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GELFAND-FUCHS COHOMOLOGY OF INVARIANT FORMAL
VECTOR FIELDS

Ilya Shapiro and Xiang Tang

Abstract. Let Γ be a finite group acting linearly on a vector space V . We compute
the Lie algebra cohomology of the Lie algebra of Γ-invariant formal vector fields on V .

We use this computation to define characteristic classes for foliations on orbifolds.

1. Introduction

The space of smooth vector fields on a manifold M is naturally an infinite dimen-
sional Lie algebra with the usual commutator bracket. The continuous cohomology
of this infinite dimensional Lie algebra was studied by Gelfand-Fuchs ([Fu] and ref-
erences therein). It is now called the Gelfand-Fuchs cohomology of M . The study of
this cohomology leads to a better understanding of the manifold M , in particular, it
was proved by Bott-Segal and Haefliger-Trauber that the Gelfand-Fuchs cohomology
of M is a homotopy invariant of M and is equal to the singular cohomology of a space
functorially constructed from M .

The Gelfand-Fuchs cohomology turned out to be a very useful tool in the study of
foliations. Berstein-Rozenfeld and Gelfand-Fuchs [Fu] applied it to the construction
of the secondary characteristic classes of foliations generalizing the Godbillon-Vey
class. Connes and Connes-Moscovici, [C] and [CM], adopted the Gelfand-Fuchs co-
homology to the study of the transverse index theory for foliations; a Hopf algebraic
generalization of the Gelfand-Fuchs cohomology was developed by them.

The connection between the Gelfand-Fuchs cohomology and the algebraic index
theory of formal deformation quantizations of symplectic manifolds was developed by
Nest-Tsygan [NT] and Feigin-Felder-Shoikhet [FFS]. The present paper is motivated
in part by the second author’s study of the algebraic index theory of orbifolds [PPT].
An equivariant version of the Gelfand-Fuchs computation of the cohomology is a
crucial step.

Let V be a vector space over R or C, and Γ a finite group acting linearly on V .
Let WΓ

ρ be the space of Γ-invariant formal vector fields on V , where ρ denotes the Γ
action on V . We compute the Lie algebra cohomology of WΓ

ρ as well as some of the
relative cases.

In [PPT] a very special case of the above question was examined. Namely, some
nonzero elements in H•(WΓ

ρ , gl(V )Γ) are shown to exist when V is a complex vector
space (gl(V )Γ consists of Γ-invariant linear transformations on V ). In this paper,
we give a much more complete answer to the above question when V is complex, or
when V is real and Γ is cyclic (with a technical assumption Γ may be other than
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cyclic, but the cyclic case is sufficient for an application to the characteristic classes).
The methods we use are similar to those of Gelfand-Fuchs [Fu], i.e. Hochschild-Serre
spectral sequence and invariant theory. However, we need to deal with a somewhat
more complicated algebras and E2-terms. Our result compares the Lie algebra co-
homology to the cohomology of a certain truncated Weil algebra as well as to the
cohomology of a certain topological space naturally associated to a classifying space.
This description of the result mirrors closely that of Gelfand-Fuchs. We remark that
our computation does depend on the field we work with. The endomorphism algebra
of an irreducible representation of Γ is C when V is complex, but may be R, C, or H
when V is real. We assume Γ to be cyclic to avoid the quaternionic case.

As an application, we follow Kontsevich’s take on the Gelfand-Fuchs’ method [Fu,
K] to define characteristic classes for equivariant foliations. When a manifold is
equipped with an action of a finite group Γ, and a foliation F on M is Γ-equivariant,
F descends naturally to a foliation on the quotient space M/Γ. When M/Γ is not a
manifold but an orbifold, we obtain a foliation F̃ on the orbifold M/Γ. We prove that
a foliation on an orbifold X = M/Γ actually induces a foliation on the corresponding
inertia orbifold X̃ =

∐
〈γ〉⊂ΓM

γ/Γγ , where 〈γ〉 is the conjugacy class1 of γ in Γ, Mγ

the fixed point submanifold2 of M , and Γγ consists of fixed points of γ in Γ under
the conjugation action. Though we work always with M/Γ our results hold generally
for arbitrary orbifolds X. Finally, we are able to define characteristic classes for
a foliation on an orbifold X as elements in the de Rham cohomology of its inertia
orbifold X̃.

