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SMOOTH HYPERSURFACE SECTIONS CONTAINING A GIVEN
SUBSCHEME OVER A FINITE FIELD

BJORN POONEN

1. Introduction

Let F, be a finite field of ¢ = p® elements. Let X be a smooth quasi-projective
subscheme of P" of dimension m > 0 over F,. N. Katz asked for a finite field analogue
of the Bertini smoothness theorem, and in particular asked whether one could always
find a hypersurface H in P" such that HNX is smooth of dimension m —1. A positive
answer was proved in |Gab01] and [Poo04] independently. The latter paper proved
also that in a precise sense, a positive fraction of hypersurfaces have the required
property.

The classical Bertini theorem was extended in [Blo70,[KA79] to show that the
hypersurface can be chosen so as to contain a prescribed closed smooth subscheme
Z, provided that the condition dim X > 2dim Z is satisfied. (The condition arises
naturally from a dimension-counting argument.) The goal of the current paper is to
prove an analogous result over finite fields. In fact, our result is stronger than that of
[KA79] in that we do not require Z C X, but weaker in that we assume that Z N X
be smooth. (With a little more work and complexity, we could prove a version for
a non-smooth intersection as well, but we restrict to the smooth case for simplicity.)
One reason for proving our result is that it is used by [SS07].

Let S = Fy[zo,...,x,] be the homogeneous coordinate ring of P*. Let Sy C S
be the [Fg-subspace of homogeneous polynomials of degree d. For each f € Sy, let
Hy be the subscheme Proj(S/(f)) € P". For the rest of this paper, we fix a closed
subscheme Z C P". For d € Z>q, let I; be the Fy-subspace of f € Sy that vanish on
Z. Let Iyomog = Uy>o La- We want to measure the density of subsets of Iomog, but
under the definition in [Poo04], the set Ihomog itself has density 0 whenever dim Z > 0;
therefore we use a new definition of density, relative to Inomog. Namely, we define the
density of a subset P C Iomog by

. #(P N1y
P) = lim ————=,
pz(P) = lim vy
if the limit exists. For a scheme X of finite type over F,, define the zeta func-
tion [Weid9]

@ = Zale =[] (1 —g )" = exp (Z #X@f')qm) |

r
closed PeX r=1
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the product and sum converge when Re(s) > dim X.

Theorem 1.1. Let X be a smooth quasi-projective subscheme of P™ of dimension
m > 0 overIFy. Let Z be a closed subscheme of P". Assume that the scheme-theoretic
intersection V. := Z N X is smooth of dimension €. (If V is empty, take £ = —1.)
Define

P :={f € Ihomog : Hf N X is smooth of dimension m —1}.

(i) If m > 2¢, then
Gv(m+1) 1

P e = .
HeP) = -0 Cxm T D)~ Gom =) G (m + )
In this case, in particular, for d > 1, there exists a degree-d hypersurface H

containing Z such that H N X is smooth of dimension m — 1.
(ii) If m < 24, then uz(P) = 0.

The proof will use the closed point sieve introduced in [Poo04]. In fact, the proof
is parallel to the one in that paper, but changes are required in almost every line.

2. Singular points of low degree

Let Tz C Opn be the ideal sheaf of Z, so I; = H(P",Z7(d)). Tensoring the
surjection

O@(n+1) N

(an---afn) Hx0f0++xnfn

with Zz, twisting by O(d), and taking global sections shows that Sy = I4q for
d > 1. Fix ¢ such that S11y = I441 for all d > c.

Before proving the main result of this section (Lemma , we need two lemmas.
Lemma 2.1. Let Y be a finite subscheme of P™. Let

ba: Ig = H'(P",T7(d)) — H°(Y,Zz - Oy(d))

be the map induced by the map of sheaves Ty — Ly -Oy on P™. Then ¢q is surjective
for d > c+dim H(Y, Oy),

Proof. The map of sheaves Opn — Oy on P™ is surjective so Z; — Zz-QOy is surjective
too. Thus ¢4 is surjective for d > 1.

Enlarging I, if necessary, we can perform a linear change of variable to assume
Y C A" := {z¢ # 0}. Dehomogenization (setting o = 1) identifies Sq with the space
S’ of polynomials in Fy[x1,...,x,] of total degree < d. and identifies ¢4 with a map

I, — B:= H°(P", Iz - Oy).
By definition of ¢, we have S11; = I; | for d > c. For d > b, let By be the image of
I'yin B, so S1Bq = Bgy1 for d > c. Since 1 € S}, we have I C I} |, so
Bchc—i-l g Tt
But b := dim B < o0, so Bj = Bjy1 for some j € [¢,c+ b]. Then
Bj2 = S1Bj11 = 81Bj = Bji1.

