Math. Res. Lett. 15 (2008), no. 2, 239-249 © International Press 2008

THE ARGUMENT SHIFT METHOD AND MAXIMAL
COMMUTATIVE SUBALGEBRAS OF POISSON ALGEBRAS

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

Introduction

Let g be a Lie algebra over an algebraically closed field k of characteristic zero. The
symmetric algebra S(q) has a natural structure of Poisson algebra, and our goal is to
present a sufficient condition for the maximality of Poisson-commutative subalgebras
of §(q) obtained by the argument shift method. Study of Poisson-commuttive subal-
gebras of §(q) has attracted much attention in the last years, see [2, 6, 14, 15, 16]. This
is related to commutative subalgebras of the enveloping algebra U(q), fine questions of
symplectic geometry, and integrable Hamiltonian systems. Commutative subalgebras
of U(q) (e.g., the famous Gelfand-Zetlin subalgebra of U(sl,)) occur in the theory of
quantum integrable systems and have interesting application in representation theory.

Let Z(q) be the centre of the Poisson algebra S(q). For £ € q*, let F¢(Z(q)) denote
the algebra generated by the &-shifts of all f € Z(q) (see Subsection 2.2 for precise
definitions). As is well-known, F¢(Z(q)) is a Poisson-commutative subalgebra of S(q).
Furthermore, trdeg (F¢(Z(q))) < (dimgq +ind q)/2 =: b(q). We say that F¢(Z(q)) is
of mazimal dimension, if the equality holds. However, even in this case, it may
happen that there is a strictly larger Poisson-commutative subalgebra (of the same
transcendence degree). We say that F¢(Z(q)) is mazimal, if it is maximal with respect
to inclusion among the commutative subalgebras of S(q). Let g, denote the set of
reqular elements of q*, i.e., those whose stabiliser in q has the minimal dimension.
For the purposes of this introduction, we state our main result (Theorem 3.2) in a
slightly abbreviated form:

Theorem 0.1. Suppose that

(i) Z(q) contains algebraically independent homogeneous polynomials fi,. .., fi,
where | = ind q, such that Zé:l deg f; = b(q);
(i) codim (" \ q7.,) = 3.

Then, for any § € q;.,, Fe(Z(q)) is a polynomial algebra of Krull dimension b(q) and
it is a maximal Poisson-commutative subalgebra of S(q).

Obviously, Theorem 0.1 applies if q is semisimple, and we thus generalise results of
A. Tarasov [16]. (He proved maximality if ¢ is regular semisimple.) There are also
other interesting classes of Lie algebras satisfying the conditions of this theorem, see
Section 4.
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A general criterion of Bolsinov [1] asserts that, for £ € q;.,, F¢(2(q)) is of maximal
dimension if and only if codim (q* \ q;,,) = 2. For the proof of Theorem 0.1, we need,
however, a stronger result. Namely, we provide a precise description of pairs £, € q*
such that the differentials at n of all functions from F¢(Z(q)) generate a subspace of
dimension b(q), see Theorem 2.5.

Notation. If an algebraic group @ acts on an irreducible affine variety X, then
k[X]¥ is the algebra of Q-invariant regular functions on X and k(X)? is the field of Q-
invariant rational functions. If k[X]? is finitely generated, then X /@ := Speck[X]%,
and the quotient morphism nx : X — X//@Q is the mapping associated with the
embedding k[X]? — k[X].

If V is a @-module and v € V| then q, is the stabiliser of v in q. For the adjoint
representation of q, the stabiliser of € q is also denoted by 34(x), and we say that
3q(z) is the centraliser of x.

All topological terms refer to the Zariski topology. If M is a subset of a vector
space, then span(M) denotes the linear span of M; k* :=k\ {0}.

