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A NOTE ON THE STABILITY AND UNIQUENESS FOR
SOLUTIONS TO THE MINIMAL SURFACE SYSTEM

Yng-Ing Lee and Mu-Tao Wang

Abstract. In this note, we show that the solution to the Dirichlet problem for the

minimal surface system in any codimension is unique in the space of distance-decreasing
maps. This follows as a corollary of the following stability theorem: if a minimal sub-

manifold Σ is the graph of a (strictly) distance-decreasing map, then Σ is (strictly)
stable. It is known that a minimal graph of codimension one is stable without assuming

the distance-decreasing condition. We give another criterion for the stability in terms of

the two-Jacobians of the map which in particular covers the codimension one case. All
theorems are proved in the more general setting for minimal maps between Riemannian

manifolds. The complete statements of the results appear in Theorem 3.1, Theorem 3.2,

and Theorem 4.1.

1. Introduction

Let Ω be a bounded domain in Rn. Recall a C2 vector-valued function f =
(f1, · · · , fm) : Ω → Rm is said to be a solution to the minimal surface system (see
Osserman [OS] or Lawson-Osserman [LO]) if

(1.1)
n∑

i,j=1

∂

∂xi
(
√

ggij ∂fα

∂xj
) = 0 for each α = 1 · · ·m

where gij = δij +
∑

α
∂fα

∂xi
∂fα

∂xj , g = det gij and gij is the (i, j) entry of the in-
verse matrix of (gij). The graph of f is called a non-parametric minimal submani-
fold. Equation (1.1) is indeed the Euler-Lagrange equation of the volume functional∫
Ω

√
gdx1 ∧ · · · ∧ dxn.

In the codimension one case, i.e. m = 1, a simple calculation shows gij = δij −
fifj

1+|∇f |2 and the equation is equivalent to the familiar one,

(1.2) div(
∇f√

1 + |∇f |2
) = 0.

It is well-known that the solution to (1.2) subject to the Dirichlet boundary con-
dition is unique and stable(see for example, Lawson-Osserman [LO]).

However in the higher codimension case ( m > 1), Lawson and Osserman [LO]
discover a remarkable counterexample to the uniqueness and stability of solutions
of (1.1) when n = m = 2. They construct two distinct non-parametric minimal
surfaces with the same boundary. Lawson and Osserman then show an unstable
non-parametric minimal surface with the same boundary exists as a result of the
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theorems of Morse-Tompkins [MT] and Shiffman [SH]. In the same paper, Lawson
and Osserman show the Dirichlet problem for the minimal surface system may not
be solvable in higher codimension.

In this paper, we first derive a stability criterion for the minimal surface system in
higher codimension. To describe the results, we define distance-decreasing maps.

Definition 1. A map f : Ω ⊂ Rn → Rm is called distance-decreasing if the differential
df satisfies |df(v)| ≤ |v| at each point of Ω for any nonzero vector v ∈ Rn. It is called
strictly distance-decreasing if |df(v)| < |v| at each point of Ω for any nonzero vector
v ∈ Rn.

We prove the following stability theorem.

Theorem A (see Theorem 3.1) Suppose a nonparametric minimal submanifold Σ
is the graph of a distance-decreasing map f : Ω ⊂ Rn → Rm. Then Σ is stable. It is
strictly stable if f is strictly distance-decreasing.

This theorem generalizes the stability criterion in [LW]. It turns out the volume
element is a convex function on the space of distance-decreasing linear transforma-
tions. The convexity is further exploited to derive a uniqueness criterion. Namely, we
show the solution to the Dirichlet problem for the minimal surface system is unique
in the space of distance-decreasing maps.

Theorem B (see Theorem 3.2) Suppose that Σ0 and Σ1 are nonparametric mini-
mal submanifolds which are the graph of f0 : Ω ⊂ Rn → Rm and f1 : Ω ⊂ Rn → Rm

respectively. If both f0 and f1 are distance-decreasing and f0 = f1 on ∂Ω, then
Σ0 = Σ1.

