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SMOOTH HYPERSURFACE SECTIONS CONTAINING A GIVEN
SUBSCHEME OVER A FINITE FIELD

Bjorn Poonen

1. Introduction

Let Fq be a finite field of q = pa elements. Let X be a smooth quasi-projective
subscheme of Pn of dimension m ≥ 0 over Fq. N. Katz asked for a finite field analogue
of the Bertini smoothness theorem, and in particular asked whether one could always
find a hypersurface H in Pn such that H∩X is smooth of dimension m−1. A positive
answer was proved in [Gab01] and [Poo04] independently. The latter paper proved
also that in a precise sense, a positive fraction of hypersurfaces have the required
property.

The classical Bertini theorem was extended in [Blo70, KA79] to show that the
hypersurface can be chosen so as to contain a prescribed closed smooth subscheme
Z, provided that the condition dim X > 2 dim Z is satisfied. (The condition arises
naturally from a dimension-counting argument.) The goal of the current paper is to
prove an analogous result over finite fields. In fact, our result is stronger than that of
[KA79] in that we do not require Z ⊆ X, but weaker in that we assume that Z ∩X
be smooth. (With a little more work and complexity, we could prove a version for
a non-smooth intersection as well, but we restrict to the smooth case for simplicity.)
One reason for proving our result is that it is used by [SS07].

Let S = Fq[x0, . . . , xn] be the homogeneous coordinate ring of Pn. Let Sd ⊆ S
be the Fq-subspace of homogeneous polynomials of degree d. For each f ∈ Sd, let
Hf be the subscheme Proj(S/(f)) ⊆ Pn. For the rest of this paper, we fix a closed
subscheme Z ⊆ Pn. For d ∈ Z≥0, let Id be the Fq-subspace of f ∈ Sd that vanish on
Z. Let Ihomog =

⋃
d≥0 Id. We want to measure the density of subsets of Ihomog, but

under the definition in [Poo04], the set Ihomog itself has density 0 whenever dim Z > 0;
therefore we use a new definition of density, relative to Ihomog. Namely, we define the
density of a subset P ⊆ Ihomog by

µZ(P) := lim
d→∞

#(P ∩ Id)
#Id

,

if the limit exists. For a scheme X of finite type over Fq, define the zeta func-
tion [Wei49]

ζX(s) = ZX(q−s) :=
∏

closed P∈X

(
1− q−s deg P

)−1
= exp

( ∞∑
r=1

#X(Fqr )
r

q−rs

)
;
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the product and sum converge when Re(s) > dim X.

Theorem 1.1. Let X be a smooth quasi-projective subscheme of Pn of dimension
m ≥ 0 over Fq. Let Z be a closed subscheme of Pn. Assume that the scheme-theoretic
intersection V := Z ∩ X is smooth of dimension `. (If V is empty, take ` = −1.)
Define

P := { f ∈ Ihomog : Hf ∩X is smooth of dimension m− 1 }.
(i) If m > 2`, then

µZ(P) =
ζV (m + 1)

ζV (m− `) ζX(m + 1)
=

1
ζV (m− `) ζX−V (m + 1)

.

In this case, in particular, for d � 1, there exists a degree-d hypersurface H
containing Z such that H ∩X is smooth of dimension m− 1.

(ii) If m ≤ 2`, then µZ(P) = 0.

The proof will use the closed point sieve introduced in [Poo04]. In fact, the proof
is parallel to the one in that paper, but changes are required in almost every line.

2. Singular points of low degree

Let IZ ⊆ OPn be the ideal sheaf of Z, so Id = H0(Pn, IZ(d)). Tensoring the
surjection

O⊕(n+1) → O
(f0, . . . , fn) 7→ x0f0 + · · ·+ xnfn

with IZ , twisting by O(d), and taking global sections shows that S1Id = Id+1 for
d � 1. Fix c such that S1Id = Id+1 for all d ≥ c.