1. On the codim—n property for the coadjoint representation

Let @ be a connected algebraic group with Lie algebra q. We write S(q) for
the symmetric algebra of gq. Recall that S(q) ~ k[q*] is a Poisson algebra, and the
symplectic leaves in q* are precisely the coadjoint orbits of Q. Since each coadjoint
orbit Q-¢ is a symplectic variety, dim Q- is even. Let { , } denote the Lie-Poisson
bracket in S(q). Then the algebra of invariants k[q*]? = S(q)? is the centre of
(S(q),{, }). We also write Z(q) for this centre.

Let q;., denote the set of all Q-regular elements of q*. That is,
q;k'eg = {f € q* | dlmQ€ P dim QT] for all ne q*} .

As is well-known, g7, is a dense open subset of g*.

Definition 1. We say that the coadjoint representation of q has the codim—n property
if codim (g% \ q;,) = n.

If £ € g7, then dimgqe is called the index of q, denoted indq. By Rosenlicht’s
theorem, trdegk(q*)? = ind q. It follows that if fi,..., f. € k[q*]9 are algebraically
independent, then r < indq. Set b(q) = (dimq + ind q)/2. If q is semisimple, then
b(q) is the dimension of a Borel subagebra.

Ezample. If g is reductive, then ad ~ ad” and codim (g \ grey) > 3. Hence the
coadjoint representation of a reductive Lie algebra has the codim—3 property.

The following example pointed out by E.B. Vinberg shows that for any n there are
noncommutative Lie algebras with codim—n property.

Ezample 1.1. Suppose s € gl(V) is a semisimple linear transformation with nonzero
rational eigenvalues. Let q be the semi-direct product of the 1-dimensional toral Lie
algebra ks and V. The Lie bracket is given by

[(as,v), (Bs,0)] = (0, as(v) = Bs(v)), Bk
It is easily seen that ind ¢ = dim q — 2. Moreover, let L be the annihilator of V" in g*.
Then the line L is precisely the set of @-fixed points in g*, while dim Q- = 2 for any
¢ €q*\ L. Thus, q has the codim—n property with n = dim V.



ON MAXIMAL COMMUTATIVE SUBALGEBRAS 241

If f € S(q), then the differential of f, df, can be regarded as a polynomial mapping
from q* to g, i.e., an element of Morg(q*,q) ~ S(q) ® q. More precisely, if f € S%(q),
then df is a polynomial mapping of degree d — 1, i.e., an element of S%~!(q) ® q. We
write (df)e for the value of df at £ € q*. Recall that (df)e is an element of q that is
defined as follows. If v € q* and ( , ) denotes the natural pairing between ¢ and q*,
then

((df)e,v) := the coefficient of ¢ in the Taylor expansion of f(§ + tv).

The role of the codim—2 property is seen in the following result, see [11, Theorem 1.2].

Theorem 1.2. Suppose that (q,ad*) has the codim—2 property and trdegk[q*]? =
indq. Setl = indq. Let fi,...,fi € k[q*]2 be arbitrary homogenecous algebraically
independent polynomials. Then

() Yoie; deg fi > b(a);
(i) If Zézl deg f; = b(q), then k[q*]9 is freely generated by fi,..., f, and £ €
Areg if and only if (df1)e, ..., (dfi)¢ are linearly independent.

The second assertion in (ii) can be regarded as a generalisation of Kostant’s result for
reductive Lie algebras [4, (4.8.2)]. Its geometric meaning is the following. Consider
the quotient morphism 7 : q* — q*/Q ~ A9, Then 7 is smooth at ¢ € q* if and
only if £ € q7,,.

2. The argument shift method and Bolsinov’s criterion

2.1. Commutative subalgebras of S(q). Let A be a subalgebra of the symmetric
algebra S(q). Then A is said to be Poisson—commutative if the restriction of { , }
to A is zero. Abusing the language, we will usually omit ”Poisson” and merely say
that A is commutative. Notice that the words ”subalgebra of S(q)” always refer to
the usual (associative and commutative) structure of the symmetric algebra, while
”commutative” refers to the Poisson structure on S(q).