We remark that solutions to the Dirichlet problem of minimal surface systems in
higher codimensions are constructed in [WA1] and the solutions are graphs of distance-
decreasing maps. For earlier uniqueness theorems for minimal surfaces, we refer to
Meek’s paper [ME].

We prove slightly more general stability and uniqueness theorems for minimal maps
between Riemannian manifolds in this paper. It turns out the only extra assumption
is on the sign of the curvature of the target manifold. In particular, Theorem 3.1
implies Theorem A while Theorem 3.2 implies Theorem B.

It is well-known that any minimal graph of codimension one is volume-minimizing
by a calibration argument. To connect to the codimension one case, we develop
another stability criterion for the minimal surface system in any codimension in sec-
tion 4. The criterion is in terms of the two-Jacobians of f . To describe the results, we
first recall some notations. Let L : Rn → Rm be a linear transformation. It induces
a linear transformation ∧2L, from the wedge product ∧2Rn to ∧2Rm by

(∧2L)(v ∧ w) = L(v) ∧ L(w).

With this we define
| ∧2 L| = sup

|v∧w|=1

|(∧2L)(v ∧ w)|.

In particular, | ∧2 L| = 0 if L is of rank one.
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Theorem C (see Theorem 4.1) Suppose a nonparametric minimal submanifold Σ
is the graph of a map f : Ω ⊂ Rn → Rm. Then Σ is stable if | ∧2 df |(x) ≤ 1

n−1 .

A more refined and more general version is proved in Theorem 4.1. The rank of the
defining function f of a nonparametric minimal submanifold of codimension one is at
most one and thus | ∧2 df |(x) = 0. We prove the results for minimal maps between
Riemannian manifolds as stated in Theorem 4.1.

2. A non-parametric variation formula for graphs

Suppose that (M, g) and (N,h) are two Riemannian manifolds with dimension n
and m respectively. We fix a local coordinate system {xi} on M . Let f be a smooth
map from (M, g) to (N,h). The graph of f is an embedded submanifold of the product
manifold M ×N , the induced metric is given by

n∑
i,j=1

Gijdxidxj =
n∑

i,j=1

(gij + 〈 df(
∂

∂xi
), df(

∂

∂xj
) 〉)dxidxj ,

and the volume of the graph is

A =
∫

M

√
detGijdx1 ∧ · · · ∧ dxn =

∫
M

dv.

Assume that there is a family of maps ft, 0 ≤ t ≤ ε from M to N with f0 = f on M
and ft = f outside a compact subset of M . When the boundary of M is nonempty,
we require that ft = f on ∂M . In the following, we compute the first and second
variations of the volumes of the graphs. The variation of the volume form is

d
√

det Gij(t)
dt

=
1
2

∑
i,j

Gij(t)Ġij(t)
√

det Gij(t),

where Gij(t) is the (i, j) entry of the inverse matrix of (Gij(t)).
Denote the variation field dft

dt by V (t). For simplicity, we omit the dependency of
Gij and V on t in the following calculation. Then

Ġij = 〈∇V dft(
∂

∂xi
), dft(

∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇V dft(

∂

∂xj
) 〉

= 〈∇dft(
∂

∂xi )V, dft(
∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇dft(

∂

∂xj )V 〉.

Here ∇ is the Riemannian connection on N , and V and dft( ∂
∂xi ) are vector fields

tangent to N .
Hence the first variation formula is

dAt

dt
=

∫
M

∑
i,j

Gij〈∇dft(
∂

∂xi )V, dft(
∂

∂xj
) 〉 dvt.(2.1)