Before proving the main result of this section (Lemma 2.3), we need two lemmas.

Lemma 2.1. Let Y be a finite subscheme of Pn. Let

φd : Id = H0(Pn, IZ(d)) → H0(Y, IZ · OY (d))

be the map induced by the map of sheaves IZ → IZ ·OY on Pn. Then φd is surjective
for d ≥ c + dim H0(Y,OY ),

Proof. The map of sheaves OPn → OY on Pn is surjective so IZ → IZ ·OY is surjective
too. Thus φd is surjective for d � 1.

Enlarging Fq if necessary, we can perform a linear change of variable to assume
Y ⊆ An := {x0 6= 0}. Dehomogenization (setting x0 = 1) identifies Sd with the space
S′d of polynomials in Fq[x1, . . . , xn] of total degree ≤ d. and identifies φd with a map

I ′d → B := H0(Pn, IZ · OY ).

By definition of c, we have S′1I
′
d = I ′d+1 for d ≥ c. For d ≥ b, let Bd be the image of

I ′d in B, so S′1Bd = Bd+1 for d ≥ c. Since 1 ∈ S′1, we have I ′d ⊆ I ′d+1, so

Bc ⊆ Bc+1 ⊆ · · · .

But b := dim B < ∞, so Bj = Bj+1 for some j ∈ [c, c + b]. Then

Bj+2 = S′1Bj+1 = S′1Bj = Bj+1.

Similarly Bj = Bj+1 = Bj+2 = . . . , and these eventually equal B by the previous
paragraph. Hence φd is surjective for d ≥ j, and in particular for d ≥ c + b. �
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Lemma 2.2. Suppose m ⊆ OX is the ideal sheaf of a closed point P ∈ X. Let Y ⊆ X
be the closed subscheme whose ideal sheaf is m2 ⊆ OX . Then for any d ∈ Z≥0.

#H0(Y, IZ · OY (d)) =

{
q(m−`) deg P , if P ∈ V ,
q(m+1) deg P , if P /∈ V .

Proof. Since Y is finite, we may now ignore the twisting by O(d). The space
H0(Y,OY ) has a two-step filtration whose quotients have dimensions 1 and m over
the residue field κ of P . Thus #H0(Y,OY ) = (#κ)m+1 = q(m+1) deg P . If P ∈ V
(or equivalently P ∈ Z), then H0(Y,OZ∩Y ) has a filtration whose quotients have
dimensions 1 and ` over κ; if P /∈ V , then H0(Y,OZ∩Y ) = 0. Taking cohomology of

0 → IZ · OY → OY → OZ∩Y → 0

on the 0-dimensional scheme Y yields

#H0(Y, IZ · OY ) =
#H0(Y,OY )

#H0(Y,OZ∩Y )

=

{
q(m+1) deg P /q(`+1) deg P , if P ∈ V ,
q(m+1) deg P , if P /∈ V .

�

If U is a scheme of finite type over Fq, let U<r be the set of closed points of U of
degree < r. Similarly define U>r.

Lemma 2.3 (Singularities of low degree). Let notation and hypotheses be as in The-
orem 1.1, and define

Pr := { f ∈ Ihomog : Hf ∩X is smooth of dimension m− 1 at all P ∈ X<r }.

Then

µZ(Pr) =
∏

P∈V<r

(
1− q−(m−`) deg P

)
·

∏
P∈(X−V )<r

(
1− q−(m+1) deg P

)
.

