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A FAMILY OF COVERING PROPERTIES

MATTEO VIALE

ABSTRACT. In the first part of this paper I present the main results of my Ph.D. thesis:
several proofs of the singular cardinal hypothesis SCH are presented assuming either a
strongly compact cardinal or the proper forcing axiom PFA. To this aim I introduce
a family of covering properties which imply both SCH and the failure of various forms
of square. In the second part of the paper I apply these covering properties and other
similar techniques to investigate models of strongly compact cardinals or of strong forcing
axioms like MM or PFA. In particular I show that if MM holds and all limit cardinals
are strong limit, then any inner model W with the same cardinals has the same ordinals
of cofinality at most Nj.

In this paper I introduce a family of covering properties CP(k,\) indexed by pairs
of regular cardinals A < k. In the first part I show that these covering properties
imply the singular cardinal hypothesis SCH and capture the combinatorial content of
many of the known proofs of the failure of square-like principles from forcing axioms
or large cardinals. In the second part I show that a large class of these covering
properties follows either from the existence of a strongly compact cardinal or from at
least two combinatorial principles which hold under the proper forcing axiom and are
mutually independent: the mapping reflection principle MRP introduced by Moore in
[15] and the P-ideal dichotomy PID introduced in its full generality by Todoréevié in
[23] developing on preceding works by him and Abraham [1] on P-ideals of countable
subsets of wy. This allows for a unified and simple proof of the failure of square and of
the singular cardinal hypothesis assuming PFA. Finally in the last part of the paper
I will apply these covering properties as well as other related ideas to investigate the
"saturation properties”! of models of strong forcing axioms or of a strongly compact
cardinal.

The paper is organized as follows: sections 1 and 2 introduce the combinatorial prin-
ciples PID and MRP. Sections 3 and 4 introduce the covering properties CP(k, \)
and outline some of their consequences among which SCH and the failure of square.
Sections 5, 6 and 7 prove various instances of CP(k,\) assuming respectively the
existence of a strongly compact cardinal, PID or? MRP. The last section study the
rigidity of models of CP(k,\) for various x and A\ and prove that if MM holds and
any limit cardinal is strong limit, then any inner model W with the same cardinals
compute the same way the ordinals of cofinality at most N;. Caicedo and Velickovié
conjecture that any two models W C V of MM with the same cardinals have the
same wi-sequences of ordinals. I will show that set-forcing cannot be of any help
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n a sense that will be made explicit in the last section of the paper.

2The shortest path to obtain a self-contained proof of the SCH starting from PID is to read
sections 1, 3 and 6, from MRP is to read sections 2, 3 and 7.
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in falsifying this conjecture. Moreover it seems plausible to conjecture that any two
models of MM with the same cardinals have the same cofinalities. Results of a similar
vein are obtained also for models of set theory with strongly compact cardinals.

The paper aims to be accessible and self-contained for any reader with a strong back-
ground in combinatorial set theory. While forcing axioms are a source of inspiration
for the results that we present, all the technical arguments in this paper (except some
of those in the last section) can be followed by a reader with no familiarity with the
forcing techniques. When not otherwise explicitly stated [10] is the standard source
for notation and definitions. For a regular cardinal 8, we use H(f) to denote the
structure (H (), €, <) whose domain is the collection of sets whose transitive closure
is of size less than 6 and where < is a predicate for a fixed well ordering of H(f). For
cardinals K > X we let [k]* be the family of subsets of « of size A. In a similar fashion
we define [k]<*, [k]=?, [X]*, where X is an arbitrary set. If X is an uncountable set
and @ a regular cardinal, & C [X]? is unbounded if for every Z € [X]?, thereis Y € £
containing Z. £ is bounded otherwise. & is closed in [X]“ if whenever X = (J, X,
and X,, € X,41 are in & for all n, then also X € £. It is a well known fact that
C C [X]¥ is closed and unbounded (club) iff there is f : [X]<* — X such that C
contains the set of all Y € [X]“ such that f[[Y]<*] CY. S C [X]¥ is stationary if it
intersects all club subsets of [X]¥. The f-closure of X is the smallest Y containing X
such that f[[Y]<¥] CY. Given f as above, & is the club of Z € [X]“ such that Z is
f-closed. If X is a set of ordinals, then X denotes the topological closure of X in the
order topology. For regular cardinals A < s, S=* denotes the subset of & of points of
cofinality < \. In a similar fashion we define S and S=*. We say that a family D is
covered by a family &£ if for every X € D there is a Y € £ such that X CY. We also
recall the following definitions central to the arguments that follows:

The singular cardinal hypothesis SCH asserts that £C0f(%) = g+ 4 2€0E(®) {51 all
infinite cardinals k.

It is a celebrated result of Silver [21] that if SCH fails, then it first fails at a singular
cardinal of countable cofinality. It is also known that the failure of SCH is a strong
hypothesis as it entails the existence of models of ZFC with measurable cardinals [9].

Let x be an infinite regular cardinal. The square principle (k) asserts the existence
of a sequence (C, : a < k) with the following properties:

(i) for every limit o, Cy is a closed unbounded subset of «,
(%) if o is a limit point of Cg, Coy = Cg N a,
(#3) there is no club C' in & such that for all a there is > « such that CNa =
CgNa,

(w) Cpr1 = {5}
It is well known that the failure of O(k) for all cardinals K > N; is a very strong
large cardinal hypothesis. For example Schimmerling has shown that it entails the
existence of models of set theory with Woodin cardinals [18].

Recall that A is a strongly compact cardinal if for every x > X there is a A-complete,
fine ultrafilter on [k]<*.

3U is a fine filter on [k]<* if X = {Y € [k]<* : X C Y} € U for every X € [5]<>.
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1. The P-ideal dichotomy

Let Z be an uncountable set. T C [Z]S“ is a P-ideal if it is an ideal and for every
countable family {X,,},, C 7 there is an X € 7 such that for all n, X,, C* X (where
C* is inclusion modulo finite).

