SMOOTH HYPERSURFACE SECTIONS CONTAINING A GIVEN SUBSCHEME OVER A FINITE FIELD

Bjorn Poonen

1. Introduction

Let \mathbb{F}_q be a finite field of $q = p^a$ elements. Let X be a smooth quasi-projective subscheme of \mathbb{P}^n of dimension $m \geq 0$ over \mathbb{F}_q . N. Katz asked for a finite field analogue of the Bertini smoothness theorem, and in particular asked whether one could always find a hypersurface H in \mathbb{P}^n such that $H \cap X$ is smooth of dimension $m-1$. A positive answer was proved in [\[Gab01\]](#page-6-0) and [\[Poo04\]](#page-6-1) independently. The latter paper proved also that in a precise sense, a positive fraction of hypersurfaces have the required property.

The classical Bertini theorem was extended in [\[Blo70,](#page-6-2) [KA79\]](#page-6-3) to show that the hypersurface can be chosen so as to contain a prescribed closed smooth subscheme Z, provided that the condition dim $X > 2 \dim Z$ is satisfied. (The condition arises naturally from a dimension-counting argument.) The goal of the current paper is to prove an analogous result over finite fields. In fact, our result is stronger than that of [\[KA79\]](#page-6-3) in that we do not require $Z \subseteq X$, but weaker in that we assume that $Z \cap X$ be smooth. (With a little more work and complexity, we could prove a version for a non-smooth intersection as well, but we restrict to the smooth case for simplicity.) One reason for proving our result is that it is used by [\[SS07\]](#page-6-4).

Let $S = \mathbb{F}_q[x_0, \ldots, x_n]$ be the homogeneous coordinate ring of \mathbb{P}^n . Let $S_d \subseteq S$ be the \mathbb{F}_q -subspace of homogeneous polynomials of degree d. For each $f \in S_d$, let H_f be the subscheme $\text{Proj}(S/(f)) \subseteq \mathbb{P}^n$. For the rest of this paper, we fix a closed subscheme $Z \subseteq \mathbb{P}^n$. For $d \in \mathbb{Z}_{\geq 0}$, let I_d be the \mathbb{F}_q -subspace of $f \in S_d$ that vanish on Z. Let $I_{\text{homog}} = \bigcup_{d \geq 0} I_d$. We want to measure the density of subsets of I_{homog} , but under the definition in [\[Poo04\]](#page-6-1), the set I_{homog} itself has density 0 whenever dim $Z > 0$; therefore we use a new definition of density, relative to I_{homog} . Namely, we define the *density* of a subset $P \subseteq I_{\text{homog}}$ by

$$
\mu_Z(\mathcal{P}) := \lim_{d \to \infty} \frac{\#(\mathcal{P} \cap I_d)}{\#I_d},
$$

if the limit exists. For a scheme X of finite type over \mathbb{F}_q , define the zeta function [\[Wei49\]](#page-6-5)

$$
\zeta_X(s) = Z_X(q^{-s}) := \prod_{\text{closed } P \in X} \left(1 - q^{-s \text{ deg } P}\right)^{-1} = \exp\left(\sum_{r=1}^{\infty} \frac{\#X(\mathbb{F}_{q^r})}{r} q^{-rs}\right);
$$

Received by the editors March 8, 2007.

1991 Mathematics Subject Classification. Primary 14J70; Secondary 11M38, 11M41, 14G40, 14N05.

This research was supported by NSF grant DMS-0301280.

the product and sum converge when $\text{Re}(s) > \dim X$.

Theorem 1.1. Let X be a smooth quasi-projective subscheme of \mathbb{P}^n of dimension $m \geq 0$ over \mathbb{F}_q . Let Z be a closed subscheme of \mathbb{P}^n . Assume that the scheme-theoretic intersection $\hat{V} := Z \cap X$ is smooth of dimension ℓ . (If V is empty, take $\ell = -1$.) Define

$$
\mathcal{P} := \{ f \in I_{\text{homog}} : H_f \cap X \text{ is smooth of dimension } m - 1 \}.
$$

(i) If $m > 2\ell$, then

$$
\mu_Z(\mathcal{P}) = \frac{\zeta_V(m+1)}{\zeta_V(m-\ell)\,\zeta_X(m+1)} = \frac{1}{\zeta_V(m-\ell)\,\zeta_{X-V}(m+1)}.
$$

In this case, in particular, for $d \gg 1$, there exists a degree-d hypersurface H containing Z such that $H \cap X$ is smooth of dimension $m-1$.