Continuing the computation, we derive

d2At

dt2
=

1
2

∫
M

(
∑
i,j

GijG̈ij −
∑

i,j,k,l

GikĠklG
ljĠij) dvt +

1
4

∫
M

(
∑
i,j

GijĠij)2 dvt.(2.2)
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Now

G̈ij = 〈∇V ∇dft(
∂

∂xi )V, dft(
∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇V ∇dft(

∂

∂xj )V 〉

+ 2〈∇V dft(
∂

∂xi
),∇V dft(

∂

∂xj
) 〉

= 〈R(V, dft(
∂

∂xi
))V, dft(

∂

∂xj
) 〉+ 〈∇dft(

∂

∂xi )∇V V, dft(
∂

∂xj
) 〉

+ 〈R(V, dft(
∂

∂xj
))V, dft(

∂

∂xi
) 〉+ 〈 dft(

∂

∂xi
),∇dft(

∂

∂xj )∇V V 〉

+ 2〈∇dft(
∂

∂xi )V,∇dft(
∂

∂xj )V 〉.

Symmetrizing the indexes, the second variation formula becomes

d2At

dt2
=

∫
M

(
∑
i,j

Gij〈∇df( ∂

∂xi )V,∇df( ∂

∂xj )V 〉 − 1
2

∑
i,j,k,l

GikĠklG
ljĠij) dvt

+
∫

M

∑
i,j

Gij〈R(V, df(
∂

∂xj
))V, df(

∂

∂xi
) 〉 dvt +

1
4

∫
M

(
∑
i,j

GijĠij)2 dvt

+
∫

M

∑
i,j

Gij〈∇df( ∂

∂xi )∇V V, df(
∂

∂xj
) 〉 dvt.

(2.3)

This formula will be used to prove the main theorems in the next section.

3. The stability and uniqueness of minimal maps

We recall a minimal submanifold is called stable if the second derivative of the
volume functional with respect to any compact supported normal variation is non-
negative. We prove the following lemma for minimal graphs.

Lemma 3.1. Suppose that the graph of f : M → N is a minimal submanifold Σ
in M × N . Then Σ is stable if and only if it is stable with respect to any compact
supported deformation of maps from M to N .

Proof. Suppose that ai is an orthonormal basis of the principal directions of df with
stretches λi ≥ 0 and that df(ai) = λibi. Assume that the rank of df(x) is p.
The orthonormal set {bi}i=1···p can be completed to form a local orthonormal ba-
sis {bα}α=1···m of the tangent space of N . In the basis chosen as above, the tangent
space of Σ is spanned by ti = 1√

1+λ2
i

(ai + λibi), 1 ≤ i ≤ n. Observe that λi = 0 for

p < i ≤ n. The normal space of Σ is spanned by ni = 1√
1+λ2

i

(bi − λiai), 1 ≤ i ≤ p

and nα = bα for p < α ≤ m. Assume that V̄ =
∑m

α=1 vαnα is a compact sup-
ported normal vector field along Σ. Then the compact supported vector field V =∑

i

√
1 + λ2

i vibi +
∑

α>p vαbα tangent to N satisfies V ⊥ = V̄ , where (·)⊥ denotes
the normal part of a vector, i.e. the projection onto the normal space of Σ. The
second derivative of volume functional in the direction V ⊥ = V̄ is the same as in the
direction V . The Lemma is thus proved.

�

The notion of a (strictly) distance-decreasing map in Definition 1 can be generalized
to maps between Riemannian manifolds and we can prove the following theorem.
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Theorem 3.1. Suppose that M and N are two Riemannian manifolds with dimension
n and m respectively, and the sectional curvature of N is non-positive. Assume that
f : M → N is a distance-decreasing map and the graph of f , which is denoted by Σ,
is minimal in M ×N . Then the minimal submanifold Σ is stable. It is strictly stable
in the following two cases:

(i) N has negative sectional curvature, and f is not a constant map.
(ii) f is strictly distance-decreasing, and M is noncompact or with nonempty

boundary.

Proof. On a minimal submanifold, we have dAt

dt |t=0 = 0 for any variation field and in
particular ∫

M

∑
i,j

Gij〈∇df( ∂

∂xi )∇V V, df(
∂

∂xj
) 〉 dv = 0.

