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CURVES ON ALGEBRAIC MODELS OF SMOOTH MANIFOLDS

W. Kucharz

1. Introduction

Let X be a compact nonsingular real algebraic set (in Rn for some n). In real
algebraic geometry one frequently encounters the subgroup

Halg
k (X,Z/2)

of the homology group Hk(X,Z/2), generated by the homology classes represented
by irreducible algebraic subsets of X of dimension k. The reader may refer to [4]
for a short survey of properties and applications of the groups Halg

k (−,Z/2). Some
homology classes are always in Halg

k (X,Z/2). Namely, if wi(X) is the ith Stiefel-
Whitney class of X, then the homology class Poincaré dual to the cup product
wi1(X) ∪ . . . ∪ wir

(X), where i1 + · · · + ir = dimX − k, is in Halg
k (X,Z/2). In

general, it is very difficult to compute Halg
k (X,Z/2), even for k = 1. This paper deals

with certain interesting, also hard to compute, subgroups of Halg
1 (X,Z/2).

By a real algebraic curve we mean a one-dimensional irreducible real algebraic set.
If C is such a curve, then there is a unique (up to isomorphism) nonsingular projective
complex algebraic curve V defined over R, whose set of real points V (R) is birationally
equivalent to C. The genus of C is, by definition, the genus of V . In particular, C
is rational (that is, birationally equivalent to R) if and only if it is of genus 0. The
curve C is said to be dividing if V \V (R) is disconnected.

Given a nonnegative integer g, denote by

A(X, g) (resp. B(X, g))

the subgroup of Halg
1 (X,Z/2) generated by the homology classes represented by al-

gebraic curves in X of genus g (resp. of genus at most g). Obviously, A(X, g) is a
subgroup of B(X, g). Moreover, B(X, g) = Halg

1 (X,Z/2), provided g is sufficiently
large (depending on X).

We are also interested in the subgroup

D(X)

of Halg
1 (X,Z/2) generated by the homology classes represented by dividing algebraic

curves in X. Clearly, A(X, 0) is a subgroup of D(X).
Recall that every compact smooth (of class C∞) manifold M is diffeomorphic to a

nonsingular real algebraic set, called an algebraic model of M , cf. [11] or [3, Theorem
14.1.10] (and also [9] for a weaker but influential result). We precisely describe how
the groups A(X, g) and B(X, g) vary as X runs through the class of all algebraic
models of M .
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Theorem 1.1. Let M be a compact connected smooth manifold of dimension at least
2, and let g be a nonnegative integer. For any subgroup G of H1(M,Z/2), there exist
an algebraic model X of M and a smooth diffeomorphism ϕ : M → X with

ϕ∗(G) = A(X, g) = B(X, g).

Here, as usual,
ϕ∗ : H∗(M,Z/2) −→ H∗(X,Z/2)

denotes the homomorphism induced by ϕ. Note that in Theorem 1.1 one cannot
take G = 0 and replace the groups A(X, g) and B(X, g) by Halg

1 (X,Z/2). Indeed,
if X is any algebraic model of real projective n-space Pn(R), with n even, then
Halg

k (X,Z/2) = Hk(X,Z/2) ∼= Z/2 for 0 ≤ k ≤ n since w1(X) 6= 0. Moreover, it
is not known whether there is an algebraic model X of the n-torus Rn/Zn, with n

odd greater than 1, for which Halg
1 (X,Z/2) = 0.

We also have an analogous result to Theorem 1.1 dealing with the group D(−).

Theorem 1.2. Let M be a compact connected smooth manifold of dimension at least
2. Assume that M is orientable and the group H1(M,Z) has no 2-torsion. For any
subgroup G of H1(M,Z/2), there exist an algebraic model X of M and a smooth
diffeomorphism ϕ : M → X with

ϕ∗(G) = A(X, 0) = D(X).

We were not able to determine whether the assumption that M is orientable and
H1(M,Z) has no 2-torsion is necessary. Theorem 1.2 implies that, in general, D(X) 6=
Halg

1 (X,Z/2). Indeed, there is an algebraic model X of P2(C)× (R/Z), where P2(C)
is the complex projective plane, with D(X) = 0. On the other hand, w4(X) 6= 0 and
hence Halg

1 (X,Z/2) = H1(X,Z/2) ∼= Z/2.
Both Theorems 1.1 and 1.2 are proved in the next section.

2. Proofs

A compact nonsingular real algebraic set X is said to have totally algebraic homol-
ogy if

Halg
k (X,Z/2) = Hk(X,Z/2)

for all k ≥ 0. This notion will play an important role in our proofs.