(ii) If $m \leq 2\ell$, then $\mu_Z(\mathcal{P}) = 0$.

The proof will use the closed point sieve introduced in [\[Poo04\]](#page-6-1). In fact, the proof is parallel to the one in that paper, but changes are required in almost every line.

2. Singular points of low degree

Let $\mathcal{I}_Z \subseteq \mathcal{O}_{\mathbb{P}^n}$ be the ideal sheaf of Z, so $I_d = H^0(\mathbb{P}^n, \mathcal{I}_Z(d))$. Tensoring the surjection

$$
\mathcal{O}^{\oplus (n+1)} \to \mathcal{O}
$$

$$
(f_0, \dots, f_n) \mapsto x_0 f_0 + \dots + x_n f_n
$$

with \mathcal{I}_Z , twisting by $\mathcal{O}(d)$, and taking global sections shows that $S_1I_d = I_{d+1}$ for $d \gg 1$. Fix c such that $S_1I_d = I_{d+1}$ for all $d \geq c$.

Before proving the main result of this section (Lemma [2.3\)](#page-2-0), we need two lemmas.

Lemma 2.1. Let Y be a finite subscheme of \mathbb{P}^n . Let

$$
\phi_d \colon I_d = H^0(\mathbb{P}^n, \mathcal{I}_Z(d)) \to H^0(Y, \mathcal{I}_Z \cdot \mathcal{O}_Y(d))
$$

be the map induced by the map of sheaves $\mathcal{I}_Z \to \mathcal{I}_Z \cdot \mathcal{O}_Y$ on \mathbb{P}^n . Then ϕ_d is surjective for $d \geq c + \dim H^0(Y, \mathcal{O}_Y)$,

Proof. The map of sheaves $\mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_Y$ on \mathbb{P}^n is surjective so $\mathcal{I}_Z \to \mathcal{I}_Z \cdot \mathcal{O}_Y$ is surjective too. Thus ϕ_d is surjective for $d \gg 1$.

Enlarging \mathbb{F}_q if necessary, we can perform a linear change of variable to assume $Y \subseteq \mathbb{A}^n := \{x_0 \neq 0\}$. Dehomogenization (setting $x_0 = 1$) identifies S_d with the space S'_d of polynomials in $\mathbb{F}_q[x_1,\ldots,x_n]$ of total degree $\leq d$. and identifies ϕ_d with a map

$$
I'_d \to B := H^0(\mathbb{P}^n, \mathcal{I}_Z \cdot \mathcal{O}_Y).
$$

By definition of c, we have $S_1'I_d' = I_{d+1}'$ for $d \ge c$. For $d \ge b$, let B_d be the image of I'_d in B, so $S'_1B_d = B_{d+1}$ for $d \geq c$. Since $1 \in S'_1$, we have $I'_d \subseteq I'_{d+1}$, so

$$
B_c \subseteq B_{c+1} \subseteq \cdots.
$$

But $b := \dim B < \infty$, so $B_j = B_{j+1}$ for some $j \in [c, c + b]$. Then

$$
B_{j+2} = S_1' B_{j+1} = S_1' B_j = B_{j+1}.
$$

Similarly $B_j = B_{j+1} = B_{j+2} = \ldots$, and these eventually equal B by the previous paragraph. Hence ϕ_d is surjective for $d \geq j$, and in particular for $d \geq c + b$. **Lemma 2.2.** Suppose $\mathfrak{m} \subseteq \mathcal{O}_X$ is the ideal sheaf of a closed point $P \in X$. Let $Y \subseteq X$ be the closed subscheme whose ideal sheaf is $\mathfrak{m}^2 \subseteq \mathcal{O}_X$. Then for any $d \in \mathbb{Z}_{\geq 0}$.