In the basis chosen in the proof of Lemma 3.1, we derive from (2.3) the following
inequality

d2At

dt2
|t=0 ≥

∫
M

(
∑

i

1
1 + λ2

i

(|∇df(ai)V |
2 − 〈R(V, df(ai))df(ai), V 〉)

− 1
2

∑
i,j

1
1 + λ2

i

1
1 + λ2

j

(〈∇df(ai)V, df(aj) 〉+ 〈∇df(aj)V, df(ai) 〉)2 ) dv.

(3.1)

Since the sectional curvature of N is non-positive, this becomes

d2At

dt2
|t=0 ≥

∫
M

(
∑

i

1
1 + λ2

i

|∇df(ai)V |
2

− 1
2

∑
i,j

1
1 + λ2

i

1
1 + λ2

j

(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj)V, bi 〉)2 ) dv

≥
∫

M

(
∑
i,j

1
1 + λ2

i

〈∇df(ai)V, bj 〉2

−
∑
i,j

1
1 + λ2

i

1
1 + λ2

j

(λ2
j 〈∇df(ai)V, bj 〉2 + λ2

i 〈∇df(aj)V, bi 〉2) ) dv

=
∫

M

∑
i,j

〈∇df(ai)V, bj 〉2

1 + λ2
i

1− λ2
j

1 + λ2
j

dv.

(3.2)

When f is a distance-decreasing map, we have λj ≤ 1 for 1 ≤ j ≤ n. From the
estimate in (3.2), it follows that d2At

dt2 |t=0 ≥ 0. This implies that Σ is stable by
Lemma 3.1. Suppose that f is strictly distance-decreasing, i.e. λj < 1 for 1 ≤ j ≤ n.

If d2At

dt2 |t=0 = 0, it implies that 〈∇df(ai)V, bj 〉 = 0 for 1 ≤ i, j ≤ n and |∇df(ai)V |2 =∑
j〈∇df(ai)V, bj 〉2. Hence ∇df(ai)V = 0 for 1 ≤ i ≤ n. That is, V is a parallel vector

field. In case (ii), V either vanishes outside a compact set or on the boundary of
M , so the parallel condition implies that V is a zero vector. This proves that Σ is
strictly stable in case (ii). When the sectional curvature of N is negative and f is not
a constant map, one always has d2At

dt2 |t=0 > 0 unless V is a zero vector. Therefore, Σ
is strictly stable in case (i).
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�

Remark 1. In case that M is compact without boundary and f is strictly distance-
decreasing, one still has the following conclusion: If d2At

dt2 |t=0 = 0, then V is a parallel
vector field and 〈R(V, df0(ai))df0(ai), V 〉 = 0 for 1 ≤ i ≤ n.

Using the second variation formula, we can also prove the uniqueness of minimal
maps.

Theorem 3.2. Suppose that M and N are two Riemannian manifolds with dimension
n and m respectively, and the sectional curvature of N is non-positive. Let Σ0 and
Σ1 be minimal submanifolds in M × N , which are the graphs of distance-decreasing
maps f0 : M → N and f1 : M → N , respectively. Assume that f0 and f1 are
homotopic, and are identical on the boundary of M and outside a compact set of M .
Then Σ0 = Σ1 in the following two cases:

(i) The sectional curvature of N is negative, and f1 and f2 are not constant maps,
(ii) The boundary of M is nonempty, or M is noncompact.