Proof. Let X<r = {P1, . . . , Ps}. Let mi be the ideal sheaf of Pi on X. let Yi be the
closed subscheme of X with ideal sheaf m2

i ⊆ OX , and let Y =
⋃

Yi. Then Hf ∩X
is singular at Pi (more precisely, not smooth of dimension m− 1 at Pi) if and only if
the restriction of f to a section of OYi

(d) is zero.
By Lemma 2.1, µZ(P) equals the fraction of elements in H0(IZ · OY (d)) whose

restriction to a section of OYi(d) is nonzero for every i. Thus

µZ(Pr) =
s∏

i=1

#H0(Yi, IZ · OYi
)− 1

#H0(Yi, IZ · OYi
)

=
∏

P∈V<r

(
1− q−(m−`) deg P

)
·

∏
P∈(X−V )<r

(
1− q−(m+1) deg P

)
,

by Lemma 2.2. �
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Corollary 2.4. If m > 2`, then

lim
r→∞

µZ(Pr) =
ζV (m + 1)

ζX(m + 1) ζV (m− `)
.

Proof. The products in Lemma 2.3 are the partial products in the definition of the
zeta functions. For convergence, we need m − ` > dim V = `, which is equivalent to
m > 2`. �

Proof of Theorem 1.1(ii). We have P ⊆ Pr. By Lemma 2.3,

µZ(Pr) ≤
∏

P∈V<r

(
1− q−(m−`) deg P

)
,

which tends to 0 as r →∞ if m ≤ 2`. Thus µZ(P) = 0 in this case. �

From now on, we assume m > 2`.

3. Singular points of medium degree

Lemma 3.1. Let P ∈ X is a closed point of degree e, where e ≤ d−c
m+1 . Then the

fraction of f ∈ Id such that Hf ∩X is not smooth of dimension m− 1 at P equals{
q−(m−`)e, if P ∈ V ,
q−(m+1)e, if P /∈ V .

Proof. This follows by applying Lemma 2.1 to the Y in Lemma 2.2, and then applying
Lemma 2.2. �

Define the upper and lower densities µZ(P), µ
Z
(P) of a subset P ⊆ Ihomog as

µZ(P) was defined, but using lim sup and lim inf in place of lim.

Lemma 3.2 (Singularities of medium degree). Define

Qmedium
r :=

⋃
d≥0

{ f ∈ Id : there exists P ∈ X with r ≤ deg P ≤ d− b

m + 1

such that Hf ∩X is not smooth of dimension m− 1 at P }.

Then limr→∞ µZ(Qmedium
r ) = 0.

Proof. By Lemma 3.1, we have

#(Qmedium
r ∩ Id)

#Id
≤

∑
P∈Z

r≤deg P≤ d−b
m+1

q−(m−`) deg P +
∑

P∈X−Z
r≤deg P≤ d−b

m+1

q−(m+1) deg P

≤
∑

P∈Z≥r

q−(m−`) deg P +
∑

P∈(X−Z)≥r

q−(m+1) deg P .

Using the trivial bound that an m-dimensional variety has at most O(qem) closed
points of degree e, as in the proof of [Poo04, Lemma 2.4], we show that each of
the two sums converges to a value that is O(q−r) as r → ∞, under our assumption
m > 2`. �
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4. Singular points of high degree

Lemma 4.1. Let P be a closed point of degree e in Pn − Z. For d ≥ c, the fraction
of f ∈ Id that vanish at P is at most q−min(d−c,e).

Proof. Equivalently, we must show that the image of φd in Lemma 2.1 for Y = P has
Fq-dimension at least min(d − c, e). The proof of Lemma 2.1 shows that as d runs
through the integers c, c+1, . . . , this dimension increases by at least 1 until it reaches
its maximum, which is e. �

Lemma 4.2 (Singularities of high degree off V ). Define

Qhigh
X−V :=

⋃
d≥0

{ f ∈ Id : ∃P ∈ (X − V )> d−c
m+1

such that Hf ∩X is not smooth of dimension m− 1 at P }

Then µZ(Qhigh
X−V ) = 0.

Proof. It suffices to prove the lemma with X replaced by each of the sets in an open
covering of X − V , so we may assume X is contained in An = {x0 6= 0} ⊆ Pn, and
that V = ∅. Dehomogenize by setting x0 = 1, to identify Id ⊆ Sd with subspaces of
I ′d ⊆ S′d ⊆ A := Fq[x1, . . . , xn].