For any subalgebra A C S(q), we define the transcendence degree of A as
that of the quotient field of A. As is well-known, if A is commutative, then
trdeg A < b(q). Indeed, if fi,...,f, € A are algebraically independent, then
M := span{(dfi)e,...,(dfn)e} is n-dimensional for generic . Furthermore, M
is an isotropic subspace of q with respect to the Kirillov form K. (Recall that
Ke(z,y) == (&, [z,y]) and hence dim(ker K¢) = dimqe.)

Definition 2. Let .4 be a commutative subalgebra of S(g). Then A is said to be of
mazimal dimension, if trdeg A = b(q); A is said to be mazimal, if it is maximal with
respect to inclusion among the commutative subalgebras of S(q).

We do not know whether there exist maximal commutative subalgebras that are not
of maximal dimension.

Suppose A is commutative and of maximal dimension. If A C A’ and A’ is com-
mutative, then each element of A’ is algebraic over A. Conversely, if f € S(q) is
algebraic over A, then, for generic £ € q*, (df)e belongs to span{(dF)¢ | F € A},
which is an isotropic subspace with resepect to K¢. Hence {f, F'}(§) = 0 for a generic
¢ and therefore {f, F} = 0. Thus, A is maximal if and only if it is algebraically closed
in S(q).
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2.2. The argument shift method. Suppose f € §(q) is a polynomial of degree d.
For any € € q*, we may consider a shift of f in direction &: f, ¢(p) = f(1+af), where
a € k. Expanding the right hand side as polynomial in a, we obtain the expression
fae(p) = Zd:o fg (u)a’. Associated with this shift of argument, we obtain the family

of polynomials fg, where j = 0,1,...,d — 1. (Since deg fI =d—j, the value j = d
is not needed.) We will say that the polynomials { fg} are &-shifts of f. Notice that
f? = f and ngl is a linear form on q*, i.e., an element of ¢. Actually, fg*1 = (df)e.
There is also an obvious symmetry with respect to £ and u: fg () = f/jl’j(ﬁ).

The following observation is due to Mishchenko-Fomenko [7].
Lemma 2.1. Suppose that hy, ..., hy, € 2(q). Then for any € € q*, the polynomials
{hleli=1,....m; j=0,1,... degh; — 1}

pairwise commute with respect to the Poisson bracket.

Mishchenko and Fomenko used this procedure for constructing commutative subalge-
bras of maximal dimension in S§(q). Given £ € q* and an arbitrary subset B C Z(q),
let F¢(B) denote the subalgebra of S(q) generated by the £-shifts of all elements of B.
Clearly, if B is the subalgebra generated by B, then Fe(B) = Fe (B). By Lemma 2.1,
all subalgebras F¢(B) are commutative. In particular, subalgebras F¢(Z(q)) are nat-
ural candidates on the role of commutative subalgebras of maximal dimension.

For g semisimple, it is proved in [7] that there is an open subset  C g* such
that F¢(Z(g)) is of maximal dimension for any £ € Q. Following [15],[16],[17], the
subalgebras F¢(Z(g)) are said to be Mishchenko-Fomenko subalgebras.

Remark 2.2. The argument shift method is a particular case of a more general
construction related to compatible Poisson brackets. Recall that two Poisson brack-
ets on a commutative associative algebra S are said to be compatible if any linear
combination of them is again a Poisson bracket. For & = S(q), we can consider the
usual Lie-Poisson bracket (f,g) — {f,¢} and the bracket (f,g) — {f,g}e obtained
by “freezing the argument”. Here f,g € S(q) and £ € q* is a fixed element. By
definition, {f.g}(n) := (1,[(df)s, (dg),]) and {£.g}e(n) = (€. [(df)y, (dg),)). A di-
rect calculation shows that each linear combination a{, } + b{, }¢ is again a Poisson
bracket on S(q).

