Math. Res. Lett. 15 (2008), no. 2, 289-295 © International Press 2008

CURVES ON ALGEBRAIC MODELS OF SMOOTH MANIFOLDS

W. KUCHARZ

1. Introduction

Let X be a compact nonsingular real algebraic set (in R™ for some n). In real
algebraic geometry one frequently encounters the subgroup

H{"(X,2/2)

of the homology group Hy(X,Z/2), generated by the homology classes represented
by irreducible algebraic subsets of X of dimension k. The reader may refer to [4]
for a short survey of properties and applications of the groups H,jlg(—, Z/2). Some
homology classes are always in H2'(X,Z/2). Namely, if w;(X) is the ith Stiefel-
Whitney class of X, then the homology class Poincaré dual to the cup product
wi, (X) U ... Uw;, (X), where iy + --- + i, = dimX — k, is in H'8(X,Z/2). In
general, it is very difficult to compute H,jlg(X ,Z/2), even for k = 1. This paper deals
with certain interesting, also hard to compute, subgroups of H7 lg(X ,Z2]2).

By a real algebraic curve we mean a one-dimensional irreducible real algebraic set.
If C is such a curve, then there is a unique (up to isomorphism) nonsingular projective
complex algebraic curve V' defined over R, whose set of real points V(R) is birationally
equivalent to C. The genus of C is, by definition, the genus of V. In particular, C'
is rational (that is, birationally equivalent to R) if and only if it is of genus 0. The
curve C' is said to be dividing if V\V(R) is disconnected.

Given a nonnegative integer g, denote by

A(X, g) (resp. B(X,g))

the subgroup of Hy lg(X ,Z/2) generated by the homology classes represented by al-
gebraic curves in X of genus g (resp. of genus at most g). Obviously, A(X,g) is a
subgroup of B(X,g). Moreover, B(X,g) = H™(X,Z/2), provided g is sufficiently
large (depending on X).

We are also interested in the subgroup

D(X)

of H} lg(X ,Z/2) generated by the homology classes represented by dividing algebraic
curves in X. Clearly, A(X,0) is a subgroup of D(X).

Recall that every compact smooth (of class C°°) manifold M is diffeomorphic to a
nonsingular real algebraic set, called an algebraic model of M, cf. [11] or [3, Theorem
14.1.10] (and also [9] for a weaker but influential result). We precisely describe how

the groups A(X,g) and B(X,g) vary as X runs through the class of all algebraic
models of M.
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Theorem 1.1. Let M be a compact connected smooth manifold of dimension at least
2, and let g be a nonnegative integer. For any subgroup G of H1(M,Z/2), there exist
an algebraic model X of M and a smooth diffeomorphism ¢ : M — X with

(p*(G> = A(ng) = B(X’ g)'

Here, as usual,
wu  Ho(M,Z/2) — H.(X,Z/2)

denotes the homomorphism induced by ¢. Note that in Theorem 1.1 one cannot
take G = 0 and replace the groups A(X,g) and B(X,g) by H"#(X,Z/2). Indeed,
if X is any algebraic model of real projective n-space P"(R), with n even, then
HY(X,Z/2) = Hi(X,Z/2) = Z/2 for 0 < k < n since w;(X) # 0. Moreover, it
is not known whether there is an algebraic model X of the n-torus R"/Z", with n
odd greater than 1, for which H2(X,7/2) = 0.

We also have an analogous result to Theorem 1.1 dealing with the group D(—).

Theorem 1.2. Let M be a compact connected smooth manifold of dimension at least
2. Assume that M is orientable and the group Hi(M,Z) has no 2-torsion. For any
subgroup G of Hy(M,Z/2), there exist an algebraic model X of M and a smooth
diffeomorphism ¢ : M — X with

v«(G) = A(X,0) = D(X).

We were not able to determine whether the assumption that M is orientable and
H,(M,Z) has no 2-torsion is necessary. Theorem 1.2 implies that, in general, D(X) #
H™&(X,7/2). Indeed, there is an algebraic model X of P2(C) x (R/Z), where P2(C)
is the complex projective plane, with D(X) = 0. On the other hand, w4(X) # 0 and
hence H8(X,7/2) = Hy(X,Z/2) = 7./2.