The paper is arranged as follows. In Section 2, we compute the Lie algebra coho-
mology of WΓ. In Section 3, we prove that a foliation on an orbifold defines a foliation
on the corresponding inertia orbifold; applying our computations of the Gelfand-Fuchs
cohomology, we define characteristic classes for foliations on orbifolds.

2. Cohomology of invariant subalgebras of formal vector fields

Let V be a vector space over R or C, and WV be the Lie algebra of formal vector
fields on V . Suppose we have an action ρ of a finite group Γ on V , this induces
an action on WV . We compute in this section the Lie algebra cohomology of the Lie
algebra WΓ

ρ of Γ-invariant formal vector fields on V when V is a complex vector space,
or when V is a real vector space and Γ is a cyclic group. We divide the computations
into several steps. In Section 2.1-2.3, we work out the case of a complex vector space
V , and in Section 2.4, we explain how to extend our computation to the case of a real
vector space V and a cyclic group Γ action.

2.1. Eigenvalues of the Euler field. We point out that the Γ action on V can be
made unitary3. Accordingly, as unitary representations of Γ are completely reducible,

1This notation is a possible source of confusion as it is also used to denote the cyclic group

generated by γ, however its meaning is clear from the context.
2Note that Mγ may have quite different connected components.
3Had Γ not been a finite or more generally compact group, the condition that the action be

unitary would have to be required.
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V can be split into

V = V0 ⊕
k⊕

α=1

mαWα,

where V0 is the trivial Γ representation, Wα is irreducible, and mα is the multiplicity
of Wα in V .

We introduce coordinates on V as follows: xi on V0, xj
α,s on Wα,s for all 1 ≤ α ≤

k, 1 ≤ s ≤ mα, 1 ≤ j ≤ dim(Wα). We consider the following vector field∑
i,α,s

xi
α,s

∂

∂xi
α,s

that we denote by X. It is not difficult to see that X is Γ invariant and therefore
belongs to WΓ

ρ . We need the following Lemma.

Lemma 2.1. Let g be a Lie algebra and X ∈ g such that adgX is diagonal with
non-negative eigenvalues. Then the inclusion of gX into g induces and isomorphism
on Lie algebra cohomology.

Proof. That gX is a subalgebra follows from the Jacobi identity. Since X acts diag-
onally on g it does so also on ∧•g∗ and each eigenspace is a subcomplex. Since the
action of X on cohomology is trivial, only the 0-eigenspace subcomplex contributes
non-trivially to the cohomology. By non-negativity of eigenvalues, the 0-eigenspace
subcomplex is exactly ∧•(gX)∗. �

Corollary 2.2. Let WX = (WΓ
ρ )X , then

H•(WΓ
ρ ) = H•(WX)

It is possible to give an explicit description of WX in terms of the decomposition
of V into irreducibles. Namely, WX can be identified with WV0 n

(⊕
mα

Poly(V0)⊗
glmα

(C)
)
, where WV0 is the Lie algebra of formal vector fields on V0, and Poly(V0) is

the algebra of polynomials on V0. We remark that WV0 acts on Poly(V0) naturally,
and on Poly(V0) ⊗ glmα

(C) via the first factor. This action defines the Lie bracket
between WV0 and

⊕
mα

Poly(V0) ⊗ glmα
(C). The bracket on Poly(V0) ⊗ glmα

(C) is
extended Poly(V0)-linearly from that on glmα

(C).

2.2. Spectral sequence and invariant theory. In this subsection, we will work
with the case when there is only one nonzero mα in the representation ρ. Namely,
we compute the Lie algebra cohomology of WV0 n Poly(V0) ⊗ gl(W ), where V0, W
are some vector spaces, and the Lie bracket between WV0 and Poly(V0) ⊗ gl(W ) is
defined by the action of WV0 on Poly(V0).