Given a closed point x ∈ X, choose a system of local parameters t1, . . . , tn ∈ A at
x on An such that tm+1 = tm+2 = · · · = tn = 0 defines X locally at x. Multiplying all
the ti by an element of A vanishing on Z but nonvanishing at x, we may assume in
addition that all the ti vanish on Z. Now dt1, . . . , dtn are a OAn,x-basis for the stalk
Ω1

An/Fq,x. Let ∂1, . . . , ∂n be the dual basis of the stalk TAn/Fq,x of the tangent sheaf.
Choose s ∈ A with s(x) 6= 0 to clear denominators so that Di := s∂i gives a global
derivation A → A for i = 1, . . . , n. Then there is a neighborhood Nx of x in An such
that Nx ∩ {tm+1 = tm+2 = · · · = tn = 0} = Nx ∩ X, Ω1

Nx/Fq
= ⊕n

i=1ONxdti, and
s ∈ O(Nu)∗. We may cover X with finitely many Nx, so we may reduce to the case
where X ⊆ Nx for a single x. For f ∈ I ′d ' Id, Hf ∩X fails to be smooth of dimension
m− 1 at a point P ∈ U if and only if f(P ) = (D1f)(P ) = · · · = (Dmf)(P ) = 0.

Let τ = maxi(deg ti), γ = b(d − τ)/pc, and η = bd/pc. If f0 ∈ I ′d, g1 ∈ S′γ , . . . ,
gm ∈ S′γ , and h ∈ I ′η are selected uniformly and independently at random, then the
distribution of

f := f0 + gp
1t1 + · · ·+ gp

mtm + hp

is uniform over I ′d, because of f0. We will bound the probability that an f constructed
in this way has a point P ∈ X> d−c

m+1
where f(P ) = (D1f)(P ) = · · · = (Dmf)(P ) = 0.

We have Dif = (Dif0) + gp
i s for i = 1, . . . ,m. We will select f0, g1, . . . , gm, h one at

a time. For 0 ≤ i ≤ m, define

Wi := X ∩ {D1f = · · · = Dif = 0}.

Claim 1: For 0 ≤ i ≤ m − 1, conditioned on a choice of f0, g1, . . . , gi for which
dim(Wi) ≤ m− i, the probability that dim(Wi+1) ≤ m− i− 1 is 1− o(1) as d →∞.
(The function of d represented by the o(1) depends on X and the Di.)

Proof of Claim 1: This is completely analogous to the corresponding proof in [Poo04].
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Claim 2: Conditioned on a choice of f0, g1, . . . , gm for which Wm is finite, Prob(Hf ∩
Wm ∩X> d−c

m+1
= ∅) = 1− o(1) as d →∞.

Proof of Claim 2: By Bézout’s theorem as in [Ful84, p. 10], we have #Wm = O(dm).
For a given point P ∈ Wm, the set Hbad of h ∈ I ′η for which Hf passes through P is
either ∅ or a coset of ker(evP : I ′η → κ(P )), where κ(P ) is the residue field of P , and
evP is the evaluation-at-P map. If moreover deg P > d−c

m+1 , then Lemma 4.1 implies

#Hbad/#I ′η ≤ q−ν where ν = min
(
η, d−c

m+1

)
. Hence

Prob(Hf ∩Wm ∩X> d−c
m+1

6= ∅) ≤ #Wmq−ν = O(dmq−ν) = o(1)

as d →∞, since ν eventually grows linearly in d. This proves Claim 2.