Definition 1. (Todorcevié, [23])
The P-ideal dichotomy (PID) asserts that for every P-ideal I on [Z]S% for some fived
uncountable Z, one of the following holds:

(i) There is Y uncountable subset of Z such that [Y]<% C T.
(i1) Z =\, An with the property that A, is orthogonal to I (i.e. X NY is finite
for all X € [A,)Y and Y € Z) for all n.

PID is a principle which follows from PFA and which is strong enough to rule out
many of the standard consequences of V= L. For example Abraham and Todorc¢evié
[1] have shown that under PID there are no Souslin trees while Todor¢evié has shown
that PID implies the failure of (k) on all regular x > N; [23]. Due to this latter fact
the consistency strength of this principle is considerable. Another interesting result
by Todoréevié is that PID implies that b < Ry?. Nonetheless in [1] and [23] it is shown
that this principle is consistent with CH. Other interesting applications of PID can
be found in [26], [2], [23] and [1].

2. The mapping reflection principle

Almost all known applications of MM which do not follow from PFA are a con-

sequence of some form of reflection for stationary sets. These types of reflection
principles are a fundamental source in order to obtain proofs of all cardinal arith-
metic result that follows from MM. In particular SCH and ¢ < w» are a consequence
of many of the known reflection principles which hold under MM. However up to a
very recent time there was no such kind of principle which could be derived from PFA
alone. This has been the main difficulty in the search for a proof that PFA implies
¢ = wy, a result which has been obtained by Todorcevi¢ and Velickovi¢ appealing to
combinatorial arguments which are not dissimilar from the P-ideal dichotomy [25].
Later on this has also been the crucial obstacle in the search for a proof of SCH from
PFA.
In 2003 Moore [15] found an interesting form of reflection which can be derived from
PFA, the mapping reflection principle MRP. He has then used this principle to show
that BPFA implies that ¢ = Ny and that this principle is strong enough to entail the
non-existence of square sequences. He has also shown in [17] that MRP could be a
useful tool in the search of a proof of SCH from PFA. I first obtained my proof of
this latter theorem elaborating from [17]. Many other interesting consequences of this
reflection principle have been found by Moore and others. A complete presentation
of this subject will be found in [4].

4In [23] it is shown that any gap in P(w)/FIN is either an Hausdorff gap or a (k,w) gap with
k regular and uncountable. By another result of Todorcevié (see [10] pp. 578 for a proof) if b > No
there is an (w2, \) gap in P(w)/FIN for some regular uncountable . Thus PID is not compatible
with b > Ro.
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Definition 2. Let 0 be a regular cardinal, let X be uncountable, and let M < H(6) be
countable such that [X]¥ € M. A subset ¥ of [X]¥ is M-stationary if for all € € M
such that £ C [X]¥ 4s club, X NENM # 0.

Recall that the Ellentuck topology on [X]“ is obtained by declaring a set open if it is
the union of sets of the form

[z, N]={Y € [X]*:2a CY C N}
where N € [X]“ and « C N is finite.

Definition 3. X is an open stationary set mapping if there is an uncountable set
X and a regular cardinal 6 such that [X]¥ € H(0), the domain of ¥ is a club in
[H(0)]“ of countable elementary submodels M such that X € M and for all such M,
S(M) C [X]¥ is open in the Ellentuck topology on [X]“ and M -stationary.

The mapping reflection principle (MRP) asserts that:

If ¥ is an open stationary set mapping, there is a continuous €-chain
N = (N¢: £ < wn) of elements in the domain of ¥ such that for all
limit ordinals 0 < £ < w; there is ¥ < £ such that N, N X € X(N¢)

for all i such that v < n < £.

If (Ne: £ < wq) satisfies the conclusion of MRP for ¥ then it is said to be a reflecting
sequence for X.

We list below some of the interesting consequences of MRP.

e (Moore [15]) PFA implies MRP.

e (Moore [15]) MRP implies that ¢ = No. As a simple outcome of his proof of
the above theorem Moore obtains also that BPFA implies ¢ = N.

e (Moore [15]) Assume MRP. Then O(k) fails for all regular x > Ns.

A folklore problem in combinatorial set theory for the last twenty years has been the
consistency of the existence of a five element basis for the uncountable linear orders,
i.e. the statement that there are five uncountable linear orders such that at least one
of them embeds in any other uncountable linear order.

e (Moore [16]) Assume BPFA and MRP. Then there is a five element basis for
the uncountable linear orders.

A considerable reduction of the large cardinal hypothesis needed for the consistency
of the above conjecture has been obtained in [11]. A byproduct of their results yields
to the following:

e (Konig, Larson, Moore, Velickovié¢ [11]) MRP implies that there are no Kurepa
trees.

Other interesting consequences of MRP can be found in [5].

We remark that MRP and PID are mutually independent principles since PID is com-
patible with CH while, by a result of Myiamoto [14], MRP is compatible with the
existence of Souslin trees.
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3. A family of covering properties

In this section we introduce the main original concept of this paper. A careful analysis
of Todorcevié’s proof that PID implies that (k) fails for all regular x > Ny leads to
the isolation of a family of covering properties CP(k, A) which on one side are strong
enough to entail both SCH and the failure of square, and on the other side are weak
enough to be a consequence of the existence of a strongly compact cardinal, of PID
and of MRP.

Definition 4. For regular cardinals X < k, D = (K(a,5) : o« < X\, B € K) is a
A-covering matrix for K if:

(Z) 6 c Ua<>\ K(O[,ﬁ) fOT’ all ﬁ;

(i1): K (o, B) is strictly contained in K (n, 5) for all < k and for alla <n < X,

(1) for all v < B < k and for all @ < A, there is n < X\ such that K(a,vy) C
K(n, ).

(iv): for all X € [k]=?, there is yx < K such that for all 3 < k and n < A, there
is o such that K(n, ) N X C K(o,vx)

Bp < k is the least 3 such that for all o and vy, otp(K(a, 7)) < B. D is trivial if
Bp = K.