Proof. Lift the homotopy map between f0 and f1 to the universal covering of N .
Because the sectional curvature of N is non-positive, there exists a unique geodesic
connecting the lifting f̃0(x) and f̃1(x). Denote the projection of this unique geodesic
onto N by γx(t) and define ft(x) = γx(t). Then V = γ̇x(t) satisfies ∇V V = 0. Hence
the same bound on d2At

dt2 as in (3.2) holds for 0 ≤ t ≤ 1.
The vector field dft( ∂

∂xi ), 0 ≤ t ≤ 1, is a Jacobi field along γx(t), which is denoted
by Ji,x(t). A direct calculation gives

d2

dt2
|Ji,x|2 = 2〈 J̈i,x, Ji,x 〉+ 2|J̇i,x|2 = 2〈R(V, Ji,x)V, Ji,x 〉+ 2|J̇i,x|2 ≥ 0.(3.3)

The last inequality follows from the fact that N has nonpositive sectional curvature.
Because both f0 and f1 are distance-decreasing maps, one has |Ji,x(0)|2 ≤ | ∂

∂xi |2 and
|Ji,x(1)|2 ≤ | ∂

∂xi |2. The inequality (3.3) then implies |Ji,x(t)|2 ≤ | ∂
∂xi |2. Hence ft is

also distance-decreasing and one concludes that d2At

dt2 ≥ 0 from (3.2) for 0 ≤ t ≤ 1.
Because dAt

dt |t=0 = dAt

dt |t=1 = 0, the bound gives dAt

dt = 0 and d2At

dt2 = 0 for 0 ≤ t ≤ 1.
In order to have d2At

dt2 |t=0 = 0, every inequality in (3.1) and (3.2) should be achieved
by an equality. It implies that the following conditions must hold:

(1)
∑

i
1

1+λ2
i
〈∇df0(ai)V, df0(ai) 〉 = 0.

(2) |∇df0(ai)V |2 =
∑

j〈∇df0(ai)V, bj 〉2 for 1 ≤ i ≤ n.

(3) 〈∇df0(ai)V, df0(aj) 〉 = 〈∇df0(aj)V, df0(ai) 〉 for 1 ≤ i, j ≤ n.
(4) If λj < 1, then 〈∇df0(ai)V, bj 〉 = 0 for 1 ≤ i ≤ n. It in particular implies

〈∇df0(ai)V, df0(aj) 〉 = 0 for 1 ≤ i ≤ n.
(5) 〈R(V, df0(ai))df0(ai), V 〉 = 0 for 1 ≤ i ≤ n.

Condition 1 follows from the fact that we drop 1
4

∫
M

(
∑

i,j GijĠij)2 dvt in (2.3) to
get (3.1). An equality in (3.1) implies

∑
i,j GijĠij = 0 and condition 1 is the same

equation in the basis chosen as in the proof of Lemma 3.1. If the first inequality in (3.2)
is achieved by an equality, condition 5 must hold. Condition 2 and 3 are necessary
to obtain an equality in the second inequality in (3.2). Note that in condition 2, we
only sum over the projections to bj , 1 ≤ j ≤ n, instead of the complete basis bα,
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1 ≤ α ≤ m. Finally in the last equality of (3.2), we must have every term vanishing
since λj ≤ 1 for 1 ≤ j ≤ n. This gives condition 4.

Now we use these conditions to prove the theorem. When the sectional curvature
of N is negative and f0 is not a constant map, condition 5 implies that V = 0. Hence
f0 = f1 and Σ0 = Σ1. It shows case (i).

Suppose that the sectional curvature of N is non-positive. We will show that V is
a parallel vector field. That is, ∇df0(aj)V = 0 for any 1 ≤ j ≤ n. Fix a point x ∈ M

and choose coordinates at x such that aj = ∂
∂xj for 1 ≤ j ≤ n. If λj = 1, we have

|df0( ∂
∂xj )|2 = 1 and |Jj,x(t)|2 achieves its maximum at t = 0. Therefore, we have

d
dt |Jj,x(t)|2 = 0 and d2

dt2 |Jj,x(t)|2 ≤ 0 at t = 0 (as one side derivative). Together with
the bound on (3.3), it then implies J̇j,x(0) = 0. Hence

∇df0(aj)V |x = ∇df0(
∂

∂xj )V |x = ∇V dft(
∂

∂xj
)|t=0 = J̇j,x(0) = 0.