Similarly B; = Bj+1 = Bji2 = ..., and these eventually equal B by the previous
paragraph. Hence ¢4 is surjective for d > j, and in particular for d > ¢ + b. (]
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Lemma 2.2. Suppose m C Ox is the ideal sheaf of a closed point P € X. LetY C X
be the closed subscheme whose ideal sheaf is m®> C Ox. Then for any d € Z>g.

(m—2) deg P )
0 , _J)a  WPEV,
#H (Y, Iz -Oy(d)) = {q(m+1)dch7 ifP¢V.

Proof. Since Y is finite, we may now ignore the twisting by O(d). The space

H°(Y,Oy) has a two-step filtration whose quotients have dimensions 1 and m over
the residue field x of P. Thus #H°(Y,Oy) = (#r)™T! = ¢mthdeeP [f p c V
(or equivalently P € Z), then H O(Y7 Ozny) has a filtration whose quotients have
dimensions 1 and ¢ over x; if P ¢ V, then H°(Y, Ozny) = 0. Taking cohomology of

0—-Z7-Oy -0y - Ozny —0
on the 0-dimensional scheme Y yields
#HO(Y, Oy)
#HOYY,Ozqy)

fgimaDdesP gty des P if p ey
gm+1) deg P itP¢gvV.

#H"(Y, Iz -Oy) =

O

If U is a scheme of finite type over Fy, let U<, be the set of closed points of U of
degree < r. Similarly define Us...

Lemma 2.3 (Singularities of low degree). Let notation and hypotheses be as in The-

orem[1.1], and define
Pr:={f € Inomog : Hf N X is smooth of dimension m —1 at all P € X, }.

Then

pz(Pr) = H (1 — gm0 degp) . H (1 - q—(m+1)degp) _

PeV_, Pe(X—V)<r

Proof. Let X<, = {P1,...,Ps}. Let m; be the ideal sheaf of P; on X. let Y; be the
closed subscheme of X with ideal sheaf m? C Ox, and let Y = (JY;. Then Hy N X
is singular at P; (more precisely, not smooth of dimension m — 1 at P;) if and only if
the restriction of f to a section of Oy, (d) is zero.

By Lemma [2.1} 17(P) equals the fraction of elements in H°(Zz - Oy (d)) whose
restriction to a section of Oy, (d) is nonzero for every ¢. Thus

H #H(Y;,Z7-Oy,) —1
. #HO(Y;,Z7 - Oy,)

H (1 _ q—(m—é) degP) . H (1 _ q—(m+1)degP) :
PeVe, Pe(X—V)<r

by Lemma O

NZ(PT) =
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Corollary 2.4. If m > 2¢, then

. _ Cv(m+1)
rlif& nz(Pr) = Cx(m+1) ¢y(m—10)

Proof. The products in Lemma [2.3] are the partial products in the definition of the
zeta functions. For convergence, we need m — ¢ > dim V = ¢, which is equivalent to
m > 20. O

Proof of Theorem [1.1](ii). We have P C P,. By Lemma [2.3]
nzP) < [ (1 — gm0 degP) 7

PeV,

which tends to 0 as 7 — oo if m < 2¢. Thus pz(P) = 0 in this case. O

From now on, we assume m > 2/.

3. Singular points of medium degree

. . d—
Lemma 3.1. Let P € X s a closed point of degree e, where e < 7=5. Then the

fraction of f € Iq such that Hy N X is not smooth of dimension m — 1 at P equals
g (mhe, ifPevV,
g mthe ifP¢V.

Proof. This follows by applying Lemma[2.1]to the Y in Lemmal[2:2] and then applying
Lemma O

Define the upper and lower densities 7i;(P), p,(P) of a subset P C Ihomog as
wz(P) was defined, but using limsup and liminf in place of lim.