We will mainly be interested in w-covering matrices, which we will just call covering
matrices. As we will see below square like principles are useful to construct several
kinds of covering matrices. One successful strategy to negate square principles from
large cardinals and forcing axioms is to use appropriate ultrafilters or specific forcing
arguments to ”diagonalize” through the covering matrix defined appealing to these
square-like principles, as for example in the proofs of the failure of square from a
strongly compact by Solovay [22] or from PID by Todoréevic [23]°. The covering
matrices induced by square-like principles that we will consider satisfy a stronger
coherence property than the ”local” property (iv). This condition is replaced by the
”global” property”:

(iv’) For all v < B < k and n < A, there is a such that K(n, )N~y C
K(a,7).

The key point to introduce condition (iv) above in this weak form is that A-covering
matrices on k can be defined in an elementary way in ZFC and the diagonalization
argument which in the square-like cases leads to a contradiction, in the general case
leads to a simple combinatorial argument to compute £*. It is possible to prove the
following:

5Essentially all the A-covering matrices that will be of interest to us are non-trivial. We remark
however that the w-covering matrix induced by a [J(k)-sequence (see theorem 18) is trivial according
to this definition but nonetheless it is a mean to prove the failure of [J(k) assuming PFA or a strongly
compact cardinal.

63ee also the several arguments of this sort appearing in the sequel of this paper.

"For example the matrix produced by a square sequence using the pa-function (see [24] or theorem
18 below) satisfies (4),... (%) and (iv’), and this matrix can be used to show that CP implies the
failure of square. Another interesting example of a covering matrix which is not defined appealing
to lemma 6 below and which satisfies (4v’) is the matrix used in the proof of theorem 27 in the last
section.
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Lemma 5. Assume that there is a stationary set of points of uncountable cofinality
in the approachability ideal® I[k). Then there is an w-covering matriz on . Moreover
if X is singular of countable cofinality, then there is D w-covering matriz on AT with

Bp = A

Since the main original application of the existence of w-covering matrices D that we
have found is the proof of SCH from PFA, we will just prove a weaker form of the
lemma:

Lemma 6. Assume that k > ¢ is a singular cardinal of countable cofinality. Then
there is an w-covering matriz C for kT with Be = k.

Proof. The matrices we are going to define satisfy (i),(ii) and a stronger coherence
property than what is required by (ii1) and (iv) of the above definition. They will
satisfy the following properties (iii*) and (4v*) from which (77) and (iv) immediately
follow:
(#i*): For all a < 8 there is n such that K(m,a) C K(m, ) for all m > n.
(iv*): For all X € [£T]“ there is yx < & such that for all 3 > vx there is n such
that K(m,8)NX = K(m,vyx) N X for all m > n.

Let ¢, : kK — 1 be a surjection for all 0 < n < k*. Fix also {k, : n < w} increasing
sequence of regular cardinals cofinal in k with kg > N;. Set

K(n,B8) = J{K(n,7) U {7} : 7 € dslral}-

It is immediate to check that D = (K(n,8) : n € w,B8 < k1) satisfies (i), (i) of
definition 4, property (#4*) and that 8p = k. To prove (iv*), let X € [xT]¥ be
arbitrary. Now since ¢ < k™ and there are at most ¢ many subsets of X, there is an
unbounded subset S of k* and a fixed decomposition of X as the increasing union of
sets X, such that X N K(n,a) = X, for all « in S and for all n. Now properties (i),
(i), (i1i*) of the matrix guarantees that this property of S is enough to get (iv*) for
X with yx = min(S). O

A similar argument can be used to prove the following:

Lemma 7. Assume that k > 2 is singular of cofinality \. Then there is a non-trivial
A-covering matriz C for k™. (]

We say that D is covered by & iff every X € D is contained in some Y € £.

Definition 8. CP(k,\): k has the \-covering property’ if for every D, A-covering
matriz for k there is an unbounded subset A of r such that [A]* is covered by D.
CP(k) abbreviates CP(k,w) and CP is the statement that CP(k) holds for all regular
K> C.

Fact 9. Assume CP(k%) for all singular k of countable cofinality. Then A = )\, for
every A > 280 of uncountable cofinality.

8In [20] it is possible to find a definition of the approachability ideal Z[]. We avoid it in this
paper since it is not relevant for the arguments we are presenting.

9Moore has first noticed that a covering property similar to the w-covering property for a regular
K > ¢ followed from MRP reading a draft of [27].
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Proof. By induction. The base case is trivial. If A = kT with cof(k) > w, then
AN = X. kN0 = X\ .k = \, by the inductive hypothesis on . If \ is a limit cardinal
and cof()\) > w then A¥ = sup{p®® : u < A}, so the result also follows by the
inductive hypothesis. Thus, the only interesting case is when A = k™, with & singular
of countable cofinality. In this case we will show, using CP, that (k7)Y = xk*. To
this aim let D be a covering matrix for k¥ with 3p = x. Notice that by our inductive
assumptions, since every K (n, 3) has order type less than «, |[K(n, 3)]“| has size less
than x. So U{[K(n,8)]* : n < w& 3 € T} has size k. Use CP to find A C k™
unbounded in £, such that [A]“ is covered by D. Then [A]¥ C U{[K(n,B3)] : n <
w& B € kT}, from which the conclusion follows. O

The following theorems motivate the introduction of these covering properties:

Theorem 10. Assume X is strongly compact. Then CP(k,8) holds for all regular
0 < X and all regular kK > X.

Theorem 11. Assume PID. Then CP holds.

On the other hand MRP allows us to infer a slightly weaker conclusion than the one
of the previous theorem.

Theorem 12. Assume MRP and let D be a covering matrix for k such that K(n, [3)
is a closed set of ordinals for all K(n, ). Then there is A unbounded in k such that
[A]¥ is covered by D.

In particular we obtain:
Corollary 13. PFA implies SCH.