Both Theorems 1.1 and 1.2 are proved in the next section.

2. Proofs

A compact nonsingular real algebraic set X is said to have totally algebraic homol-
ogy if
H{®(X,2,/2) = Hi(X,Z/2)

for all £ > 0. This notion will play an important role in our proofs.

Lemma 2.1. Let g be a nonnegative integer. Any compact smooth manifold N has
an algebraic model Y such that for every real algebraic curve D of genus at most g,
every rational map from D into Y is constant.

Proof. Let A be a compact connected nonsingular real algebraic curve of genus at
least g + 1. Let B = A x --- x A be the ¢-fold product, where ¢ > 2dim N + 1, and
let e : N — B be a smooth embedding. Endow the space C°°(N, B) of smooth maps
from N into B with the C°° topology and choose a neighborhood Vof e in C*°(N, B)
consisting of smooth embeddings. Since A is connected, it follows that B has totally
algebraic homology, and hence by [2, Theorem 3] or [1, Proposition 2.8], there exist
an algebraic model Y of N, a smooth diffeomorphism ¢ : N — Y, and a regular map
f:Y — B such that fo is in V. In particular, f is a smooth embedding, and
consequently injective.
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Let D be a real algebraic curve of genus at most g and let p : D --» Y be a
rational map. Since the genus of D is strictly less than the genus of A, the rational
map fop: D --» B is constant in virtue of the Riemann-Hurwitz theorem. It follows
that p is constant, f being injective. The proof is complete. [l

Denote by G, s(R) the Grassmannian of s-dimensional vector subspaces of R”.
Recall that G, s(R) can be regarded in a natural way as an algebraic subset of R™
for some m, cf. [3, Theorem 3.4.4].

Lemma 2.2. Let C1,...,Cp be compact nonsingular algebraic curves in R™. Assume
that

(i) CiNC;NCy =0 whenever i, j, k are distinct.
(i) for every point x in C; N C;, where i # j, the tangent spaces to C; and C; at
x are distinct.
Then every continuous map from C = Cy U...UC, into G, s(R) can be approzimated
by regular maps in the compact-open topology.

Proof. Although a more direct proof is possible, the one below is probably the short-
est. According to [3, Theorem 13.3.1], it sufficies to prove that every topological real
vector bundle £ (of constant positive rank) on C' is isomorphic to an algebraic vector
bundle. Since £ is isomorphic to the direct sum of a line bundle and a trivial bundle,
we may assume that ¢ itself is a line bundle. Let h : C — P%(R) be a classifying map
for &, that is, h is continuous and ¢ is isomorphic to h*v4, where 7y, is the universal
line bundle on P4(R). Since 74 is an algebraic bundle, it is enough to show that h
can be approximated by regular maps. We proceed as follows. The union S of all the
intersections C; N C;, with i # j, is a finite set. By [7, Lemma 2.1], for each 4, there
is a regular map f; : C; — P4(R) arbitrarily close to h|C; and equal to h on C; N S.
The map f : C — P%(R), defined by f|C; = f; for 1 < i < p, is continuous and close
to h. Moreover, by [2, Lemma 3|, f is actually a regular map (here (i) and (ii) are
used, along with the fact that P?(R) can be regarded as an algebraic subset of R? for
some ¢). The proof is complete. O

It is convenient to introduce the following terminology and notation. By conven-
tion, submanifolds will always be closed subsets of the ambient manifold. For any
compact smooth manifold M, we denote by [M] its fundamental class in H,,(M,Z/2),
where m = dim M. If N is an n-dimensional smooth submanifold of M, we write [N] s
for the homology class in H,(M,Z/2) represented by N, that is, [N]y = i.([N]),
where i : N < M is the inclusion map. By a smooth curve in M we mean a smooth
submanifold of M of dimension 1.

Proof of Theorem 1.1. 'We may assume that M is a smooth submanifold of R™, where
n >2dim M + 1. Let Cy,...,C), be connected smooth curves in M, whose homology

classes [C1]m, ..., [Cplm generate G. We choose these curves in general position in
M. Morover, we can select them in such a way that

(ao) e«(H1(C,Z/2)) is generated by [Ci]as,- - -, [Cplm,

where

C=CU...UC,
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and e : C — M is the inclusion map. Indeed, condition (ag) can be easily arranged
if dim M = 2, while for dim M > 3 is is automatically satisfied since then C1,...,C,
are pairwise disjoint (being in general position).

