤ n− 1.

This is a contradiction, and the statement of Theorem 1 follows.
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Appendix

We treat separately one instance of Case B.I.(ii) from the proof of Theorem 2,
where the seam ai ends on two distinct but homotopic components of ∂Y . This
simultaneously treats the case Σ is a 2-holed torus and Y is a 4-holed sphere. In
either instance, we cannot appeal to Lemma 9.

We recall ai+1 is a footprint of αi+1 ∈ νi+1 on Y that intersects ai essentially, and
that a′

i+1 is a footprint of α′
i+1 ∈ νi+1 on Y both disjoint from and non-homotopic

to ai. In addition, we might as well assume {ai, ai+1} and {ai, a
′
i+1} both end on

precisely two distinct components of ∂Y , for we may otherwise take j = 1 and readily
find δi+1 ∈ πQ(νi+1) as claimed.

I. ai+1 is a seam. Only one subcase, up to symmetry and depicted in the upper-left
diagram of Figure 5, is legal. For this subcase alone, let γ ∈ πQ(αi+1) be the curve
such that ι(γ, ai+1) = 0. Then, ι(δi, γ) = 8. However, there exists a further curve
γ′ ⊂ Y such that ι(δi, γ

′) = 2 and ι(γ′, γ) = 2. Thus (δi, γ
′, γ) is a path in FQ, and

it follows dQ(δi, γ) ≤ 2, in fact precisely 2. We may therefore take j = 2 and find
δi+2 ∈ πQ({αi+1, α

′
i+1} ∩ νi+2) such that dQ(δi, δi+2) ≤ 2.

Appendix.

We treat separately one instance of Case B.I(ii) from the proof of Theorem 2,
where the seam ai ends on two distinct but homotopic components of ∂Y . This
simultaneously treats the case Σ is a 2-holed torus and Y is a 4-holed sphere.
In either instance, we cannot appeal to Lemma 9.

We recall ai+1 is a footprint of αi+1 ∈ νi+1 on Y that intersects ai es-
sentially, and that a′

i+1 is a footprint of α′

i+1 ∈ νi+1 on Y both disjoint from
and non-homotopic to ai. In addition, we might as well assume {ai, ai+1} and
{ai, a

′

i+1} both end on precisely two distinct components of ∂Y , for we may
otherwise take j = 1 and readily find δi+1 ∈ πQ(νi+1) as claimed.

I. ai+1 is a seam. Only one subcase, up to symmetry and depicted in the upper-
left diagram of Figure 5, is legal. For this subcase alone, let γ ∈ πQ(αi+1) be
the curve such that ι(γ, ai+1) = 0. Then, ι(δi, γ) = 8. However, there exists a
further curve γ′ ⊂ Y such that ι(δi, γ

′) = 2 and ι(γ′, γ) = 2. Thus δi, γ
′, γ is a

path in FQ, and it follows dQ(δi, γ) ≤ 2, in fact precisely 2. We may therefore
take j = 2 and find δi+2 ∈ πQ({αi+1, α

′

i+1} ∩ νi+2) such that dQ(δi, δi+2) ≤ 2.

ai+1 ai

a′

i+1

γ′

ai+1

ai+1 ai+1

Figure 5: The four subcases arising when ai+1 is a seam, up to symmetry, of
which only that depicted in the upper-left diagram is legal. In each diagram
we represent the 4-holed sphere Y as a disc with four corners and two holes,
identifying the left and right vertical edges to give a′

i+1 and the middle vertical
edge with ai. The top and bottom edges correspond to distinct components of
∂Y , homotopic on Σ. The central arc ai+1 cuts the top and bottom edges in
two; we have normalised so that the arc ai+1 is always incident on the upper-left
half-edge.
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Figure 5. The four subcases arising when ai+1 is a seam, up to
symmetry, of which only that depicted in the upper-left diagram is
legal. In each diagram we represent the 4-holed sphere Y as a disc
with four corners and two holes, identifying the left and right vertical
edges to give a′

i+1 and the middle vertical edge with ai. The top and
bottom edges correspond to distinct components of ∂Y , homotopic
on Σ. The central arc ai+1 cuts the top and bottom edges in two;
we have normalised so that the arc ai+1 is always incident on the
upper-left half-edge.

In each of the remaining subcases, any attempt to complete the arc ai+1 to the
curve αi+1, such as that indicated by a broken line, either fails to produce a simple
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closed curve or produces a curve of intersection number with αi greater than or equal
to 3. However, d(νi, νi+1) = 1 and so ι(νi, νi+1) ≤ 2. As such, we can only have
ι(αi, αi+1) ≤ 2.

II. ai+1 is a wave. Only one subcase, up to symmetry and depicted in the upper-
left diagram of Figure 6, is legal. Considering only this subcase, since d(νi+1, νi+2) =
1, so the set {αi+1, α

′
i+1} ∩ νi+2 is non-empty. We take j = 2 and let δi+2 ∈

πQ({αi+1, α
′
i+1} ∩ νi+2), noting in particular that ι(δi, δi+2) ≤ 4 and, as such, we

have dQ(δi, δi+2) ≤ 2.
In each of the remaining subcases, any attempt to complete the arc ai+1 to the

curve αi+1 either fails or produces a curve of intersection number with αi greater
than or equal to 3.

In each of the remaining subcases, any attempt to complete the arc ai+1 to
the curve αi+1, such as that indicated by a broken line, either fails to produce a
simple closed curve or produces a curve of intersection number with αi greater
than or equal to 3. However, d(νi, νi+1) = 1 and so ι(νi, νi+1) ≤ 2. As such, we
can only have ι(αi, αi+1) ≤ 2.

II. ai+1 is a wave. Only one subcase, up to symmetry and depicted in the
upper-left diagram of Figure 6, is legal. Considering only this subcase, since
d(νi+1, νi+2) = 1, so the set {αi+1, α

′

i+1} ∩ νi+2 is non-empty. We take j = 2
and let δi+2 ∈ πQ({αi+1, α

′

i+1} ∩ νi+2), noting in particular that ι(δi, δi+2) ≤ 4
and, as such, dQ(δi, δi+2) ≤ 2.

In each of the remaining subcases, any attempt to complete the arc ai+1 to
the curve αi+1 either fails or produces a curve of intersection number with αi

greater than or equal to 3.

aiai+1

a′

i+1

ai+1

Figure 6: The case ai+1 is a wave, of which, up to symmetry, only the subcase
depicted in the upper-left diagram is legal.
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Figure 6. The case ai+1 is a wave, of which, up to symmetry, only
the subcase depicted in the upper-left diagram is legal.
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