Proof. PFA implies PID and PID implies CP. In particular PFA implies that k* = k
for all regular k > ¢. By Silver’s theorem [21] the least singular x > 2¢0fr guch
that k€°E% > Kkt has countable cofinality. Now assume PFA and let x have countable
cofinality. By fact 9, k€°T(%) < (5T)% = k. Thus assuming PFA there cannot be
a singular cardinal of countable cofinality which violates SCH. Combining this fact
with Silver’s result we get that SCH holds under PFA. O

Before proving all the above theorems we analyze in more details the effects of CP
and we give other interesting examples of A-covering matrices.

4. Some other features of CP(k, \)

First of all we investigate for what kind of pairs of regular cardinals x and A,
CP(k, \) fails.

Lemma 14. CP(x™, k) fails for all reqular k > w;.

Proof. Fix a sequence C = {C¢ : £ < 1} such that for all limit a, C, is a club
subset of « of order type cof(a). If £ = a+ 1, C¢ = {a}. Define by induction on
a<pB<kT,

as follows:
e p*(a,a) =0,
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o p*(a, B) = max{otp(Cs Na), p* (o, min(Cy \ @)),
sup{p*(§,a) : £ € CzNal}}.
We will need the following properties of p* which follows from the fact that « is
regular!®.
Lemma 15. Foralla < g <7:

(a): p*(a, B) < max{p*(a,v), p*(B,7)}
p* }

(b): p*(a,v) < max{p*(c, 8), p*(B,7)
O
Lemma 16. For all a < k1 and v < k:
e < a:p(&a) < v}] < Iv] + .
O

Set D(a,8) ={£ < B:p*(,8) <a}forall a < kand § < kT,

Fact 17. The following holds:
(i): otp(D(a, B3)) < k for all « < k and B < kT,
(ii): for all v < B < kT ,there is ap < k such that D(a,v) = D(«, 3) Ny for all
a > qg.

Proof. (i) follows from the second lemma on p*. To prove (ii), let o be such that
(7, 8) < ap, @ > ap and £ < § such that p*(§,5) < a . By (a) of lemma 15:

p*(§,7) < max{p* (¢, 8), p* (7, B)} < max{e, a0} = .
Conversely assume that p*(&,7v) < a, by (b) of the same lemma:

p*(§,8) < max{p"(£,7),p"(7,8)} < max{a, a0} = o
Thus D(«,v) = D(«, 8) N for all a > «yp. O

This means that D = (D(a, 3) : a < k, 3 < k1) is a k-covering matrix for k* with
Bp = k. Assuming CP(k™, k) there would be A unbounded in % such that [A]" is
covered by D. However there cannot be an unbounded subset A of k* such that [A]®
is covered by D, since any element of the matrix has order type less than k. (]

The function p* defined above will be useful also for other applications of CP(k, A) in
the final section (see theorem 27).

The following theorem follows closely Todorcevié’s proof that PID entails the failure
of square and shows that CP is a very large cardinal property.

Theorem 18. Assume k > Ny is reqular. Then CP(k) implies that O(k) fails.

Proof. Todorcevié¢ has shown that assuming (k) it is possible to define a step function
(see sections 6 and 8 of [24]):
po: [K]? = w
with the following properties:
(i): For every A unbounded in #, pa[[A]?] is unbounded in w,

(ii): for every o < [3 there is m such that |p2(€, @) — p2(&, B)] < m for all £ < a.

10For a proof see [24] lemmas 19.1 and 19.2
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By (ii) it is immediate to check that D = {K(n,a) : n € w& a < k} is a covering
matrix for k, where K (n,a) = {€ : p2(¢,«) < n}. In fact it can be shown something
stronger i.e. that for every a < # and n there is m such that K(n,a) C K(m, ) and
K(n,8)Na C K(m,a).

Using this coherence property of D one gets that whenever A is an unbounded subset
of k such that [A]“ is covered by D, then for all 8 < k, AN B C K(mg,3) for some
mg. Thus one can refine any such A to an unbounded B such that for a fixed m,
BN pC K(m,p) for all 8 € B. This contradicts property (i) of pa. Assuming CP(k)
we would get that an A unbounded in x and such that [A]“ is covered by D exists.
However we just remarked that this is impossible. O

Other interesting consequences of these covering properties follow from mild hypoth-
esis on cardinal arithmetic and show that non-trivial #-covering matrices provably
exist only on successors of cardinals of cofinality 6:

Lemma 19. Assume'* X = \. Then CP(\T,0) implies that every 0-covering matriz
D on AT is trivial (i.e. Bp = AT).

We need the following fact:

Fact 20. Let 6 and k be reqular cardinals with 2° < k, D = {K (o, 3) : a € 6,3 < K}
be a O-covering matriz on k and A be an unbounded subset of k. The following are
equivalent:

(i) [A]? is covered by D.

(ii) [A]> is covered by D for all X < k such that \? < k.

Proof. (ii) implies (i) is evident. To prove the other direction, assume (%) and let
Z C A have size A\ with A? < k. We need to find o < § and 3 < & such that
Z C K(a,B). For X € [Z]% C [A)Y let by (i) ax < 0, Bx < k be such that
X C K(ax,Bx). By our assumptions, A\’ < . For this reason 3 = Supxe(zpe Bx < K.
Now by property (i) of D, we have that for all X € [Z]?, X C K(nx, 3) for some nx.
Let C, be the set of X such that nx =17. Now notice that for at least one n, C,, must
be unbounded in [Z]?: if this is not the case let X, witness that C, is bounded, then
X=U,<«pXn€ [Z]? is not contained in any element of Uy<oCn = [Z]?, contradiction.
Thus Z C K(n, (), since every a € Z is in some X € C,, as C, is unbounded. This
completes the proof of the fact. Il

Now assume that the lemma fails and let D be a #-covering matrix for AT with
Bp < AT. By CP(A*,0) there should be an A unbounded in At such that [A]% is
covered by D. Appealing to fact 20, we can conclude in any case that [A]* is covered
by D. Take § large enough in order that otp(ANG) > Bp. Since AN has size at most
A there are 7, v such that ANG C K (n,7). Thus fp < otp(ANS) < otpK(n, 5) < Op,
contradiction. O
The main difficulty towards a proof that PFA implies SCH has been the fact that all
standard principles of reflection for stationary sets do not hold for PFA. In particular
Baudoin [3] and Magidor (unpublished) have shown that PFA is compatible with the

Hhis assumption entails cof()\) # 6 and follows from SCH for any A > 2¢ with cofinality
different from 6.