#H⁰ (Y, ^I^Z · O^Y (d)) = (q (m−`) deg ^P , if P ∈ V , q (m+1) deg ^P , if P /∈ V .

Proof. Since Y is finite, we may now ignore the twisting by $\mathcal{O}(d)$. The space $H^0(Y, \mathcal{O}_Y)$ has a two-step filtration whose quotients have dimensions 1 and m over the residue field κ of P. Thus $\#H^0(Y,\mathcal{O}_Y) = (\#\kappa)^{m+1} = q^{(m+1)\deg P}$. If $P \in V$ (or equivalently $P \in Z$), then $H^0(Y, \mathcal{O}_{Z \cap Y})$ has a filtration whose quotients have dimensions 1 and ℓ over κ ; if $P \notin V$, then $H^0(Y, \mathcal{O}_{Z \cap Y}) = 0$. Taking cohomology of

$$
0 \to \mathcal{I}_Z \cdot \mathcal{O}_Y \to \mathcal{O}_Y \to \mathcal{O}_{Z \cap Y} \to 0
$$

on the 0-dimensional scheme Y yields

$$
#H^{0}(Y, \mathcal{I}_{Z} \cdot \mathcal{O}_{Y}) = \frac{\#H^{0}(Y, \mathcal{O}_{Y})}{\#H^{0}(Y, \mathcal{O}_{Z \cap Y})}
$$

=
$$
\begin{cases} q^{(m+1) \deg P}/q^{(\ell+1) \deg P}, & \text{if } P \in V, \\ q^{(m+1) \deg P}, & \text{if } P \notin V. \end{cases}
$$

If U is a scheme of finite type over \mathbb{F}_q , let $U_{\leq r}$ be the set of closed points of U of degree $\langle r$. Similarly define $U_{\geq r}$.

Lemma 2.3 (Singularities of low degree). Let notation and hypotheses be as in Theorem [1.1,](#page-1-0) and define

$$
\mathcal{P}_r := \{ f \in I_{\text{homog}} : H_f \cap X \text{ is smooth of dimension } m-1 \text{ at all } P \in X_{\leq r} \}.
$$

Then

$$
\mu_Z(\mathcal{P}_r) = \prod_{P \in V_{\leq r}} \left(1 - q^{-(m-\ell) \deg P}\right) \cdot \prod_{P \in (X-V)_{\leq r}} \left(1 - q^{-(m+1) \deg P}\right).
$$

Proof. Let $X_{\leq r} = \{P_1, \ldots, P_s\}$. Let \mathfrak{m}_i be the ideal sheaf of P_i on X. let Y_i be the closed subscheme of X with ideal sheaf $\mathfrak{m}_i^2 \subseteq \mathcal{O}_X$, and let $Y = \bigcup Y_i$. Then $H_f \cap X$ is singular at P_i (more precisely, not smooth of dimension $m-1$ at P_i) if and only if the restriction of f to a section of $\mathcal{O}_{Y_i}(d)$ is zero.

By Lemma [2.1,](#page-1-1) $\mu_Z(\mathcal{P})$ equals the fraction of elements in $H^0(\mathcal{I}_Z \cdot \mathcal{O}_Y(d))$ whose restriction to a section of $\mathcal{O}_{Y_i}(d)$ is nonzero for every *i*. Thus

$$
\mu_Z(\mathcal{P}_r) = \prod_{i=1}^s \frac{\#H^0(Y_i, \mathcal{I}_Z \cdot \mathcal{O}_{Y_i}) - 1}{\#H^0(Y_i, \mathcal{I}_Z \cdot \mathcal{O}_{Y_i})}
$$

=
$$
\prod_{P \in V_{\leq r}} \left(1 - q^{-(m-\ell) \deg P}\right) \cdot \prod_{P \in (X-V)_{\leq r}} \left(1 - q^{-(m+1) \deg P}\right),
$$

by Lemma [2.2.](#page-2-1) \Box

 \Box

Corollary 2.4. If $m > 2\ell$, then

$$
\lim_{r \to \infty} \mu_Z(\mathcal{P}_r) = \frac{\zeta_V(m+1)}{\zeta_X(m+1)\zeta_V(m-\ell)}.
$$

Proof. The products in Lemma [2.3](#page-2-0) are the partial products in the definition of the zeta functions. For convergence, we need $m - \ell > \dim V = \ell$, which is equivalent to $m > 2\ell$.