Lemma 3.2 (Singularities of medium degree). Define

) d—>b
Q;nedlum = U {f € 1;: there exists P € X with r < deg P < )
m

d>0

such that Hy N X is not smooth of dimension m — 1 at P }.
Then lim, _ o, fi,(Qmedium) = 0,
Proof. By Lemma we have

leediumml e . (m .
#( d) < Z q ( £) d gP+ Z q (m+1) deg P

#14 -
pez PexX—2Z
r<deg P< =% r<deg P< 2%
< E: q—(m—é)degP+ E: q—(m-l-l)degP.
PEZ>, PE(X—2Z)>,

Using the trivial bound that an m-dimensional variety has at most O(g®™) closed
points of degree e, as in the proof of [Poo04, Lemma 2.4], we show that each of
the two sums converges to a value that is O(¢~") as r — oo, under our assumption
m > 20. (]
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4. Singular points of high degree

Lemma 4.1. Let P be a closed point of degree e in P* — Z. For d > c, the fraction
of f € Iy that vanish at P is at most g~ ™in(d—c.e),

Proof. Equivalently, we must show that the image of ¢4 in Lemma [2.1]for Y = P has
F,-dimension at least min(d — ¢,e). The proof of Lemma shows that as d runs
through the integers c,c+1, ..., this dimension increases by at least 1 until it reaches
its maximum, which is e. O

Lemma 4.2 (Singularities of high degree off V). Define

o, = J{fe L:IPe(X V), o

d>0 o
such that Hy N X is not smooth of dimension m —1 at P}
Then Ti;(Q¥%,) = 0.
Proof. Tt suffices to prove the lemma with X replaced by each of the sets in an open
covering of X — V', so we may assume X is contained in A™ = {zg # 0} C P", and
that V' = (). Dehomogenize by setting x¢ = 1, to identify I; C S; with subspaces of
I, C S, CA:=Fglx1,..., 2]

Given a closed point z € X, choose a system of local parameters t1,...,t, € A at
x on A" such that ¢,,,4+1 = ty42 = --- = ¢, = 0 defines X locally at . Multiplying all
the ¢; by an element of A vanishing on Z but nonvanishing at z, we may assume in
addition that all the ¢; vanish on Z. Now dty,...,dt, are a Oyn ,-basis for the stalk
Qzlv/ﬁq,z' Let 01,...,0, be the dual basis of the stalk 7yn r_, of the tangent sheaf.
Choose s € A with s(x) # 0 to clear denominators so that D; := s9; gives a global
derivation A — A for ¢ = 1,...,n. Then there is a neighborhood N, of z in A" such
that No 0 {tms1 = tmyz = - =tn = 0} = No N X, Qp p = L, On,dt;, and
s € O(N,)*. We may cover X with finitely many N, so we may reduce to the case
where X C N, for a single . For f € I, ~ I, HyNX fails to be smooth of dimension
m — 1 at a point P € U if and only if f(P) = (D1f)(P) =---= (Dnf)(P)=0.

Let 7 = max;(degt;), v = [(d — 7)/p], and n = [d/p]. If fo € I}, 1 € 5., ...,
Im € S,/y, and h € I;] are selected uniformly and independently at random, then the
distribution of

f=fo+dti+-+ghtm+h"
is uniform over I/}, because of fy. We will bound the probability that an f constructed
in this way has a point P € X>% where f(P) = (D1f)(P)="---= (Dnf)(P)=0.
We have D;f = (D, fo) + g¥'s for i = 1,...,m. We will select fo, g1, ..., gm,h one at
a time. For 0 <1¢ < m, define

Claim 1: For 0 < i < m — 1, conditioned on a choice of fy,g1,...,9; for which
dim(W;) < 'm — 4, the probability that dim(W;;1) <m —i—1is 1 —o0o(1) as d — co.
(The function of d represented by the o(1) depends on X and the D;.)

Proof of Claim 1: This is completely analogous to the corresponding proof in [Poo04].
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Claim 2: Conditioned on a choice of fo, g1, ..., gm for which W, is finite, Prob(H ;N
Wi N X, c—@)—l—o()asd—>oo.

Proof of Claim 2: By Bézout’s theorem as in [Ful84) p. 10], we have #W,, = O(d™).
For a given point P € W,,, the set HP®d of h € I,’I for which Hy passes through P is
either () or a coset of ker(eVp I}, — k(P)), where K(P) is the residue field of P, and

+1 , implies

#Hbad/#I?’7 < ¢~" where v = min ( ) Hence

UL m+1
Prob(Hf NWp, N X>% #0) < #Wpnqg " =0(d™q™") = o(1)

as d — 00, since v eventually grows linearly in d. This proves Claim 2.