We consider the Lie subalgebra gl(V0) ⊕ gl(W ) in WV0 n Poly(V0) ⊗ gl(W ), and
use the Hochschild-Serre spectral sequence to compute the Lie algebra cohomology.

The E1 term of this spectral sequence is as follows:

Ep,q
1 = Hq

(
gl(V0)⊕ gl(W ),

p∧(
WV0 n Poly(V0)⊗ gl(W )

gl(V0)⊕ gl(W )

)∗)

= Hq

(
gl(V0)⊕ gl(W ),

p∧(
SymV ∗

0 ⊗ V0 ⊕W ∗ ⊗W ⊗ SymV ∗
0

V ∗
0 ⊗ V0 ⊕W ∗ ⊗W

)∗)
.
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Thus it is equal to H•(gl(V0)⊕ gl(W ),C)⊗ Inv, where Inv stands for the following
expression: ( •∧

V0 ⊗
•∧

(Sym≥2V ∗
0 ⊗ V0)⊗

•∧
(W ⊗W ∗ ⊗ Sym≥1V ∗

0 )

)∗ gl(V0)⊕gl(W )

.

Let us say a few words of justification for this manipulation. Suppose that V ,
Vi are some complex vector spaces. It is a well known fact that H•(gl(V ),M) =
H•(gl(V )) ⊗ Mgl(V ) provided that M is a tensor module, i.e. is a submodule of⊗
V ⊗

⊗
V ∗. The idea of the proof is to introduce an inner product on V which

is used to define the Casimir element ∆ of the universal enveloping algebra. The
Casimir element (belonging to the center and being self adjoint) gives a decomposition
of
⊗
V ⊗

⊗
V ∗ into ker∆ ⊕ im∆ as a gl(V )-module. It is then apparent that the

module of gl(V )-invariants (which is exactly ker∆) is isolated among these submodules
as the only submodule with the trivial infinitesimal character. Thus it is the only one
contributing non-trivially to the cohomology (as is clear from the Ext interpretation).
These considerations then easily apply also to M itself. Using the above ideas it is
immediate that H•(

⊕
gl(Vi),M) = H•(

⊕
gl(Vi)) ⊗M

L
gl(Vi) provided that M ⊂⊗

(
⊗
Vi ⊗

⊗
V ∗

i ), for i ∈ I.
At this point we need to describe the structure of the invariants Inv as an algebra.

Lemma 2.3.( •∧
V0 ⊗

•∧
(Sym≥2V ∗

0 ⊗ V0)⊗
•∧

(W ⊗W ∗ ⊗ Sym≥1V ∗
0 )

)∗ gl(V0)⊕gl(W )

=
∑
r,s

(
r+s∧

V0 ⊗
r∧

(Sym2V ∗
0 ⊗ V0)⊗

s∧
(W ⊗W ∗ ⊗ V ∗

0 )

)∗ gl(V0)⊕gl(W )

.

Proof. This is proved in Proposition 5.2 [PPT]. Here we mention the ingredients.
First of all by gl(V0) invariance, elements in V0 have to be paired with elements in
V ∗

0 . That is any homogeneous component of an element will have equal numbers of
V0 and V ∗

0 . Next, we observe that one cannot pair ∧kV0 with SymkV ∗
0 in a gl(V0)

invariant way for k > 1. This is sufficient to prove the Lemma.
�

Using the gl(V0)⊕ gl(W )-invariance (c. f. [Fu]), we observe that(
r+s∧

V0 ⊗
r∧

(Sym2V ∗
0 ⊗ V0)⊗

s∧
(W ⊗W ∗ ⊗ V ∗

0 )

)∗ gl(V0)⊕gl(W )

is spanned by ψσ,γ with σ ∈ Σr, γ ∈ Σs and

ψσ,γ(v1, ..., vr+s, ϕ1, v
′

1, ..., ϕr, v
′

r, ..., w1, w
∗
1 , v

∗
1 , ..., ws, w

∗
s , v

∗
s )