It is easily seen that if f € Z(q) and fy¢(v) == f(v + bE), then f,¢ is a central
function with respect to {, } + b{, }¢. Furthermore, the assignment f — fj ¢ is a
bijection between two centres. It follows that F¢(Z(q)) is the subalgebra of S(q)
generated by the centres of all Poisson brackets {, } +b{, }¢, b € k.

2.3. On Bolsinov’s criterion and its extension. A general criterion for F¢(Z(q))
to be of maximal dimension is found by A.V. Bolsinov. Using our terminology, we
can express it as follows.

Theorem 2.3 (cf. Bolsinov [1, Theorem 3.1]). Suppose that q satisfies the codim—2
property and trdeg Z(q) = ind q. Then the algebra F¢(Z(q)) is of mazimal dimension
for any £ € q:eg'
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Remark 2.4. The above statement requires, however, some explanations. Strictly
speaking, Bolsinov does not include the equality trdeg Z(q) = ind ¢ in his Theorem 3.1.
But in the paragraph after Definition 2.2 he formulates a condition on the differentials
of the functions that are being shifted. This condition is equivalent to this equality.

The algebra F¢(Z(q)) is of maximal dimension if and only if there is an n € q* such
that the differentials at 7 of all polynomials in F¢(Z(q)) span a subspace of dimension
b(q). Clearly, such 7 form an open subset of g*. For our main result, we need, however,
a more precise assertion. Here it is.

Theorem 2.5. Keep the assumptions of Theorem 2.3. Let P C q* be a plane such
that P\ {0} C qy.,- Suppose that

(%) dimspan{(df)e, | f € 2(q)} =indq for some & € P.
Then dim span{(df), | f € Fe(Z(q))} = b(q) for any linearly independent &, n in P.

Remark. Condition (x) is open, hence it is satisfied on an open subset of P. In many
important cases, this condition follows from the other ones (see below). Therefore,
there is not much harm in it.

Proof. We apply results of Bolsinov [1] (presented in Appendix A) to the compatible
Poisson brackets {, } and {, }¢ on q*, cf. Remark 2.2. For n € q*, let A, and B,
be the corresponding skew-symmetric forms on 7,7(q*) = q. Explicitly, 4, (z,y) =
(1, [, ) and By (w,y) = (€, [z, ). 1t follows that (ad, +bB,)(z,) = (an-+bE, [z, )
and hence
(2.1) dim(ker(ad, + bB))) = dim qapntse -
We will identify the 2-dimensional vector spaces P = span{A4,,B,} and P =
span{n, &} C q* by taking aA, + bB,, to an + b¢.

Set D := span{(df), | f € Fe¢(Z(q))}. Our goal is to prove that dimD = b(q).
Recall that trdeg S(q)% = ind q. Therefore

Q:={v e q* | dimspan{(df), | f € S(q)?} = indq}

is a non-empty open subset of q*. Note that Q is conical, i.e., v € Q if and only if
tv € Q for any ¢t € k*. By the assumption, Qp := QNP # @.
From Eq. (2.1), it follows that all nonzero forms in P have the same rank. Ap-
plying Proposition A4 to V = q and P = span{A4,,B,} shows that L =
2 (a.0)£(0,0) ker(aA,; + bBy) is a maximal isotropic subspace of q with respect to
any nonzero element of P. In particular, dim L = b(q). Furthermore, since Qp is
a non-empty and conical subset of P\ {0}, we deduce from Lemma A.1 that

(2.2) L= > ker(A,+bB,),

(lvb)eQP
where (1,b) is regarded as the point n + b € P. Because dimD < b(q), it suffices
to prove that L C D. Take any (1,b) € Qp and let C = {, } + b{, }¢ be the
corresponding Poisson bracket on gq*. For any f € Z(q), set f(v) := f(v + b§). Then

(df), = (df)yese and f — f is a bijection between Z(q) and Z¢(q), the centre of the
Poisson algebra (S(q),C). Hence