Lemma 2.1. Let g be a nonnegative integer. Any compact smooth manifold N has
an algebraic model Y such that for every real algebraic curve D of genus at most g,
every rational map from D into Y is constant.

Proof. Let A be a compact connected nonsingular real algebraic curve of genus at
least g + 1. Let B = A× · · · × A be the q-fold product, where q ≥ 2 dimN + 1, and
let e : N → B be a smooth embedding. Endow the space C∞(N,B) of smooth maps
from N into B with the C∞ topology and choose a neighborhood V of e in C∞(N,B)
consisting of smooth embeddings. Since A is connected, it follows that B has totally
algebraic homology, and hence by [2, Theorem 3] or [1, Proposition 2.8], there exist
an algebraic model Y of N , a smooth diffeomorphism ψ : N → Y , and a regular map
f : Y → B such that f ◦ ψ is in V. In particular, f is a smooth embedding, and
consequently injective.
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Let D be a real algebraic curve of genus at most g and let ρ : D 99K Y be a
rational map. Since the genus of D is strictly less than the genus of A, the rational
map f ◦ρ : D 99K B is constant in virtue of the Riemann-Hurwitz theorem. It follows
that ρ is constant, f being injective. The proof is complete. �

Denote by Gr,s(R) the Grassmannian of s-dimensional vector subspaces of Rr.
Recall that Gr,s(R) can be regarded in a natural way as an algebraic subset of Rm

for some m, cf. [3, Theorem 3.4.4].

Lemma 2.2. Let C1, . . . , Cp be compact nonsingular algebraic curves in Rn. Assume
that

(i) Ci ∩ Cj ∩ Ck = ∅ whenever i, j, k are distinct.
(ii) for every point x in Ci ∩Cj, where i 6= j, the tangent spaces to Ci and Cj at

x are distinct.
Then every continuous map from C = C1 ∪ . . .∪Cp into Gr,s(R) can be approximated
by regular maps in the compact-open topology.

Proof. Although a more direct proof is possible, the one below is probably the short-
est. According to [3, Theorem 13.3.1], it sufficies to prove that every topological real
vector bundle ξ (of constant positive rank) on C is isomorphic to an algebraic vector
bundle. Since ξ is isomorphic to the direct sum of a line bundle and a trivial bundle,
we may assume that ξ itself is a line bundle. Let h : C → Pd(R) be a classifying map
for ξ, that is, h is continuous and ξ is isomorphic to h∗γd, where γd is the universal
line bundle on Pd(R). Since γd is an algebraic bundle, it is enough to show that h
can be approximated by regular maps. We proceed as follows. The union S of all the
intersections Ci ∩ Cj , with i 6= j, is a finite set. By [7, Lemma 2.1], for each i, there
is a regular map fi : Ci → Pd(R) arbitrarily close to h|Ci and equal to h on Ci ∩ S.
The map f : C → Pd(R), defined by f |Ci = fi for 1 ≤ i ≤ p, is continuous and close
to h. Moreover, by [2, Lemma 3], f is actually a regular map (here (i) and (ii) are
used, along with the fact that Pd(R) can be regarded as an algebraic subset of Rq for
some q). The proof is complete. �

It is convenient to introduce the following terminology and notation. By conven-
tion, submanifolds will always be closed subsets of the ambient manifold. For any
compact smooth manifold M , we denote by [M ] its fundamental class in Hm(M,Z/2),
wherem = dimM . IfN is an n-dimensional smooth submanifold ofM , we write [N ]M
for the homology class in Hn(M,Z/2) represented by N , that is, [N ]M = i∗([N ]),
where i : N ↪→M is the inclusion map. By a smooth curve in M we mean a smooth
submanifold of M of dimension 1.

Proof of Theorem 1.1. We may assume that M is a smooth submanifold of Rn, where
n ≥ 2 dimM + 1. Let C1, . . . , Cp be connected smooth curves in M , whose homology
classes [C1]M , . . . , [Cp]M generate G. We choose these curves in general position in
M . Morover, we can select them in such a way that

e∗(H1(C,Z/2)) is generated by [C1]M , . . . , [Cp]M ,(a0)

where
C = C1 ∪ . . . ∪ Cp
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and e : C ↪→ M is the inclusion map. Indeed, condition (a0) can be easily arranged
if dimM = 2, while for dimM ≥ 3 is is automatically satisfied since then C1, . . . , Cp

are pairwise disjoint (being in general position).
There is a smooth diffeomorphism θ : Rn → Rn such that θ(Ci) is a nonsingular

algebraic curve in Rn of genus g for 1 ≤ i ≤ p. Hence we may assume that

Ci itself is a nonsingular algebraic curve in Rnof genus g for 1 ≤ i ≤ p.(a1)

Set
Γ = {v ∈ H1(M,Z/2) | 〈v, α〉 = 0 for all α ∈ G},

where 〈−,−〉 is the scalar product (Kronecker index). Note that

G = {α ∈ H1(M,Z/2) | 〈v, α〉 = 0 for all v ∈ Γ}.