End of proof: Choose f ∈ Id uniformly at random. Claims 1 and 2 show that with
probability

∏m−1
i=0 (1 − o(1)) · (1 − o(1)) = 1 − o(1) as d → ∞, dim Wi = m − i for

i = 0, 1, . . . ,m and Hf ∩Wm ∩X> d−c
m+1

= ∅. But Hf ∩Wm is the subvariety of X cut
out by the equations f(P ) = (D1f)(P ) = · · · = (Dmf)(P ) = 0, so Hf ∩Wm∩X> d−c

m+1

is exactly the set of points of Hf ∩X of degree > d−c
m+1 where Hf ∩X is not smooth

of dimension m− 1. Thus µZ(Qhigh
X−V ) = 0. �

Lemma 4.3 (Singularities of high degree on V ). Define

Qhigh
V :=

⋃
d≥0

{ f ∈ Id : ∃P ∈ V> d−c
m+1

such that Hf ∩X is not smooth of dimension m− 1 at P }.

Then µZ(Qhigh
V ) = 0.

Proof. As before, we may assume X ⊆ An and we may dehomogenize. Given a closed
point x ∈ X, choose a system of local parameters t1, . . . , tn ∈ A at x on An such that
tm+1 = tm+2 = · · · = tn = 0 defines X locally at x, and t1 = t2 = · · · = tm−` =
tm+1 = tm+2 = · · · = tn = 0 defines V locally at x. If mw is the ideal sheaf of w on
Pn, then IZ → mw

m2
w

is surjective, so we may adjust t1, . . . , tm−` to assume that they
vanish not only on V but also on Z.

Define ∂i and Di as in the proof of Lemma 4.2. Then there is a neighborhood Nx

of x in An such that Nx ∩ {tm+1 = tm+2 = · · · = tn = 0} = Nx ∩ X, Ω1
Nx/Fq

=
⊕n

i=1ONx
dti, and s ∈ O(Nu)∗. Again we may assume X ⊆ Nx for a single x. For

f ∈ I ′d ' Id, Hf ∩X fails to be smooth of dimension m− 1 at a point P ∈ V if and
only if f(P ) = (D1f)(P ) = · · · = (Dmf)(P ) = 0.

Again let τ = maxi(deg ti), γ = b(d − τ)/pc, and η = bd/pc. If f0 ∈ I ′d, g1 ∈ S′γ ,
. . . , g`+1 ∈ S′γ , are chosen uniformly at random, then

f := f0 + gp
1t1 + · · ·+ gp

`+1t`+1

is a random element of I ′d, since ` + 1 ≤ m− `.
For i = 0, . . . , ` + 1, the subscheme

Wi := V ∩ {D1f = · · · = Dif = 0}
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depends only on the choices of f0, g1, . . . , gi. The same argument as in the previous
proof shows that for i = 0, . . . , `, we have

Prob(dim Wi ≤ `− i) = 1− o(1)

as d →∞. In particular, W` is finite with probability 1− o(1).
To prove that µZ(Qhigh

V ) = 0, it remains to prove that conditioned on choices of
f0, g1, . . . , g` making dim W` finite,

Prob(W`+1 ∩ V> d−c
m+1

= ∅) = 1− o(1).

By Bézout’s theorem, #W` = O(d`). The set Hbad of choices of g`+1 making D`+1f
vanish at a given point P ∈ W` is either empty or a coset of ker(evP : S′γ → κ(P )).
Lemma 2.5 of [Poo04] implies that the size of this kernel (or its coset) as a fraction
of #S′γ is at most q−ν where ν := min

(
γ, d−c

m+1

)
. Since #W`q

ν = o(1) as d →∞, we
are done. �

5. Conclusion

Proof of Theorem 1.1(i). We have

P ⊆ Pr ⊆ P ∪Qmedium
r ∪Qhigh

X−V ∪Qhigh
V ,

so µZ(P) and µ
Z
(P) each differ from µZ(Pr) by at most µZ(Qmedium

r )+µZ(Qhigh
X−V )+

µZ(Qhigh
V ). Applying Corollary 2.4 and Lemmas 3.2, 4.2, and 4.3, we obtain

µZ(P) = lim
r→∞

µZ(Pr) =
ζV (m + 1)

ζV (m− `) ζX(m + 1)
.

�
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