3¢ = span{(df)soe | € 2(a)} = span{(df), | f € Zo(@)} C ker(A, +bB,).
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Since 1+ b€ € Qp, we have dim H = ind q = dim(ker(A, +bB,)). Hence span{(df), |
f€2c(q)} = ker(A, +bB,). But each (df), is a linear combination of differentials of
elements of F¢. Therefore ker(A4, +bB,)) C D whenever (1,b) € Qp, and we conclude
from Eq. (2.2) that L C D. Hence L = D, and we are done. O

3. Maximal commutative subalgebras of S(q) and flatness

First, we prove an auxiliary geometric result. Let V be a finite-dimensional vector
space and P C V a plane. Suppose 2 is a conical open subset of V' \ {0} such that
codim (V' \ Q) > n > 2. Let us say that P is an Q-plane if P\ {0} C Q. Given v € Q,
let ©, be the set of all u such that kv 4+ ku C V' is an Q-plane.

Lemma 3.1. Q, is an open subset of V \ {0} and codim (V \ ,) > n — 1.

Proof. Set S =V \ Q and consider the projectivisations P(S) C P(V'). Here P(S) is
a projective variety of codimension > n. Write ¥ for the image of v in P(V). Let
C be the cone in P(V) generated by v and P(S). That is, C is the union of all
lines through v and y, where y runs over P(S). Then C is a projective variety of
codimension > n — 1, and it follows from the construction that if 7 ¢ C', then kv + ku
is an Q-plane. Thus, P(22,) =P(V)\ C. O

The following is our main result.
Theorem 3.2. Let q be an algebraic Lie algebra.

(i) Suppose (q,ad™) has the codim-2 property and Z(q) contains algebraically
independent polynomials f1,..., f;, where l =indq, such that 22:1 deg f; =
b(q). Then, for any & € 7., Fe(2(q)) = Fe(f1,---, fi) is a polynomial
algebra of Krull dimension b(q);

(it) Furthermore, if (q,ad™) has the codim~3 property, then Fe(Z(q)) is a mazimal
commutative subalgebra of S(q).

Proof. To simplify notation, write F¢ in place of F¢(Z(q)).

(i) It follows from the assumptions and Theorem 1.2 that Z(q) = k[f1,..., fi].
Hence F¢ = Fe¢(f1,..., fi). By Bolsinov’s criterion (Theorem 2.3), trdeg Fr = b(q)
for any £ € q7.,. Set Q = {£ € q" | (dfi)e,...,(dfi)¢ are linearly independent}.
From Theorem 1.2(ii), it follows that Q = qyeq- Hence codim (g“\ Q) > 2.

Let P:=k¢+kn C q" be a q;,,-plane, i.e., each nonzero element of it belongs to
Oreg- Since = g7 , each nonzero point of P satisfies condition (x) of Theorem 2.5.
Hence Theorem 2.5 guarantees us that, for any n € P\ k¢, the differentials of the
&-shifts of f1,..., fi at n span a subspace of dimension b(q). Next, in view of the
equality 22:1 deg fi = b(q), the set of all -shifts of the f;’s consists of b(q) elements.
It follows that the differentials

{(dff)yli=1,....1; j=0,1,... degf; —1}
are linearly independent. This already proves that F; is a polynomial algebra freely

generated by the { ff 5}’s . We have also proved the following implication:

if k6 + kn is a q;.,-plane, then the wvectors {(dff;g)n | ¢« = 1,...,l; 5 =
0,1,...,deg f; — 1} are linearly independent.
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(ii) Now codim (q* \ ©2) > 3. Applying Lemma 3.1 to V' = q*, Q = q;,,, and v = ¢,
we conclude that

{req,ld ff ¢)v are linearly independent}

is an open subset of ¢* whose complement is of codimension > 2. This means, in turn,
that [9, Theorem 1.1] applies to the polynomial subalgebra Fe C S(q). Therefore, we
can conclude that the subalgebra F; is algebraically closed in S(q).