By Lemma 2.1, for any positive integer d, there is an algebraic model A of Pd(R)
such that for every real algebraic curve D of genus at most g, every rational map from
D into A is constant. If Γ is generated by q elements, B = A × · · · × A is the q-fold
product, and d is sufficiently large (depending on M), then there is a smooth map

h : M → B

with Γ = h∗(H1(B,Z/2)). Hence

G = {α ∈ H1(M,Z/2) | 〈h∗(b), α〉 = 0 for all b ∈ H1(B,Z/2)},

and since 〈h∗(b), α〉 = 〈b, h∗(α)〉, we get

G = {α ∈ H1(M,Z/2) | h∗(α) = 0}.(a2)

Assume d ≥ 2. Since each homology class [Ci]M is in G, we get (h|Ci)∗([Ci]) =
h∗([Ci]M ) = 0, and hence in view of (a0), the homomorphism

(h|C)∗ : H1(C,Z/2) → H1(B,Z/2)

is zero. This implies that the restriction map h|C : C → B is null homotopic since
H1(B,Z/2) can be identified with the fundamental group of B. Actually, the map h
can be chosen in such a way that

h : M → B is constant on C.(a3)

Indeed, let K be a compact subset of M such that C is contained in the interior
of K and is a deformation retract of K, while (M,K) is a polyhedral pair. Then
h|K : K → B is null homotopic, and hence the homotopy extension theorem [10, p.
118, Corollary 5] implies the existence of a continuous map h′ : M → B homotopic
to h and constant on K. Thus there is a smooth map h′′ : M → B homotopic to h′

and equal to h′ on C. Replacing h by h′′, we may assume that (a3) is satisfied.
Henceforth assume d is even. This implies that A, being an algebraic model of

Pd(R), has totally algebraic homology (see Section 1). Consequently, by Künneth’s
theorem,

B has totally algebraic homology.(a4)

In view of (a1), (a3), (a4), and Lemma 2.2, we can apply [2, Theorem 3] (cf. also
[1, Proposition 2.8]) to M, C, h : M → B. Therefore there exist a nonsingular
algebraic subset X of Rn, a smooth diffeomorphism ϕ : M → X, and a regular map
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f : X → B such that C ⊂ X, ϕ(x) = x for all x in C, and f ◦ ϕ is homotopic to h.
In particular, ϕ∗([Ci]M ) = [Ci]X for 1 ≤ i ≤ p, which implies

ϕ∗(G) ⊆ A(X, g) ⊆ B(X, g).

Moreover, making use of (a2), we get

ϕ∗(G) = {β ∈ H1(X,Z/2) | f∗(β) = 0}.

It remains to prove that if δ is a homology class in B(X, g) represented by an
algebraic curve D in X of genus at most g, then δ is in ϕ∗(G), or equivalently,
f∗(δ) = 0. The last equality holds, the restriction map f |D : D → B being constant
(see how B is constructed). The proof is complete. �

Proof of Theorem 1.2. We may assume that M is a smooth submanifold of Rn, where
n ≥ 2 dimM + 1. Let C1, . . . , Cp be connected smooth curves in M , whose homology
classes [C1]M , . . . , [Cp]M generate G. We choose these curves in general position in
M , and so that

e∗(H1(C,Z)) is generated by oC1 , . . . , oCp
,(b0)

where
C = C1 ∪ . . . ∪ Cp,

e : C ↪→ M is the inclusion map, and oCi
is the homology class in H1(M,Z) repre-

sented by Ci endowed with some orientation. Furthermore, as in the proof of Theorem
1.1, we may assume that

Ci is a nonsingular algebraic curve in Rn of genus 0 for 1 ≤ i ≤ p.(b1)