Proof of Theorem [1.1\(](#page-1-0)ii). We have $P \subseteq P_r$. By Lemma [2.3,](#page-2-0)

$$
\mu_Z(\mathcal{P}_r) \le \prod_{P \in V_{\le r}} \left(1 - q^{-(m-\ell)\deg P}\right),
$$

which tends to 0 as $r \to \infty$ if $m \le 2\ell$. Thus $\mu_Z(\mathcal{P}) = 0$ in this case.

From now on, we assume $m > 2\ell$.

3. Singular points of medium degree

Lemma 3.1. Let $P \in X$ is a closed point of degree e, where $e \leq \frac{d-c}{m+1}$. Then the fraction of $f \in I_d$ such that $H_f \cap X$ is not smooth of dimension $m-1$ at P equals

$$
\begin{cases} q^{-(m-\ell)e}, & \text{if } P \in V, \\ q^{-(m+1)e}, & \text{if } P \notin V. \end{cases}
$$

Proof. This follows by applying Lemma [2.1](#page-1-1) to the Y in Lemma [2.2,](#page-2-1) and then applying Lemma [2.2.](#page-2-1)

Define the upper and lower densities $\overline{\mu}_Z(\mathcal{P}), \underline{\mu}_Z(\mathcal{P})$ of a subset $\mathcal{P} \subseteq I_{\text{homog}}$ as $\mu_Z(\mathcal{P})$ was defined, but using lim sup and lim inf in place of lim.

Lemma 3.2 (Singularities of medium degree). Define

$$
\mathcal{Q}_r^{\text{medium}} := \bigcup_{d \ge 0} \{ f \in I_d : \text{there exists } P \in X \text{ with } r \le \deg P \le \frac{d-b}{m+1}
$$

such that $H_f \cap X$ is not smooth of dimension $m-1$ at P .

Then $\lim_{r \to \infty} \overline{\mu}_Z(\mathcal{Q}_r^{\text{medium}}) = 0.$

Proof. By Lemma [3.1,](#page-3-0) we have

$$
\frac{\#(Q_r^{\text{medium}} \cap I_d)}{\#I_d} \leq \sum_{\substack{P \in Z \\ r \leq \deg P \leq \frac{d-b}{m+1} \\ P \in Z_{\geq r}}} q^{-(m-\ell) \deg P} + \sum_{\substack{P \in X - Z \\ r \leq \deg P \leq \frac{d-b}{m+1} \\ P \in (X - Z)_{\geq r}}} q^{-(m+1) \deg P}
$$

Using the trivial bound that an m-dimensional variety has at most $O(q^{em})$ closed points of degree e , as in the proof of $[Pool4, Lemma 2.4]$, we show that each of the two sums converges to a value that is $O(q^{-r})$ as $r \to \infty$, under our assumption $m > 2\ell$.

4. Singular points of high degree

Lemma 4.1. Let P be a closed point of degree e in $\mathbb{P}^n - Z$. For $d \geq c$, the fraction of $f \in I_d$ that vanish at P is at most $q^{-\min(d-c,e)}$.

Proof. Equivalently, we must show that the image of ϕ_d in Lemma [2.1](#page-1-1) for $Y = P$ has \mathbb{F}_q -dimension at least min $(d - c, e)$. The proof of Lemma [2.1](#page-1-1) shows that as d runs through the integers $c, c+1, \ldots$, this dimension increases by at least 1 until it reaches its maximum, which is e .