Assume that X is a commutative subalgebra of S(q) containing F¢. Since F¢ has
the maximal possible Krull dimension, ¢ C X is a an algebraic extension. Because
Fe is algebraically closed in S(q), we obtain F¢ = XK. O

Remark 3.3. The codim-3 property is essential for the maximality of F¢(Z(q)), see
Example 4.1.

It would be interesting to find general conditions that guarantee us that the family
of ¢-shifts of the free generators of Z(q) form a regular sequence in S(q). In the
geometric language, this means that we are interested in the property that the natural
morphism q* — Spec (F¢(2(q))) =~ A*@ is flat. It is likely that the assumptions of
Theorem 3.2 are sufficient for this. However, we unable to prove this as yet.

Remark 3.4. One can use deformation arguments for proving flatness. We mention
an affirmative result for sl,,, which is obtained by combining work of several authors.
For an arbitrary reductive g, there is a general procedure of obtaining new commu-
tative subalgebras of S(g) as limits of Mishchenko-Fomenko subalgebras Fe(2(g)),
where ¢ runs inside a fixed Cartan subalgebra of g, see [15]. In particular, for g = sl,,,
there is a special limit subalgebra that is the associated graded algebra of the Gelfand-
Zetlin subalgebra of U(sl,,), see [17, §6]. In [8], it is proved that the free generators
of the latter form a regular sequence in S(sl,,). This implies that if £ € (sl,,)* ~ sl,
is regular semisimple, then the free generators of F¢(Z(sl,,)) form a regular sequence.

4. Applications

4.1. Some Lie algebras with codim—3 property. Here we describe several classes
of Lie algebras, where Theorem 3.2 applies.

1) If g is reductive, then the assumptions of Theorem 3.2 are satisfied. This follows
from the classical results of Kostant [4]. Therefore, for any &£ € greq, Fe(Z(g)) is a
polynomial algebra, and it is a maximal commutative subalgebra of S(g). For the
regular semisimple &, this has already been proved by Tarasov [16].

2) Following [13], recall the definition of a (generalised) Takiff Lie algebra (mod-
elled on gq). The infinite-dimensional k-vector space o := q ® k[T] has a natu-
ral structure of a Lie algebra such that [z ® T,y ® T¥] = [z,y] ® T"**. Then
A>(nt1) = @ q® T’ is an ideal of g, and Joo/>(nt1) is a generalised Takiff

jzn+1
Lie algebra, denoted q(n). If q = g is semisimple, then g(n) satisfies all the assump-
tions of Theorem 3.2, see [13]. For n = 1, one obtains the semi-direct product g x g.
This case was studied by Takiff in 1971.

3) Let e € sl,, be a nilpotent element. Set q = 341, (¢). Then ind q = rk (sl,,) = n—1
[19] and S(q)¥ is a polynomial algebra of Krull dimension n—1 such that the sum of
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the degrees of free generators equals b(q) [9, Theorem4.2]. The second author can
prove that here (g,ad") have codim-3 property. (This will appear elsewhere.) Thus,
351, (€) satisfies all the assumptions of Theorem 3.2.

4) Let q be a Zs-contraction of a simple Lie algebra g. It is known that
trdeg Z(q) = ind q [11, Lemma 2.6] and (q,ad”) has the codim-2 property [11, Theo-
rem 3.3]. However, the stronger codim—3 property is not always satisfied. Recall the
relevant setup.

Let g = go ® g1 be a Zs-grading of g. Then the semi-direct product q = gg X g1
is called a Zs-contraction of g. Here indg = indg = rkg, hence b(q) = b(g). For
most Zo-gradings, it is proved that Z(q) is polynomial and the sum of degrees of free
generators equals b(g), see [11, Sect. 4 & 5]. It follows that, for such Zs-contractions,
the commutative subalgebras F¢(2(q)), § € q,, are polynomial and of maximal
dimension. However, these are not always maximal.