=
∑

α,β,δ∈Σr+s×Σr×Σs

sgn(α)sgn(β)sgn(δ)
r∏

i=1

ϕβ(i)(v
′

βσ(i), vα(i))
s∏

j=1

w∗δ(j)(wδγ(j))v∗δ(j)(vα(r+j))

where vi, v
′
i ∈ V0, ϕi ∈ Sym2V ∗

0 , wj ∈W , w∗j ∈W ∗, and v∗k ∈ V ∗
0 .
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We will use the notation ψσ,γ((vi)r+s
1 , (ϕi, v

′

i)
r
1, (wi, w

∗
i , v

∗
i )s

1) to stand for the above
pairing. The way to generate such a formula is to write down an element without any
symmetry conditions first, i.e.

r∏
i=1

ϕi(v
′

σ(i), vα(i))
s∏

j=1

w∗j (wγ(j))v∗j (vα(r+j))

and then anti-symmetrize it. Re-indexing the above summations, we get another form
of the same element ψσ,γ that is evidently constant on the conjugacy classes of σ and
γ: ∑

α,β,δ∈Σr+s×Σr×Σs

sgn(α)
r∏

i=1

ϕi(v
′

βσβ−1(i), vα(i))
s∏

j=1

w∗j (wδγδ−1(j))v∗j (vα(r+j)).

In order to better understand ψσ,γ , we define Φσ ∈
(
∧rV0 ⊗ ∧r(Sym2V ∗

0 ⊗ V0)
)∗ gl(V0)

and Ψγ ∈ (∧sV0 ⊗ ∧s(W ⊗W ∗ ⊗ V ∗
0 ))∗ gl(V0)⊕gl(W ) by

Φσ((vi)r
1, (ϕi, v

′

i)
r
1) =

∑
ν,β∈Σr

sgn(ν)
r∏

i=1

ϕi(v
′

βσβ−1(i), vν(i)),

Ψγ((vi)s
1, (wi, w

∗
i , v

∗
i )s

1) =
∑

η,ω∈Σs

sgn(η)
s∏

j=1

w∗j (wωγω−1(j))v∗j (vη(j)).

We then have the following:

Lemma 2.4.

Φσ ·Ψγ = ψσ,γ

Proof.

Φσ ·Ψγ((vi)r+s
1 , (ϕi, v

′

i)
r
1, (wi, w

∗
i , v

∗
i )s

1)

=
1
r!s!

∑
α∈Σr+s

sgn(α)Φσ((vα(i))r
1, (ϕi, v

′

i)
r
1)Ψγ((vα(r+i))s

1, (wi, w
∗
i , v

∗
i )s

1)

=
1
r!s!

∑
α∈Σr+s

sgn(α)
∑

ν,β∈Σr

sgn(ν)
r∏

i=1

ϕi(v
′

βσβ−1(i), vαν(i))

∑
η,ω∈Σs

sgn(η)
s∏

j=1

w∗j (wωγω−1(j))v∗j (vα(r+η(j)))

=
1
r!s!

∑
ν,η

sgn(νη)
∑

α,β,ω

sgn(α)
r∏

i=1

ϕi(v
′

βσβ−1(i), vαν(i))

s∏
j=1

w∗j (wωγω−1(j))v∗j (vα(r+η(j)))
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after re-indexing

=
1
r!s!

∑
ν,η

∑
α,β,ω

sgn(α)
r∏

i=1

ϕi(v
′

βσβ−1(i), vα(i))
s∏

j=1

w∗j (wωγω−1(j))v∗j (vα(r+j))

= ψσ,γ((vi)r+s
1 , (ϕi, v

′

i)
r
1, (wi, w

∗
i , v

∗
i )s

1).