230 MATTEO VIALE

existence on any regular k£ > Ny of a never reflecting stationary subset of S¢. However
the following form of reflection holds under CP:

Fact 21. Assume CP and let D be a covering matrixz for a reqular k > ¢ with all
K(n,B) closed. Let A < k be a reqular cardinal and let (S, : n < X) be an arbitrary
family of stationary subsets of S=*. Then there exist n and 3 such that Sy N K(n, )
is nmon-empty for all n < .

Proof. By CP and fact 20, there is X unbounded in x such that [X]* is covered by D.
Since K (n, 3) is closed for all n and 3, we have that [X N S=*]* is covered by D. To
see this, let Z be in this latter set and find Y C X of size A such that Z C Y. Now
find n and 8 such that Y C K(n, 3). Since K(n,3) is closed, Z CY C K(n,f3).

Now pick M < H(©) with © large enough such that |M| =X C M and A, X, (S, :
n<A) € M. Then S,NX N S=X is non-empty for all 7. By elementarity, M sees this
and so M NS, NXN S=* is non-empty for all . However M N X N S=* has size A so
there are n and 3 such that M N X NS> C K(n, 3). So S, N K(n, 3) is non-empty
for all 7. O

5. Strongly compact cardinals and CP(x,6)

We turn to the proof of theorem 10. We will need the following trivial consequence
of the existence of a strongly compact cardinal:

Lemma 22. Assume X is strongly compact. Then for every regular k > X, there is
U, \-complete uniform ultrafilter on k which concentrates on S

Proof. Assume ) is strongly compact and k > A is regular. By definition of A there
is a A-complete, fine ultrafilter W on [k]<*. Let ¢(X) = sup(X) for all X € [x]<*.
Let U be the projection of W under ¢, i.e.: A € U if {X :sup(X) € A} e W. Tt is
immediate to check that U/ is a A-complete ultrafilter which concentrates on S<*. [0

Now let # < A and kK > A be regular cardinals and fix a #-covering matrix D =
(K(a,B) :a€0,8€k) for k. Let AL ={3>~:v€ K(a,)} and A, = {y € S*:
AY € U}. Since 6 < A, by the A\-completeness of U, for every v € S, there is a least
o such that A € Y. Thus |J,_y Ao = ST, So there is a < § such that A, € U. In
particular A, is unbounded. Now let X be a subset of A, of size §. Then AY € U
for all v € X. Since |X| =0 < A, [, cx A} € U and thus is non-empty. Pick 3 in
this latter set. Then X C K(«, 3). Since X is an arbitrary subset of A, of size 6, we
conclude that [A,]? is covered by D. This concludes the proof of theorem!'? 10. O

6. PID implies CP

We turn to the proof of theorem 11. As we will see below a model of PID retains
enough properties of the supercompact cardinals from which it is obtained in order
that a variation of the above argument can be run also in the context of w-covering
matrices. We break the proof of theorem 11 in two parts. Assume k is regular and
let D= (K(n,a) :n € w, a < k) be a covering matrix on x. Let 7 be the family of
X € [k]* such that X N K(n,«) is finite for all & < x and for all n < w.

12Notice that for the proof of this theorem we just needed property (i) of a covering matrix. The
proof of CP(k,w) assuming either PID or MRP will need properties (%), (i), (i), (iv).
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Claim 23. 7 is a P-ideal.

Proof. Let {X, :n € w} CZ. LetY =], X,. Let vy witness (v) for D relative to
Y. Since for every n,m, X, N K(m,~y) is finite, let for every n and for every j > 0,
X (n,j) be the finite set

XnﬂK(L,YY)\K(] - 177}/)

x=JU xnj.
n j>n
Notice that for every n, X, \ K(0,7v) = U;~oX(n,j) and U, X(n,j) C X, so
we have that X,, C* X for all n. Moreover X N K(n,vy) = U, >;5; X(i,7), so it is
finite. We claim that X € Z. If not there would be some 3 and some [ such that
X N K(l,B) is infinite. Now X N K(I,8) C Y N K(,8) € K(m,vy) for some m.
Thus we would get that X N K (m,~y) is infinite for some m contradicting the very
definition of X. O

and let:

Now notice that if Z C k is any set of ordinals of size 8; and a = sup(Z), there
must be an n such that Z N K(n,«) is uncountable. This means that Z ¢ [Z]“,
since any countable subset of Z N K (n,«) is not in Z. This forbids Z to satisfy the
first alternative of the P-ideal dichotomy. So the second possibility must be the case,
i.e. we can split x in countably many sets A, such that x = J,, A,, and for each n,
[A,]“NZ =0.

Claim 24. For every n, [A,]“ is covered by D.