Example 4.1. Let g = go @ g1 be a Zs-grading such that g; contains a Cartan subal-
gebra of g;. It is equivalent to that dimg; = b(g). Then S(q)? = S(g1)% ~ S(g)¢.
(This clearly shows that the sum of degrees of free generators of S(q)? equals b(g).)
By the assumption, g; contains regular elements of g and, hence, of q. Let £ € g
be such an element. Then F¢(2(q)) = F¢(S(g1)°) is a proper subalgebra of S(g1).
Indeed, the family of £-shifts of the generators contains b(g) elements, but not all
of them are of degree 1. On the other hand, the subspace g; is a commutative Lie
subalgebra of q, hence S(g1) is a commutative subalgebra of S(q). (Actually, it is a
maximal commutative subalgebra!) Thus, F¢(Z(q)) is a commutative subalgebra of
S(q) of maximal dimension, but not maximal.

Of course, the reason for such a "bad” behaviour is that codim (q* \ q;.,) = 2. This
can also be proved directly using invariant-theoretic properties of the Gy-module g;
[5].

Ezxample 4.2. We have verified that the codim—3 property holds for Zs-contractions
associated with the following symmetric pairs (g, go): (slon, 5Pa,,); (80at1,90,), n = 2;
(80,,,50,-1); (Eg,F4); (F4,B4). However, the complete list is not known yet. For
items 2,3, and 5, it is shown in [11] that Z(q) is polynomial and the sum of degrees
of the free generators equals b(q). Hence Theorem 3.2 applies there.

Remark 4.3. Another criterion for maximality is given by Joseph and Lamprou [2].
They show that if condition (i) of Theorem 0.1 is satisfied and £ can be included in a
so-called adapted pair, then F¢(Z(q)) is maximal. In [2], adapted pairs are constructed
for the so-called truncated parabolic subalgebras of mazximal index in sl,. It is also
shown that Z(q) is a polynomial algebra and the equality > deg f; = b(q) holds. It
would be interesting to verify whether the codim—3 property also holds there.

4.2. Semi-direct products and the codim-3 property. Example 4.1 can be
put in a more general context. Suppose G is semisimple and V is a finite-dimensional
G-module. Set m = max¢cy+ dim G-¢. Form the semi-direct product g =g x V.

Proposition 4.4. Suppose that (a) S(V)¢ =k[V*]¥ is a polynomial algebra and (b)
m = dimg. Then (q,ad™) does not satisfy the codim-3 property and the commutative
subalgebras Fe(Z(q)) are not mazimal.
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Proof. Tt follows from assumption (b) and Rais’ formula [12] that indq = dimV —
dim g and therefore b(q) = dim V. Also, assumption (b) implies that k[q*]? = k[V*]¢
[10, Theorem 6.4]. Thus, Z(q) = S(q)% = k[q*]% is a polynomial algebra. Since G has
no rational characters, k(V*)¢ is the quotient field of k[V*]“. Hence trdegk[V*]¢ =
indq. Let d be the sum of degrees of free generators of k[V*]. By [3, Korollar 6],
d < dimV. Assume that (q,ad”) has the codim-3 property. Then d > b(q) =
dim V' (Theorem 1.2). Hence d = b(q) and by Theorem 3.2, F¢(Z(q)) is a maximal
commutative subalgebra of S(q) for any § € qj.,. Since Z(q) is a subalgebra of
S(V), Fe(Z(q)) is a subalgebra of S(V), too. Furthermore, F¢(Z(q)) is generated
by dim V' elements, and not all of them are of degree 1. Thus, F¢(Z(q)) is a proper
subalgebra of S(V'), and the latter is a (maximal) commutative subalgebra of S(q).
This contradiction shows that the codim—3 property cannot be satisfied for (g,ad™).