�

The element Φσ obviously depends only on the conjugacy class of σ. Furthermore,
if σ ∈ Σr can be decomposed as σ1

∐
σ2 with σi ∈ Σri

and r1 + r2 = r, then
Φσ = Φσ1 · Φσ2 . This was proved in Theorem 2.1.4 [Fu]. Thus( •∧

V0 ⊗
•∧

(Sym2V ∗
0 ⊗ V0)

)∗ gl(V0)

is generated by Φi ∈
(∧i

V0 ⊗
∧i(Sym2V ∗

0 ⊗ V0)
)∗ gl(V0)

for i = 1, ...,dimV0, given by
the elementary cycles of length i.

To deal with Ψγ , we consider the map:

˜ : (Syms(W ⊗W ∗))∗ gl(W ) →

(
s∧
V0 ⊗

s∧
(W ⊗W ∗ ⊗ V ∗

0 )

)∗ gl(V0)⊕gl(W )

defined by
Ψ̃((vi)s

1, (wi, w
∗
i , v

∗
i )s

1) = Ωs((vi)s
1, (v

∗
i )s

1)Ψ((wi, w
∗
i )s

1)
where

Ωs((vi)s
1, (v

∗
i )s

1) =
∑

α∈Σs

sgn(α)
s∏

i=1

v∗i (vα(i))

is the canonical element of (
∧s

V0 ⊗
∧s

V ∗
0 )∗ gl(V0).

Lemma 2.5. The map ˜ is a homomorphism.

Proof. Let Ψs ∈ (Syms(W ⊗W ∗))∗ gl(W ) and Ψs′ ∈ (Syms′(W ⊗W ∗))∗ gl(W ). Then

Ψ̃s · Ψ̃s′((vi)s+s′

1 , (wi, w
∗
i , v

∗
i )s+s′

1 )

=
1

(s!)2(s′!)2
∑

α,β∈Σs+s′

sgn(αβ)Ψ̃s((vα(i))s
1, (wβ(i), w

∗
β(i), v

∗
β(i))

s
1)

· Ψ̃s′((vα(s+i))s′

1 , (wβ(s+i), w
∗
β(s+i), v

∗
β(s+i))

s′

1 )

=
1
s!s′!

∑
β

sgn(β)Ψs((wβ(i), w
∗
β(i))

s
1)Ψ

s′((wβ(s+i), w
∗
β(s+i))

s′

1 )

· 1
s!s′!

∑
α

sgn(α)Ωs((vα(i))s
1, (v

∗
β(i))

s
1)Ωs′((vα(s+i))s′

1 , (v
∗
β(s+i))

s′

1 )

= Ωs+s′((vi)s+s′

1 , (v∗i )s+s′

1 )
1
s!s′!

∑
β

Ψs((wβ(i), w
∗
β(i))

s
1)Ψ

s′((wβ(s+i), w
∗
β(s+i))

s′

1 )

= Ψ̃s ·Ψs′((vi)s+s′

1 , (wi, w
∗
i , v

∗
i )s+s′

1 )
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�

The homomorphism ˜ obviously factors through the quotient of the symmetric
algebra by the ideal of functions of degree greater than dim(V0). The induced map
from the quotient is than an isomorphism as it is easy to construct an inverse. Namely,
consider the evaluation map on any partial basis of V0 (this map is choice indepen-
dent):

ev :

(
s∧
V0 ⊗

s∧
(W ⊗W ∗ ⊗ V ∗

0 )

)∗ gl(V0)⊕gl(W )

−→ (Syms(W ⊗W ∗))∗ gl(W )

Ψ 7→ Ψ((ei)s
1, (−,−, e∗i )s

1)

Then clearly ev ◦˜ = Id, and to check that ˜◦ ev = Id it is sufficient to con-

sider Ψγ . Recall that Ψγ((vi)s
1, (wi, w

∗
i , v

∗
i )s

1) =
∑

η,ω∈Σs

sgn(η)
s∏

j=1

w∗j (wωγω−1(j))v∗j (vη(j))

and consider the element Ψ ∈ (Syms(W ⊗W ∗))∗ gl(W ) defined by Ψ((wi, w
∗
i )s

1) =∑
ω∈Σs

s∏
j=1

w∗j (wωγω−1(j)). Then Ψγ = Ψ̃ and this is enough.