Lemma 4.2 (Singularities of high degree off V). Define

$$
\mathcal{Q}_{X-V}^{\text{high}} := \bigcup_{d \ge 0} \{ f \in I_d : \exists P \in (X - V)_{\ge \frac{d-c}{m+1}}
$$

such that $H_f \cap X$ is not smooth of dimension $m-1$ at P\}

Then $\overline{\mu}_Z(\mathcal{Q}_{X-V}^{\text{high}})=0.$

Proof. It suffices to prove the lemma with X replaced by each of the sets in an open covering of $X - V$, so we may assume X is contained in $\mathbb{A}^n = \{x_0 \neq 0\} \subseteq \mathbb{P}^n$, and that $V = \emptyset$. Dehomogenize by setting $x_0 = 1$, to identify $I_d \subseteq S_d$ with subspaces of $I'_d \subseteq S'_d \subseteq A := \mathbb{F}_q[x_1,\ldots,x_n].$

Given a closed point $x \in X$, choose a system of local parameters $t_1, \ldots, t_n \in A$ at x on \mathbb{A}^n such that $t_{m+1} = t_{m+2} = \cdots = t_n = 0$ defines X locally at x. Multiplying all the t_i by an element of A vanishing on Z but nonvanishing at x, we may assume in addition that all the t_i vanish on Z. Now dt_1, \ldots, dt_n are a $\mathcal{O}_{\mathbb{A}^n,x}$ -basis for the stalk $\Omega^1_{\mathbb{A}^n/\mathbb{F}_q,x}$. Let $\partial_1,\ldots,\partial_n$ be the dual basis of the stalk $\mathcal{T}_{\mathbb{A}^n/\mathbb{F}_q,x}$ of the tangent sheaf. Choose $s \in A$ with $s(x) \neq 0$ to clear denominators so that $D_i := s\partial_i$ gives a global derivation $A \to A$ for $i = 1, ..., n$. Then there is a neighborhood N_x of x in \mathbb{A}^n such that $N_x \cap \{t_{m+1} = t_{m+2} = \cdots = t_n = 0\} = N_x \cap X$, $\Omega^1_{N_x/\mathbb{F}_q} = \bigoplus_{i=1}^n \mathcal{O}_{N_x} dt_i$, and $s \in \mathcal{O}(N_u)^*$. We may cover X with finitely many N_x , so we may reduce to the case where $X \subseteq N_x$ for a single x. For $f \in I'_d \simeq I_d$, $H_f \cap X$ fails to be smooth of dimension $m-1$ at a point $P \in U$ if and only if $f(P) = (D_1f)(P) = \cdots = (D_mf)(P) = 0$.

Let $\tau = \max_i (\deg t_i), \ \gamma = \lfloor (d - \tau)/p \rfloor$, and $\eta = \lfloor d/p \rfloor$. If $f_0 \in I'_d, g_1 \in S'_\gamma, \ \ldots$, $g_m \in S'_\gamma$, and $h \in I'_\eta$ are selected uniformly and independently at random, then the distribution of

$$
f := f_0 + g_1^p t_1 + \dots + g_m^p t_m + h^p
$$

is uniform over I'_d , because of f_0 . We will bound the probability that an f constructed in this way has a point $P \in X_{\geq \frac{d-c}{m+1}}$ where $f(P) = (D_1 f)(P) = \cdots = (D_m f)(P) = 0$. We have $D_i f = (D_i f_0) + g_i^p s$ for $i = 1, ..., m$. We will select $f_0, g_1, ..., g_m, h$ one at a time. For $0 \leq i \leq m$, define

$$
W_i := X \cap \{D_1 f = \dots = D_i f = 0\}.
$$

Claim 1: For $0 \le i \le m-1$, conditioned on a choice of f_0, g_1, \ldots, g_i for which $\dim(W_i) \leq m - i$, the probability that $\dim(W_{i+1}) \leq m - i - 1$ is $1 - o(1)$ as $d \to \infty$. (The function of d represented by the $o(1)$ depends on X and the D_i .)

Proof of Claim 1: This is completely analogous to the corresponding proof in [\[Poo04\]](#page-6-1).

Claim 2: Conditioned on a choice of f_0, g_1, \ldots, g_m for which W_m is finite, Prob $(H_f \cap$ $W_m \cap X_{>\frac{d-c}{m+1}} = \emptyset$ = 1 – $o(1)$ as $d \to \infty$.