The above argument also proves the second assertion. ([l
Remark 4.5. Set V;, = {r € V* | dimG-v < m}. (This closed subset plays an

important rdle in theory developed in [3].) It is easily seen that if m = dim G and
codim V3, = > n, then codimq* \ gy, > n. Hence, under the assumptions of Propo-
sition 4.4, we have codim V3, = < 2, and according to [3, Korollar 2], codim V3, , = 2

sing
if and only if d = b(q).

Appendix A. Some results on skew-symmetric bilinear forms

Here we present some general facts concerning skew-symmetric bilinear forms that
are needed for the proof of Theorem 2.5. All these results are extracted from [1], but
we present them in a more systematic form.

Let P be a two-dimensional linear space of (possibly degenerate) skew-symmetric
bilinear forms on a finite-dimensional vector space V. Set m = maxcprk A, and let
Preg C P be the set of all forms of rank m. For each A € P, let ker A C V be the
kernel of A. Our main object of interest is the subspace L := ZAGTTW ker A.

Lemma A.1. For any nonempty open subset Q C Preq, we have ) 4. ker A = L.

Proof. Set r =dimV —mand M =3, oker A C L. Take any C € Pcy \ Q. Then
ker C' is a point of the Grassmannian Gr,(V). Because P is irreducible, Q = P and
there is a curve s : k* — Q such that lim; . 5(t) = C. Hence

tlir%(ker x#(t)) = ker C,

where the last limit is taken in Gr,(V'). Since kers(t) € Gr,(M) for ¢t # 0 and
Gr,(M) is closed in Gr,(V'), we obtain ker C C M. Thus, M = L. O

For {1 € P, let A denote the corresponding linear map from V to V*. Then ker A =
ker A.

Lemma A.2. For all A, B € P\ {0}, we have A(L) = B(L).

Proof. Clearly, we may assume that A and B are linearly independent. By virtue
of Lemma A.1, L is spanned by some L,; := ker(aA + bB) with ab # 0. Since
(aA4bB) (L, ) = 0, we obtain (aA)(La) = (bB)(La ) and hence A(Ly ) = B(Lay).-
The result follows. O
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For A € P\ {0}, let L C V denote the annihilator of A(L) C V*. By Lemma A.2, L
does not depend on the choice of A. Note also that L={veV|A(L)=0}. Since
ker A C L for each nonzero A, L is a subspace of L.

Lemma A.3. Suppose that B € P and A € Prey. Then
() B(L)c A(L);

(i) Associated with A and B, there is a natural linear operator ®4p = @ :
L/L — L/L.

Proof. (i) Let M4 and Mp be the the annihilators of A(L) and B(L), respectively.
Since M4 =ker A+ L = L and Mp = ker B + L, we obtain M4 C Mpg.

(i) Take any v € L. Since B(L) C A(L), where is w € L such that A(w) = B(v).
Letting ®(v+ L) := w+ L, we have to check that there is no amblgulty in this. To this
end, assume that A(w') € B(v + L) A(w) + B(L). Since B(L) = A(L), we obtain
A(w' —w) € A(L). Hence w —w' € L +ker A = L. Thus, given 5 = v+ L € L/L,
there is a unique w = w + L € L/L such that B(v) = A(w). The claim follows. O

Proposition A.4. If P,., = P\ {0}, then L = E; in other words, L is a maximal
isotropic subspace of V with respect to any nonzero A € P.

Proof. Take linearly independent A and B, as in Lemma A.3. We use the operator
®: L/L — L/L introduced in Lemma A.3(ii). Since k is algebraically closed, L/L =
{0} if and only if all eigenvectors of ® are zero. Assume that v+ L € E/L is a A-
cigenvector of ®. Then expanding the definition of ® yields (B )\A)v € A(L). Since
A(L) = (B — AA)(L) by Lemma A.2, we get (B — AA)(v) € (B — MA)(L) and, hence,
v € L+ker(B—M\A). If v € L, then ker(B AA) ¢ L and therefore (B —AA) & Preq.
A contradiction! O
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