Proof. Assume that this is not the case and let X € [4,]¥ be such that X \ K (I, 5) is
non-empty for all I, 3. Now let X be a countable subset of X such that XoNK (I,vx) is
finite for all I. Then exactly as in the proof of claim 23 we can see that X, € [4,]“NZ.
This contradicts the definition of A,,. O

This concludes the proof of theorem 11. O

7. MRP implies SCH

We prove theorem 12. Thus assume MRP and let D be a covering matrix on a regular
k > ¢ such that K(n, 3) is a closed set of ordinals for all n and 8. Assume that for all
A unbounded in &, [A]“ is not covered by D. We will reach a contradiction. For each
0 < k of countable cofinality, fix Cs cofinal in § of order type w. Let M be a countable
elementary submodel of H(©) for some large enough regular ©. Let dp; = sup(M Nk)
and Sy be the ordinal vypn, provided by property (v) of D applied to M N k. Set
(M) to be the set of all countable X C M N k bounded in dps such that

sup(X) € K(|C5M N Sup(X)|7ﬁM)'

We will show that X (M) is open and M-stationary. Assume this is the case and let
{M, : n < w1} be a reflecting sequence for ¥. Let 7, = d¢ and § = sup,,, d¢. Find
C C wq club such that {d¢ : £ € C} C K(n,d) for some n (which is possible since the
K (n,d) are closed subsets of ). Let o be a limit point of C. Let M = M, and notice
that by our choice of Sy for all m, there is [ such that K (m,d)NM C K(I,8ar). This
means that for all n € CNa, §, € K(n,d) N M C K(I,Bnm) for some fixed I. Since a
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is a limit point of C' there is n € a N C such that |Cs,, N, >l and M, Nk € X(M).
But this is impossible, since M, Nk € (M) means that d,, & K(|Cs,, Ny, Bar), ie.
We now show that (M) is open and M-stationary:

Claim 25. X(M) is open.

Proof. Assume X € X(M), we will find v € X such that [{y}, X] C ¥(M). To
this aim notice that Cs,, N sup(X) is a finite set. Let ng = |Cs,, N sup(X)| and
o = max(Cs,, Nsup(X)) + 1. Since X € (M), sup(X) & K (no, Bnm) and so, since
K (no, Bar) is closed, 1 = max(K (ng, Bar) Nsup(X)) < sup(X). Thus, let v € X be
greater or equal than max{y1 + 1,7 }. If Y € [{~}, X], then v < sup(Y) < sup(X),
so |Cs,, Nsup(Y)| = |Cs,, Nsup(X)| = ng and

~v1 = max(K (ng, Bar) Nsup(X)) < sup(Y) < sup(X) < min(K (ng, Bar) \ sup(X)).
Thus sup(Y) & K(|Cs,, Nsup(Y)|, Bum), i.e. Y € B(M). O
Claim 26. (M) is M-stationary.

Proof. Let f: [k]<“ — xk in M. We need to find X € X(M) such that f[[X]<“] = X.
Let N < H(k") be a countable submodel in M such that f € N and let C = {§ <
k@ fl[0]<¥] = ¢}. Let also ng = |Cs,, Nsup(N N k)| and 79 € N be larger than
max(Cys,, Nsup(N Nk)). Then (C\ v9) € N. We assumed that no A unbounded in
k is such that [A]“ is covered by D. So in particular by elementarity of N:

N = [(C\ v) N SZ]¥is not covered by D

Thus there exists X € N countable subset of (C \ ) N SY such that for all n and
B, X \ K(n,() is non-empty. Let v € X \ K(ng,Br). Now find Z € N countable
and cofinal in v and let Y be the f-closure of Z. Then Y € N C M. Now v € C
so sup(Y) = sup(Z) = v € K(no,Bum). Moreover v = sup(Y) € (C'\ 70) N N, so
Yo < sup(Y) < sup(N N k), i.e. |Cs,, Nsup(Y)| = |Cs,, Nsup(N N k)| = ng. Thus:

sup(Y) ¢ K(|C(5M n Sup(Y)|7ﬂM)'
Le. Y € S(M). O

This concludes the proof of theorem 12. O

8. ”Saturation” properties of models of strong forcing axioms.

Since forcing axioms have been able to settle many of the classical problems of set
theory, we can expect that the models of a forcing axiom are in some sense categorical.
There are many ways in which one can give a precise formulation to this concept. For
example, one can study what kind of forcing notions can preserve PFA or MM, or else
if a model V of a forcing axiom can have an interesting inner model M of the same
forcing axiom. There are many results in this area, some of them very recent. First of
all there are results that shows that one has to demand a certain degree of resemblance
between V and M. For example assuming large cardinals it is possible to use the
stationary tower forcing introduced by Woodin'® to produce two transitive models
M CV of PFA (or MM or whatever is not conflicting with large cardinal hypothesis)

13[13] gives a complete presentation of this subject.
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with different w-sequences of ordinals and an elementary embedding between them.
However M and V' do not compute the same way neither the ordinals of countable
cofinality nor the cardinals. On the other hand, Ko6nig and Yoshinobu [12, Theorem
6.1] showed that PFA is preserved by we-closed forcing, while it is a folklore result that
MM is preserved by ws-directed closed forcing. Notice however that all these forcing
notions do not introduce new sets of size at most R;. In the other direction, in [25]
Velickovi¢ used a result of Gitik to show that if MM holds and M is an inner model
such that w) = wy, then P(w;) € M and Caicedo and Velickovié [5] showed, using
the mapping reflection principle MRP introduced by Moore in [17], that if M C V
are models of BPFA and w}! = wy then P(w;) € M. In any case all the results so far
produced show that any two models V' C W of some strong forcing axiom and with
the same cardinals have the same wi-sequences of ordinals. Thus it is tempting to
conjecture that forcing axioms produce models of set theory which are ”saturated”
with respect to sets of size X;. One possible way to give a precise formulation to this
idea may be the following:

Conjecture 1. (Caicedo, Velickovié) Assume W C V are models of MM with the
same cardinals. Then [Ord)<“* C W.

We will show that one cannot prove the negation of the above conjecture by mean
of forcing. Since no inner model theory is known for models of MM, PFA or of a
supercompact cardinal, the results I will present brings to the conclusion that there
are no suitable means to try to prove the negation of the conjecture.

Theorem 27. Assume CP(k1,0). Let W be an an inner model such that k is a
regular cardinal of W and such that (k7)) = k*. Then cof(k) # 6.

This shows that if A is strongly compact, than one cannot change the cofinality of
some regular £ > X to some 6 < A and preserve at the same time x™ and the strong-
compactness of .

Corollary 28. Assume PFA and let W be an inner model with the same cardinals.
Then W computes correctly all the points of countable cofinality.