Proof of Claim 2: By Bézout's theorem as in [\[Ful84,](#page-6-6) p. 10], we have $\#W_m = O(d^m)$. For a given point $P \in W_m$, the set H^{bad} of $h \in I'_\eta$ for which H_f passes through P is either \emptyset or a coset of ker(ev_P : $I'_\eta \to \kappa(P)$), where $\kappa(P)$ is the residue field of P, and ev_P is the evaluation-at-P map. If moreover deg $P > \frac{d-c}{m+1}$, then Lemma [4.1](#page-4-0) implies $\#H^{\text{bad}}/\#I'_\eta \leq q^{-\nu}$ where $\nu = \min\left(\eta, \frac{d-c}{m+1}\right)$. Hence

$$
\text{Prob}(H_f \cap W_m \cap X_{> \frac{d-c}{m+1}} \neq \emptyset) \leq \#W_m q^{-\nu} = O(d^m q^{-\nu}) = o(1)
$$

as $d \to \infty$, since ν eventually grows linearly in d. This proves Claim 2.

End of proof: Choose $f \in I_d$ uniformly at random. Claims 1 and 2 show that with probability $\prod_{i=0}^{m-1} (1 - o(1)) \cdot (1 - o(1)) = 1 - o(1)$ as $d \to \infty$, dim $W_i = m - i$ for $i = 0, 1, \ldots, m$ and $H_f \cap W_m \cap X_{\geq \frac{d-c}{m+1}} = \emptyset$. But $H_f \cap W_m$ is the subvariety of X cut out by the equations $f(P) = (D_1 f)(P) = \cdots = (D_m f)(P) = 0$, so $H_f \cap W_m \cap X_{> \frac{d-c}{m+1}}$ is exactly the set of points of $H_f \cap X$ of degree $\geq \frac{d-c}{m+1}$ where $H_f \cap X$ is not smooth of dimension $m-1$. Thus $\overline{\mu}_Z(\mathcal{Q}_{X-V}^{\text{high}})=0$.

Lemma 4.3 (Singularities of high degree on V). Define

$$
\mathcal{Q}_V^{\text{high}} := \bigcup_{d \ge 0} \{ f \in I_d : \exists P \in V_{> \frac{d-c}{m+1}} \}
$$

such that $H_f \cap X$ is not smooth of dimension $m-1$ at $P \}.$

Then
$$
\overline{\mu}_Z(\mathcal{Q}_V^{\text{high}})=0.
$$

Proof. As before, we may assume $X \subseteq \mathbb{A}^n$ and we may dehomogenize. Given a closed point $x \in X$, choose a system of local parameters $t_1, \ldots, t_n \in A$ at x on \mathbb{A}^n such that $t_{m+1} = t_{m+2} = \cdots = t_n = 0$ defines X locally at x, and $t_1 = t_2 = \cdots = t_{m-\ell}$ $t_{m+1} = t_{m+2} = \cdots = t_n = 0$ defines V locally at x. If \mathfrak{m}_w is the ideal sheaf of w on \mathbb{P}^n , then $\mathcal{I}_Z \to \frac{\mathfrak{m}_w}{\mathfrak{m}_w^2}$ is surjective, so we may adjust $t_1, \ldots, t_{m-\ell}$ to assume that they vanish not only on V but also on Z.

Define ∂_i and D_i as in the proof of Lemma [4.2.](#page-4-1) Then there is a neighborhood N_x of x in \mathbb{A}^n such that $N_x \cap \{t_{m+1} = t_{m+2} = \cdots = t_n = 0\} = N_x \cap X$, $\Omega^1_{N_x/\mathbb{F}_q} =$ $\bigoplus_{i=1}^n \mathcal{O}_{N_x} dt_i$, and $s \in \mathcal{O}(N_u)^*$. Again we may assume $X \subseteq N_x$ for a single x. For $f \in I'_d \simeq I_d$, $H_f \cap X$ fails to be smooth of dimension $m-1$ at a point $P \in V$ if and only if $f(P) = (D_1 f)(P) = \cdots = (D_m f)(P) = 0.$

Again let $\tau = \max_i (\deg t_i), \ \gamma = \lfloor (d - \tau)/p \rfloor$, and $\eta = \lfloor d/p \rfloor$. If $f_0 \in I'_d, g_1 \in S'_\gamma$, $\ldots, g_{\ell+1} \in S'_{\gamma}$, are chosen uniformly at random, then

$$
f := f_0 + g_1^p t_1 + \dots + g_{\ell+1}^p t_{\ell+1}
$$

is a random element of I'_d , since $\ell + 1 \leq m - \ell$.