This shows ∇df0(aj)V |x = 0 when λj = 1.
If λj < 1, condition 4 tells us 〈∇df0(ai)V, df0(aj) 〉 = 0 for 1 ≤ i ≤ n. By condition

3, we then have 〈∇df0(aj)V, df0(ai) 〉 = 0 for 1 ≤ i ≤ n. Hence 〈∇df0(aj)V, bi 〉 =
0 if λi 6= 0. When λi = 0 < 1, using condition 4, one can also conclude that
〈∇df0(aj)V, bi 〉 = 0. Thus 〈∇df0(aj)V, bi 〉 = 0 for 1 ≤ i ≤ n. Condition 2 then implies
∇df0(aj)V = 0.

In conclusion, we have ∇df0(aj)V = 0 for any 1 ≤ j ≤ n and V is a parallel vector
field. In case (ii), the variation field V either vanishes on the boundary or outside a
compact set of M . It thus implies V = 0 on M . Therefore, f0 = f1 and Σ0 = Σ1 in
case (ii). This completes the proof.

�

Remark 2. When M is compact without boundary and N has negative sectional
curvature, then either f0 = f1 or both f0 and f1 are constants. If we only know
that N has non-positive sectional curvature, we can still conclude that V is a parallel
vector field on ft(M) for 0 ≤ t ≤ 1. The graphs of ft, 0 ≤ t ≤ 1, are then minimal
submanifolds of constant distance. Moreover, the Jacobi fields Ji,x(t) = dft( ∂

∂xi ), i =
1, · · · , n are parallel along γx(t). It implies that the induced metrics on the graphs of
ft are the same. We also have J̇i,x(t) = 0 and J̈i,x(t) = 0. The Jacobi equation thus
leads to R(V, dft( ∂

∂xi ))V = 0 for 1 ≤ i ≤ n and 0 ≤ t ≤ 1. Hence 〈R(V, T )V, T 〉 = 0
for any vector T tangent to ft(M) in N . The results and further exploration are very
similar to the case of harmonic maps as studied by Schoen and Yau in [SY].

4. Another criterion for stability

In this section, we will derive another criterion for the stability of minimal maps.
It is in terms of bounds on the two-Jacobian | ∧2 df |(x) as defined in the introduc-
tion. The theorem generalizes the results for nonparametric minimal submanifolds of
codimension one.

Theorem 4.1. Let M and N be Riemannian manifolds with dimension n and m
respectively, and Σ be the graph of a map f : M → N with rank(df) ≤ p for some
integer p > 1. Suppose the sectional curvature of N is non-positive and Σ is minimal
in M ×N . Then Σ is stable if | ∧2 df |(x) ≤ 1

p−1 for any x ∈ M .
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Proof. We will keep the term 1
4

∫
M

(
∑

i,j GijĠij)2 dv in the second variation formula.
In the basis chosen in the proof of Lemma 3.1, we derive from (2.3)

d2At

dt2
|t=0 =

∫
M

(
∑

i

1
1 + λ2

i

(|∇df(ai)V |
2 − 〈R(V, df(ai))df(ai), V 〉)

− 1
2

∑
i,j

1
1 + λ2

i

1
1 + λ2

j

(〈∇df(ai)V, df(aj) 〉+ 〈∇df(aj)V, df(ai) 〉)2 ) dv

+
∫

M

(
∑

i

1
1 + λ2

i

〈∇df(ai)V, df(ai) 〉)2 dv.