Proof. PFA implies CP. Now apply the above theorem. (|

In particular this gives another proof that Prikry forcing destroys PFA, since if g is a
Prikry generic sequence on a measurable x, V[g] cannot model CP.

What about cofinality w; assuming forcing axioms? I do not know whether CP(x, w;)
holds under MM for regular cardinals'* x > R,. If we analyze the proofs of CP(k,w)
from PFA we see that the diagonalization arguments we used requires that the matrix
has length w and thus cannot generalize to wi. However in view of the preceding
results it is natural to expect the following:

Theorem 29. Assume MM. Let k be a strong limit cardinal*® and W be an inner
model such that k is reqular in W and k* = (k)W'. Then cof(k) > w;.

MNotice that CP(R,N;) fails by lemma 14.

15This cardinal arithmetic constraint can be certainly relaxed and I believe it to be unessential.
I assumed this hypothesis to be sure that one can apply to this situation Dzamonja and Shelah’s
theorem 34 below.
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Before I turn to the proofs, I'd like to add some more comments. First of all we can
combine the above results to prove the following:

Proposition 30. Assume W = MM and all limit cardinals of W are strong limit.
Moreover assume that W is a set-generic extension of V' with the same ordinals of
cofinality w and wy and such that P(wy)W C V. Then [Ord]<“t C V.

Proof. W is a set-generic extension of V' by some P-generic filter. Thus P is a set
and satisfies the |P|*-chain condition. Let x = |P|*. It is enough to show that
[k]S¥1 C V. Now by our assumption S=! = (S=“1)". By the s-chain condition
we get that every stationary subset of S € V remains stationary in W. Now fix a
partition {S, : @ < k} in V of S¥ in k-many disjoint stationary subset of k. Then
this is still a partition in stationary sets of W. Given any X € [£]<“* find by MM in
W an ordinal § < k of cofinality w; such that S, reflects on § iff a € X. Let C € V
be a club subset of § of order type w; such that S, N C is bounded in § whenever
a ¢ X. Then X € V since:

X ={n:5,NC is unbounded in ¢}.
(|

The above results suggest that another interesting form of saturation of models of MM
may hold. Gitik has shown [8] that assuming suitable large cardinals it is possible
to produce a model of set theory W and a strongly inaccessible cardinal s such that
for all A < k there is S stationary subset of S,i‘ such that NS | Sy is kT-saturated.
Now if we force with P(Sy)/NS we get a model V' with the same cardinals, the same
bounded subsets of k and such that « is singular of cofinality A. However the ground
model W is obtained by a cardinal preserving forcing which shoots Prikry sequences
on a large number of cardinals below . Thus this approach cannot work to disprove
the following conjecture:

Conjecture 2. Assume V. C W are models of MM with the same cardinals. Then
they have the same cofinalities.

We now turn to proofs:

Proof of theorem 27: Assume the theorem is false. Then cof(k) = 6. We need
some preparation. Work in W. Fix a sequence C = {C¢ : £ < T} € W such
that for all limit «, C,, is a club subset of « of order type cof(a). If £ = a4 1,
C¢ = {a}. Consider the function p* : [kT]?> — & defined from such a sequence which
was introduced in the proof of lemma 14.

Now work in V. Let g : § — x be a cofinal sequence. Set D(q,f3) = {{ < a :
p*(&,8) < g(a)}. The two lemmas 15 and 16 allows to prove the analogue of fact 17:

Fact 31. The following holds:
(i): otp(D(a, B)) < k for all « < 0 and B < kT,
(ii): for all v < B < kT there is ap < 0 such that D(c,v) = D(a, 3) Ny for all
a > ag.
O

This means that D = (D(«,3) : @ < 0, 8 < k7) is a f-covering matrix for k™ with
Bp = k. By CP(k*,0) there is A unbounded in % such that [A]? is covered by D.
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Let 3 be large enough in order that otp(ANS) > k. Then for every a < 6 we can find
o € AN G\ K(o, ) since otp(K (o, 8)) < k < otp(AN ). Now X = {&, : £ < 6}
is in [A N B]? and is not covered by any D(a,3). By (i) of the above fact we can
conclude that X is not covered by D(«, ) for all @ < 8 and v < k. This contradicts
our assumption that [A]? is covered by D. O
Proof of theorem 29: We proceed by contradiction. So assume the theorem is
false. Let k contradict the theorem, then by theorem 27, cof(k) = w; is the only
possibility. Now notice that since SCH holds under MM, 2% = k¥ since « is a singular
strong limit cardinal. Then 2* = k™ holds also in W. We will need this hypothesis
in the sequel.

The idea is now to develop on a theorem of Cummings and Schimmerling where they
assume that x has countable cofinality and W is an inner model such that x is regular
and kT = (kT)" to conclude that O, ,, holds (section 4 of [6]). In analogy with their
result, assuming that cof(x) = w; and the same hypothesis on W, we want to draw
the conclusion that O, ., holds'®. We will exploit however the proof of their theorem
which appears in [24], since this proof uses the function p* with which we are now
familiar.

We thus recall the notion of a [, x,-square sequence.

Definition 32. Let x be an uncountable cardinal. {Co : o < £T} is a O, x, -sequence
if:
(i): Co = (Cqi: 1 < wr) is a sequence of club subsets of a of ordertype at most
k for all
(ii): for all « < B < kT and i < wy, if a is a limit point of Cp, there is a
J <wi such that Cg; = Cg j Na.

It is a result of Magidor which develops on ideas of Todorcevi¢, that PFA implies the
failure of O, x, (see [10] exercise 38.24 for a proof).

We also recall that Shelah [19] has shown that under MM, the strong Chang conjecture
SCC(A) holds on all regular A > ;. Where SCC(A) holds if for every club D in [A]“
there is a club C C D such that for all X € C and o < A there is Y € C containing X
with o < sup(Y’) and such that X Nw; = Y Nw;. Our aim is to prove the following!":

Theorem 33. Assume SCC and let W be an inner model such that k is strongly
inaccessible in W, k't = (k)W = (25)W while cof (k) = wy. Then O, x, holds.