There is a smooth diffecomorphism 6 : R™ — R™ such that (C;) is a nonsingular
algebraic curve in R™ of genus ¢ for 1 <4 < p. Hence we may assume that

(a1) C; itself is a nonsingular algebraic curve in R"of genus g for 1 <i < p.
Set
I'={ve H(M,Z/2)| (v,a) =0 for all « € G},
where (—, —) is the scalar product (Kronecker index). Note that
G={a€ Hi(M,Z/2)| {v,a) =0for allv € T'}.

By Lemma 2.1, for any positive integer d, there is an algebraic model A of P?(RR)
such that for every real algebraic curve D of genus at most g, every rational map from
D into A is constant. If " is generated by ¢ elements, B = A x --- x A is the g-fold
product, and d is sufficiently large (depending on M), then there is a smooth map

h:M—B
with T' = h*(H*(B,Z/2)). Hence
G={ac H(M,Z/2)| (h*(b),a) =0 for all b € H'(B,Z/2)},
and since (h*(b), o) = (b, hy(0)), we get
(a2) G ={ae Hi(M,Z/2) | h.(a) = 0}.

Assume d > 2. Since each homology class [C;]ar is in G, we get (h|C;)«([Ci]) =
h«([Ci]m) = 0, and hence in view of (ag), the homomorphism

(h|C). : H1(C,Z/2) — H{(B,Z/2)

is zero. This implies that the restriction map h|C : C' — B is null homotopic since
H,(B,Z/2) can be identified with the fundamental group of B. Actually, the map h
can be chosen in such a way that

(as) h: M — Bis constant on C.

Indeed, let K be a compact subset of M such that C is contained in the interior
of K and is a deformation retract of K, while (M, K) is a polyhedral pair. Then
h|K : K — B is null homotopic, and hence the homotopy extension theorem [10, p.
118, Corollary 5] implies the existence of a continuous map b’ : M — B homotopic
to h and constant on K. Thus there is a smooth map h” : M — B homotopic to h’
and equal to A’ on C. Replacing h by h”, we may assume that (ag) is satisfied.

Henceforth assume d is even. This implies that A, being an algebraic model of
P4(R), has totally algebraic homology (see Section 1). Consequently, by Kiinneth’s
theorem,

(aq) B has totally algebraic homology.

In view of (a1), (as), (as4), and Lemma 2.2, we can apply [2, Theorem 3] (cf. also
[1, Proposition 2.8]) to M, C, h : M — B. Therefore there exist a nonsingular
algebraic subset X of R™, a smooth diffeomorphism ¢ : M — X, and a regular map
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f: X — Bsuch that C C X, ¢(z) =z for all z in C, and f o ¢ is homotopic to h.
In particular, ¢.([C;]ar) = [Ci]x for 1 < i < p, which implies
p«(G) € A(X,9) € B(X,9).
Moreover, making use of (as), we get
0«(G) ={B € Hi(X,Z/2) | f.(B) = 0}.

It remains to prove that if § is a homology class in B(X,g) represented by an
algebraic curve D in X of genus at most g, then 0 is in ¢.(G), or equivalently,
f+(6) = 0. The last equality holds, the restriction map f|D : D — B being constant
(see how B is constructed). The proof is complete. O

Proof of Theorem 1.2. We may assume that M is a smooth submanifold of R™, where
n>2dim M + 1. Let Cy,...,C), be connected smooth curves in M, whose homology

classes [C1]m, - .., [Cplm generate G. We choose these curves in general position in
M, and so that

(bo) e«(H(C,Z)) is generated by oc,,...,0c,,

where

C=CiU...UC),

e : C — M is the inclusion map, and o¢, is the homology class in Hy(M,Z) repre-
sented by C; endowed with some orientation. Furthermore, as in the proof of Theorem
1.1, we may assume that

(b1) C; is a nonsingular algebraic curve in R™ of genus 0 for 1 < i < p.