Since the sectional curvature of N is non-positive, this becomes

d2At

dt2
|t=0 ≥

∫
M

(
∑

i

1
1 + λ2

i

|∇df(ai)V |
2 + (

∑
i

λi

1 + λ2
i

〈∇df(ai)V, bi 〉)2

− 1
2

∑
i,j

1
(1 + λ2

i )(1 + λ2
j )

(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj)V, bi 〉)2 ) dv

≥
∫

M

(
∑
i,j

1
1 + λ2

i

〈∇df(ai)V, bj 〉2

+
∑
i,j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉

− 1
2

∑
i,j

1
(1 + λ2

i )(1 + λ2
j )

(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj)V, bi 〉)2 ) dv

(4.1)

We break the terms into i = j and i 6= j, and obtain

∑
i,j

1
1 + λ2

i

〈∇df(ai)V, bj 〉2

=
∑

i

1
1 + λ2

i

〈∇df(ai)V, bi 〉2 +
∑
i 6=j

1
1 + λ2

i

〈∇df(ai)V, bj 〉2,

and

∑
i,j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉

=
∑

i

λ2
i

(1 + λ2
i )2

〈∇df(ai)V, bi 〉2 +
∑
i 6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉,
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and
1
2

∑
i,j

1
(1 + λ2

i )(1 + λ2
j )

(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj)V, bi 〉)2

=
∑

i

2λ2
i

(1 + λ2
i )2

〈∇df(ai)V, bi 〉2 +
∑
i 6=j

λ2
j

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉2

+
∑
i 6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉〈∇df(aj)V, bi 〉).

Plug these expressions into (4.1), and obtain

d2At

dt2
|t=0 ≥

∫
M

(
∑

i

1
(1 + λ2

i )2
〈∇df(ai)V, bi 〉2

+
∑
i 6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉 ) dv

+
∫

M

(
∑
i 6=j

1
(1 + λ2

i )(1 + λ2
j )
〈∇df(ai)V, bj 〉2

−
∑
i 6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉〈∇df(aj)V, bi 〉 ) dv.

(4.2)

The sum of the first two integrands on the right hand side of (4.2) is no less than∑
λi 6=0

〈∇df(ai)V, bi 〉2

(1 + λ2
i )2

+
∑

i 6=j,λi 6=0,λj 6=0

λiλj〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉
(1 + λ2

i )(1 + λ2
j )

≥
∑

i 6=j,λi 6=0,λj 6=0

〈∇df(ai)V, bi 〉2

(p− 1)(1 + λ2
i )2

+
λiλj〈∇df(ai)V, bi 〉〈∇df(aj)V, bj 〉

(1 + λ2
i )(1 + λ2

j )

≥
∑

i 6=j,λi 6=0,λj 6=0

〈∇df(ai)V, bi 〉2

(p− 1)(1 + λ2
i )2

−
|〈∇df(ai)V, bi 〉||〈∇df(aj)V, bj 〉|

(p− 1)(1 + λ2
i )(1 + λ2

j )

=
1

p− 1

∑
i<j,λi 6=0,λj 6=0

〈∇df(ai)V, bi 〉2

(1 + λ2
i )2

−2
|〈∇df(ai)V, bi 〉||〈∇df(aj)V, bj 〉|

(1 + λ2
i )(1 + λ2

j )
+
〈∇df(aj)V, bj 〉2

(1 + λ2
j )2

=
1

p− 1

∑
i<j,λi 6=0,λj 6=0

(
|〈∇df(ai)V, bi 〉|

1 + λ2
i

−
|〈∇df(aj)V, bj 〉|

1 + λ2
j

)2.

We use λiλj ≤ 1
p−1 for i 6= j in the second inequality. This fact follows from the

condition | ∧2 df |(x) ≤ 1
p−1 .

The sum of the last two integrands on the right hand side of (4.2), after symmetriz-
ing the indexes, can be written as∑

i 6=j

〈∇df(ai)V, bj 〉2 − 2λiλj〈∇df(ai)V, bj 〉〈∇df(aj)V, bi 〉+ 〈∇df(aj)V, bi 〉2

2(1 + λ2
i )(1 + λ2

j )
.
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It is clearly non-negative since λiλj ≤ 1
p−1 ≤ 1 for i 6= j. Hence we have d2At

dt2 |t=0 ≥ 0
and the minimal submanifold is stable as claimed.
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