Set
Γ = {v ∈ H1(M,Z/2) | 〈v, α〉 = 0 for all α ∈ G},

and let v1, . . . , vq be generators of Γ.
Since H1(M,Z) has no 2-torsion, the group H2(M,Z) has no 2-torsion, which in

turn implies that the restriction modulo 2 homomorphism H1(M,Z) → H1(M,Z/2)
is surjective (the universal coefficient theorem). Hence, in view of the orientability
of M , the homology class Poincaré dual to vj can be represented by a codimension
1 orientable smooth submanifold Nj of M . If Nj is disconnected, then joining two
connected components of Nj with a tube in M , without modifying the remaining com-
ponents, we obtain an orientable smooth submanifold N ′

j of M with [N ′
j ]M = [Nj ]M

(orientability of N ′
j is not a problem here since we do not preassign orientations to

the connected components of Nj , and we join with a tube only two connected compo-
nents). After performing such an operation finitely many times, we may assume that
Nj is connected for 1 ≤ j ≤ q. Moreover, we choose N1, . . . , Nq so that C1, . . . , Cp,
N1, . . . , Nq are in general position in M .

Let E be a complex elliptic curve defined over R, whose set of real points A = E(R)
is connected. In particular, A is diffeomorphic to the unit circle. According to the
classical Pontryagin-Thom construction, there exist a smooth map hj : M → A and
a regular value yj ∈ A of hj with Nj = h−1

j (yj), cf. [8]. Consequently,

vj = h∗j (w),
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where w is the unique generator of H1(A,Z/2) ∼= Z/2 (cf. [6, Proposition 2.15] if
desired). We assert that each restriction map hj |Ci : Ci → A is null homotopic for
1 ≤ i ≤ p and 1 ≤ j ≤ q. Indeed, we have

〈w, (hj |Ci)∗([Ci])〉 = 〈w, hj∗([Ci]M )〉
= 〈h∗j (w), [Ci]M 〉
= 〈vj , [Ci]M 〉
= 0,

where the last equality follows from the definition of Γ. Thus (hj |Ci)∗([Ci]) = 0, which
means that the topological degree modulo 2 of hj |Ci is 0. Since Ci is transverse to
Nj = h−1

j (yj) in M , the point yj is a regular value of hj |Ci, and hence the set

(hj |Ci)−1(yj) = Ci ∩Nj

consists of an even number of points, say, mij of them. If orientations of M, Ci, Nj

are fixed, the topological degree of hj |Ci is equal, up to sign, to the intersection
number nij of Ci and Nj in M . Since Ci and Nj are connected, and mij is even, it
follows that nij = 0. Hence hj |Ci is null homotopic, as asserted. Consequently, in
view of (b0), the homomorphism

(hj |C)∗ : H1(C,Z) → H1(A,Z)

is zero. This implies that the restriction map hj |C : C → A is null homotopic, since
H1(A,Z) can be identified with the fundamental group of A.

Let B = A× · · · ×A be the q-fold product. The smooth map

h = (h1, . . . , hq) : M → B

satisfies
Γ = h∗(H1(B,Z/2)).

Moreover, the restriction map h|C : C → B is null homotopic. Now, arguing as in
the proof of Theorem 1.1, we obtain

G = {α ∈ H1(M,Z/2) | h∗(α) = 0}.(b2)

Also, modifying h without affecting (b2), we may assume

h : M → B is constant on C.(b3)

Since A is a compact connected nonsingular real algebraic curve,

B has totally algebraic homology.(b4)

The next step is again as in the proof of Theorem 1.1. In virtue of (b1), (b3), (b4)
and Lemma 2.2, there exist a nonsingular algebraic subset X of Rn, a smooth diffeo-
morphism ϕ : M → X, and a regular map f : X → B such that C ⊂ X, ϕ(x) = x for
all x in C, and f ◦ ϕ is homotopic to h. This in turn implies

ϕ∗(G) ⊆ A(X, 0) ⊆ D(X),

and combined with (b2) yields

ϕ∗(G) = {β ∈ H1(X,Z/2) | f∗(β) = 0}.
It remains to prove that if δ is a homology class in D(X) represented by a dividing

algebraic curve D in X, then δ is in ϕ∗(G), or equivalently, f∗(δ) = 0. To this end,
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choose a compact nonsingular real algebraic curve D̃ and a regular map π : D̃ →
D such that π is a birational isomorphism. In particular, D̃ is a dividing curve.
Moreover, we have

f∗(δ) = (f ◦ e ◦ π)∗([D̃]) = 0,
where e : D ↪→ X is the inclusion map, and the last equality is a consequence of [5,
Theorem 1.1]. The proof is complete. �
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