Set
I'={ve  H(M,Z/2)| (v,a) =0 for all « € G},

and let vq,...,v4 be generators of I'.

Since Hy(M,Z) has no 2-torsion, the group H?(M,Z) has no 2-torsion, which in
turn implies that the restriction modulo 2 homomorphism H'(M,Z) — H*(M,Z/2)
is surjective (the universal coefficient theorem). Hence, in view of the orientability
of M, the homology class Poincaré dual to v; can be represented by a codimension
1 orientable smooth submanifold N; of M. If N; is disconnected, then joining two
connected components of N; with a tube in M, without modifying the remaining com-
ponents, we obtain an orientable smooth submanifold N} of M with [N = [N;]u
(orientability of N j’ is not a problem here since we do not preassign orientations to
the connected components of N;, and we join with a tube only two connected compo-
nents). After performing such an operation finitely many times, we may assume that
Nj is connected for 1 < j < ¢g. Moreover, we choose Ni,..., N, so that C1,...,C),
Ni,..., Ny are in general position in M.

Let E be a complex elliptic curve defined over R, whose set of real points A = E(R)
is connected. In particular, A is diffeomorphic to the unit circle. According to the
classical Pontryagin-Thom construction, there exist a smooth map h; : M — A and
a regular value y; € A of h; with N; = l”L;l(yj)7 cf. [8]. Consequently,

vj = h;(w)v
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where w is the unique generator of H'(A,7Z/2) = Z/2 (cf. [6, Proposition 2.15] if
desired). We assert that each restriction map h;|C; : C; — A is null homotopic for
1<i<pand1<j<gq. Indeed, we have

(w, (h;|Ce)«([C4])) =

where the last equality follows from the definition of I'. Thus (h;|C;)«([C;]) = 0, which
means that the topological degree modulo 2 of h;|C; is 0. Since C; is transverse to
N; = hj_l(yj) in M, the point y; is a regular value of h;|C;, and hence the set
(hi|C:) " (y;) = CiN N;
consists of an even number of points, say, m;; of them. If orientations of M, C;, Nj;
are fixed, the topological degree of h;|C; is equal, up to sign, to the intersection
number n;; of C; and IV; in M. Since C; and N; are connected, and m;; is even, it
follows that n;; = 0. Hence h;|C; is null homotopic, as asserted. Consequently, in
view of (bg), the homomorphism
(hj|C)s + Hi(C,Z) — H1(A, Z)

is zero. This implies that the restriction map h;|C : C — A is null homotopic, since
Hy(A,Z) can be identified with the fundamental group of A.
Let B=A x --- x A be the ¢g-fold product. The smooth map

h=(hi,....,hg): M — B
satisfies
I =h*(H'(B,Z/2)).
Moreover, the restriction map h|C : C — B is null homotopic. Now, arguing as in
the proof of Theorem 1.1, we obtain

(b2) G={a€ Hi(M,Z/2) | h.(a) = 0}.
Also, modifying h without affecting (by), we may assume
(bs3) h: M — B is constant on C.

Since A is a compact connected nonsingular real algebraic curve,
(bs) B has totally algebraic homology.

The next step is again as in the proof of Theorem 1.1. In virtue of (b1), (b3), (bs)
and Lemma 2.2, there exist a nonsingular algebraic subset X of R™, a smooth diffeo-
morphism ¢ : M — X, and a regular map f : X — B such that C C X, p(z) = « for
all z in C, and f o ¢ is homotopic to h. This in turn implies
and combined with (bs) yields

¢«(G) ={B € Hi(X,Z/2) | f.(B) = 0}.
It remains to prove that if § is a homology class in D(X) represented by a dividing
algebraic curve D in X, then ¢ is in ¢.(G), or equivalently, f.(d) = 0. To this end,
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choose a compact nonsingular real algebraic curve D and a regular map w : D —
D such that 7 is a birational isomorphism. In particular, D is a dividing curve.
Moreover, we have 5

£.(8) = (foeom.(1D]) =0,
where e : D — X is the inclusion map, and the last equality is a consequence of [5,
Theorem 1.1]. The proof is complete. (I
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