For $i = 0, \ldots, \ell + 1$, the subscheme

$$
W_i := V \cap \{D_1 f = \dots = D_i f = 0\}
$$

depends only on the choices of f_0, g_1, \ldots, g_i . The same argument as in the previous proof shows that for $i = 0, \ldots, \ell$, we have

$$
Prob(\dim W_i \le \ell - i) = 1 - o(1)
$$

as $d \to \infty$. In particular, W_{ℓ} is finite with probability $1 - o(1)$.

To prove that $\overline{\mu}_Z(Q_V^{\text{high}})=0$, it remains to prove that conditioned on choices of f_0, g_1, \ldots, g_ℓ making dim W_ℓ finite,

$$
\text{Prob}(W_{\ell+1} \cap V_{> \frac{d-c}{m+1}} = \emptyset) = 1 - o(1).
$$

By Bézout's theorem, $\#W_{\ell} = O(d^{\ell})$. The set H^{bad} of choices of $g_{\ell+1}$ making $D_{\ell+1}f$ vanish at a given point $P \in W_\ell$ is either empty or a coset of ker(ev_P : $S'_{\gamma} \to \kappa(P)$). Lemma 2.5 of [\[Poo04\]](#page-6-1) implies that the size of this kernel (or its coset) as a fraction of $\#S'_{\gamma}$ is at most $q^{-\nu}$ where $\nu := \min\left(\gamma, \frac{d-c}{m+1}\right)$. Since $\#W_{\ell}q^{\nu} = o(1)$ as $d \to \infty$, we are done. \Box

5. Conclusion

Proof of Theorem [1.1\(](#page-1-0)i). We have

$$
\mathcal{P} \subseteq \mathcal{P}_r \subseteq \mathcal{P} \cup \mathcal{Q}_r^{\text{medium}} \cup \mathcal{Q}_{X-V}^{\text{high}} \cup \mathcal{Q}_V^{\text{high}},
$$

so $\overline{\mu}_Z(\mathcal{P})$ and $\underline{\mu}_Z(\mathcal{P})$ each differ from $\mu_Z(\mathcal{P}_r)$ by at most $\overline{\mu}_Z(\mathcal{Q}_r^{\text{medium}}) + \overline{\mu}_Z(\mathcal{Q}_{X-V}^{\text{high}})$ $\overline{\mu}_Z(\mathcal{Q}_V^{\text{high}})$. Applying Corollary [2.4](#page-2-2) and Lemmas [3.2,](#page-3-1) [4.2,](#page-4-1) and [4.3,](#page-5-0) we obtain

$$
\mu_Z(\mathcal{P}) = \lim_{r \to \infty} \mu_Z(\mathcal{P}_r) = \frac{\zeta_V(m+1)}{\zeta_V(m-\ell)\,\zeta_X(m+1)}.
$$

Acknowledgements

I thank Shuji Saito for asking the question answered by this paper, and for pointing out [\[KA79\]](#page-6-3).

References

- [Blo70] S. Bloch, 1970. Ph.D. thesis, Columbia University.
- [Ful84] W. Fulton, Introduction to intersection theory in algebraic geometry, CBMS Regional Conference Series in Mathematics, vol. 54, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1984.MR735435 (85j:14008)
- [Gab01] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192–1200.MR1878318 (2003g:14034)
- [KA79] S. L. Kleiman and Allen B. Altman, Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979), no. 8, 775–790.MR529493 (81i:14007)
- [Poo04] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099– 1127. MR 2144974 (2006a:14035)
- [SS07] S. Saito and Kanetomo Sato, Finiteness theorem on zero-cycles over p-adic fields (April 11, 2007). arXiv:math.AG/0605165.
- [Wei49] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508.MR0029393 (10,592e)

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA E-mail address: poonen@math.berkeley.edu

URL: http://math.berkeley.edu/~poonen