End of proof: Choose f € I; uniformly at random. Claims 1 and 2 show that with
probability 7 1 —o(1) - (1 - 0(1)) =1-0(1) as d — oo, dimW; = m — i for
i=0,1,...,mand HyNW,, N X_ a—c = 0. But Hy NW,, is the subvariety of X cut

m+1

outbytheequatlons f(P) = (le)( )=-=(Dnf)(P)=0,s0 HrnW,,NX_ dc
is exactly the set of points of Hy N X of degree > m+"1 where H; N X is not smooth
of dimension m — 1. Thus 7i,(Q%%",) = 0. O

Lemma 4.3 (Singularities of high degree on V). Define

Qv = J{f€ Li:3PEV, ac -
d>0

such that Hy N X is not smooth of dimension m —1 at P }.

Then Ti,(QuE") = 0.

Proof. As before, we may assume X C A™ and we may dehomogenize. Given a closed
point = € X, choose a system of local parameters t1,...,t, € A at x on A" such that
tmt1 = tme = --- = t, = 0 defines X locally at z, and t; =ty = -+ = ¢ =
tmt1 = tmt2 = -+ = t, = 0 defines V locally at z. If m,, is the ideal sheaf of w on
P™ then 7, — 2—‘; is surjective, so we may adjust t1,...,t,,_¢ to assume that they
vanish not only on V but also on Z.

Define 9; and D; as in the proof of Lemma Then there is a neighborhood N,
of z in A™ such that Ny N {tmi1 = timg2 = - =t, = 0} = N, N X, QN F, =
&7 10n,dt;, and s € O(N,)*. Again we may assume X C N, for a single z. For
fel,~1,; HfNX fails to be smooth of dimension m — 1 at a point P € V if and
only i f(P) = (DLf)(P) = -+~ = (D f)(P) = 0

Again let 7 = max;(degt;), v = [(d — 7)/p], and n = |d/p|. If fo € I}, g1 € 5.,

ey got1 € Sﬁ{, are chosen uniformly at random, then

f=fo+giti+ -+ g§+1t12+1

is a random element of I/}, since £ +1 < m — /.
Fori=0,...,¢+ 1, the subscheme

WiZ:Vﬂ{le:-'-:Dif:O}
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depends only on the choices of fy,91,...,9;. The same argument as in the previous
proof shows that for ¢ =0, ..., ¢, we have
Prob(dim W, <{¢—1i) =1—0o(1)

as d — oo. In particular, Wy is finite with probability 1 — o(1).

To prove that ﬁZ(Q}‘l/lgh) = 0, it remains to prove that conditioned on choices of
fo,91, - -.,g¢ making dim W, finite,

PI’Ob(Wg+1 n V>i;+cl = @) =1- 0(1)

By Bézout’s theorem, #W, = O(d*). The set H®®? of choices of g,y making D1 f
vanish at a given point P € W, is either empty or a coset of ker(evp : S, — k(P)).
Lemma 2.5 of [Poo04] implies that the size of this kernel (or its coset) as a fraction

of #57 is at most ¢~ where v := min ('y, i;fl) Since #Wyq” = o(1) as d — oo, we
are done. (|
5. Conclusion
Proof of Theorem [1.1)(i). We have
medium high high
PCP.CPUQH U Qv U9y,
so fiz(P) and p,(P) each differ from pz(P,) by at most Tig(Quediumy y 77 (Qhieh ) 4

ﬁz(Q}\I/igh). Applying Corollary and Lemmas and we obtain

. Cv(m+1)
P) = lim Pr) = .
#a(P) = g 12 (P = 60— 0) Gxtm 1 1
O
Acknowledgements

I thank Shuji Saito for asking the question answered by this paper, and for pointing
out [KAT9|.

References

[Blo70] S. Bloch, 1970. Ph.D. thesis, Columbia University.

[Ful84] W. Fulton, Introduction to intersection theory in algebraic geometry, CBMS Regional Con-
ference Series in Mathematics, vol. 54, Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC, 1984.MR 735435 (85j:14008)

[Gab01] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001),
no. 6, 1192-1200.MR 1878318 (2003g:14034)

[KA79] S. L. Kleiman and Allen B. Altman, Bertini theorems for hypersurface sections containing
a subscheme, Comm. Algebra 7 (1979), no. 8, 775-790.MR529493 (81i:14007)

[Poo04] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-
1127. MR 2144974 (2006a:14035)

[SS07]  S. Saito and Kanetomo Sato, Finiteness theorem on zero-cycles over p-adic fields (April 11,
2007). arXiv:math.AG/0605165.

[Weid9] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949),
497-508.MR0029393 (10,592¢)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA
E-mail address: poonen@math.berkeley.edu
URL: http://math.berkeley.edu/ poonen



	1. Introduction
	2. Singular points of low degree
	3. Singular points of medium degree
	4. Singular points of high degree
	5. Conclusion
	Acknowledgements
	References