Once this theorem is proved, we can combine it with Magidor’s proof that PFA implies
the failure of O, x, for all & > X; to complete the proof of theorem 29.

To this aim I will now exploit the following weakening of a theorem of Dzamonja and
Shelah (theorem 2.0 of [7]):

Theorem 34. Assume k is singular of uncountable cofinality, W is an inner model
such that r is strongly inaccessible and Kt = (k)W = (2°)W. Then there is E club

16For those who are familiar with their proof, we remark that now we must define in a non-trivial
way the square sequence on the points of cofinality wy of W-cofinality , problem which they can
ignore defining trivially the square sequence on these points. To overcome this difficulty we will use
MM.

7The theorem below may need a reformulation of the conclusion in the case that SCC is in-
compatible with [, x,. This is plausible, since all the proof of SCC(x1) that I know assume as
hypothesis principles which negates (.
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subset of k, such that E \ C is bounded for all C € W club in k and such that for all
points £ € E which are not limit, cof(§) > w.

We are going to use this magic club E € V, SCC(k™) in V and the function p* € W
to define a nicely cohering [, »,-sequence. We will be interested only in the non-limit
points of E. Thus we assume that

E = {775 €< wl}
is just a set of points of uncountable cofinality (and thus of uncountable W-cofinality)
of type wy, cofinal in k and such that E \ C is bounded for all C € W club in k.
Now work in W and set:
Doy ={§<a:p"(§a) <n}
for all « € ST and 7 < k. Let

Co ={n < Kk : Dq,yis a countably closed subset of a cofinal in o}

It is easy to check in W that C, is a club subset of S.*. Moreover using the coherence
property of p* (see lemma 16), it is immediate to check that for all o < 3, Cg\ Cy is
bounded below p*(a, 3). Now work in V and for all a € (SS)W, let 1) be the least
such that for some 8 > a, E C Cs \ 1 and « is a limit point of Dg min(e\n)- Set

Eae =0if ne <, Eqe = Dpy Na otherwise. We leave to the reader the proof of
the following (see the proof of theorem 19.4 of [24]):

Lemma 35. The following holds:
(a): Ifa < B € (SHW and o is a limit point of Egg¢, then Egy, N = Eq,
forallv > €.
(b): For all § € (S<F)V and for all § < wy, Dgy, has size less than k in W.
So for all B € (Slff)w and for all £ < wr, if a € ( :+)W, then « is not a
limit point of Eg ¢.
U

We thus almost have defined our [, x,-sequence, we need only to complete the def-
inition of E,¢ for v € (5%,)". To this aim we will use SCC(xT). There are two
possibilities: either S = (S:+)W C S¥}! is non-stationary and in this case, if C'is a
club which avoids this set, {E, ¢ NC:a € C,§ <wi}isa DK’Nl—sequencels, or S is
stationary. In this case we will find a club C such that for all « € CNS and £ < wq, an
E, ¢ of order type at most x can be defined in order that for any 3 limit point of F, ¢,
(cof(B))W # K and Eg¢ = E,¢NpB. If this is possible {E, NC : a € C,& < wi} will
be our elected [, x,-sequence!®. This is so because by (b) of the above claim and
our construction of the sets F, ¢ for o € S, a will not be a limit point of E, ¢ for any
v > «, so we just have to worry that the coherence properties are satisfied below a.

Fix (M : £ < k™) continuous €-chain of models of size r of some suitable H(6) such
that K € Mpy. Let C be the club of § such that Ms NxT = 6. For any 6 € SN C, we
define Fj¢ as follows. By SCC(x™") in M there is a suitable club C € Ms of countable
models X of H(k™T) such that for every X € C there is Y € C, with X C Y and

8More precisely let 7 be the transitive collapse of C onto 7. Then {m(Eq,enNC):a € C§ <wi}
is a O, x, -sequence.
19The previous footnote applies also to this situation.
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XNwy =Y Nw;. Since k = & it is easy to build by induction a sequence (N¢ : £ < wy)
of elements of CNMs such that for a fixed o« < wy and all § <7, N¢ € N, NeNw; =
and if N = U,_,, Ne, sup(N N xT) = 4. First of all fix {d¢ : £ < wi} club in § of
type wi. If n is limit and (Ng : €& < 7)) has been defined, there is a v < ¢ such that
Ny = Uge,y Ne © M, since § has cofinality wi and Ms = [J; 5 M. Notice that
N,, € C since it is the increasing union of elements in C. Now since |M,| = x and
kY =Kk, N, € [M,]¥ C M1 C M;. Thus we can put N,, on the top of our sequence.
Now given N, € M;NC, we can apply SCC(kT) in Ms to find N,11 € Ms N C such
that N, C Nyt1, Nps1 Nwy = NyNwy = a and sup(Ny41 NKT) > 6,. After wi-many
steps we get the desired sequence. Let N = U5<w1 N¢. Now N Nw; = a, thus by
elementarity of N < H(k™7),

sup(N Nk) =sup(ENN) =sup{ne : £ < a} < nq.

So for all v < B € N, by elementarity of IV there is { < a such that v € Eg¢ C Eg 4.
Let Cy be the club subset of limit points of N NN S¥, . Notice that Cy avoids S.

Claim 36. For ally < € Co, Eg; Ny =E,; foralli> a.

Proof. First of all notice that for all 8 € Cy and £ < wy, Eg¢ is defined since 8 ¢ S.
Now for any -, 8 € Cy, pick ¢ € N\ S larger than v and 3. Since all of the points in
NNvarein B, , C E, ;, v and § are limit points of E, ; and thus £, ; = E, ; Ny and
Eg; = E,; N B, from which the conclusion follows. O

Now we can set Es; = ) for all i < o and Ej5; = U«/eco E,;, for all ¢ > a. Since
E, ; has order type less than « for all v € C' and the union is coherent otp(Es;) < k.
This complete the definition of the O, x,-sequence and the proof of theorems 29 and
33. O
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