Since the structure of (Sym•(W ⊗W ∗))∗ gl(W ) is well known4, we obtain the struc-
ture of

(∧•
V0 ⊗

∧•(W ⊗W ∗ ⊗ V ∗
0 )
)∗ gl(V0)⊕gl(W ) as an algebra. Namely it has gen-

erators Ψ̃i and relations
∏

Ψ̃ik
= 0 if

∑
ik > dim(V0). Note that might mean that

some of the generators are themselves 0. We are now ready for:

Lemma 2.6. Inv is generated by Φi, i = 1, · · · , dim(V0) of degree 2i and Ψ̃j , j =
1, · · · , dim(W ) of degree 2j subject to the relation that the total degree can not exceed
2dim(V0).

Proof. The only thing that remains is to show that there are no other relations.
Suppose that

∑
I,J

aI,JΦIΨ̃J = 0, where I and J are multi-indices and |I| + |J | ≤

dim(V ).5 We may assume that for all I and J , |I| = r and |J | = s, thus we may
relabel the sum to

∑
[σ],J

a[σ],JΦσΨ̃J = 0 with [σ] running over the conjugacy classes of

Σr. Choosing a partial basis (ei)r+s
1 of V , and a τ ∈ Σr, set ϕei = (e∗i )

2 and consider
the following calculation:

ΦσΨ̃J((ei)r+s
1 , (ϕei

, eτ−1(i))r
1, (wi, w

∗
i , e

∗
r+i)

s
1)

=
1
r!s!

∑
α∈Σr+s

sgn(α)Φσ((eα(i))r
1, (ϕei

, eτ−1(i))r
1)Ωs((eα(r+i))s

1, (e
∗
r+i)

s
1)ΨJ((wi, w

∗
i )s

1).

4The generators are Ψi ∈
`
Symi(W ⊗W ∗)

´∗ gl(W )
for i = 1, ..., dim(W ) corresponding to the

elementary cycles of length i, and there are no relations.
5By |I| we mean

P
ik where I = {i1, ..., in}.
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Note that Ωs((eα(r+i))s
1, (e

∗
r+i)

s
1) = 0 unless α = α1

∐
α2 with α1 ∈ Σr and α2 ∈ Σs,

in which case it equals sgn(α2), thus

= ΨJ((wi, w
∗
i )s

1)
1
r!

∑
β∈Σr

sgn(β)Φσ((eβ(i))r
1, (ϕei

, eτ−1(i))r
1)

= ΨJ((wi, w
∗
i )s

1)Φσ((ei)r
1, (ϕei

, eτ−1(i))r
1)

Recalling the definition we see that

Φσ((ei)r
1, (ϕei

, eτ−1(i))r
1) =

∑
ν,β∈Σr

sgn(ν)
r∏

i=1

ϕei
(eτ−1βσβ−1(i), eν(i))

=

{
|Stab(σ)| if σ ∼ τ

0 else.

Therefore evaluating
∑
[σ],J

a[σ],JΦσΨ̃J at (ei)r+s
1 , (ϕei

, eτ−1(i))r
1, (−,−, e∗r+i)

s
1 we obtain

that
∑

J

a[τ ],J |Stab(τ)|ΨJ = 0 in (Sym·(W ⊗W ∗))∗ gl(W ), thus a[τ ],J = 0 for all τ and

J . �

Remark 2.7. The above Lemma is actually a description of H•(WΓ
n , GL

Γ
n) as an

algebra. See also Prop. 2.12

2.3. Weil algebras and classifying spaces. In the next step, we relate the coho-
mology of the Lie algebra WΓ

ρ to the cohomology of a truncated Weil algebra as well
as to the cohomology of a certain topological space.

We recall the general definition of a Weil algebra. Let g be a Lie algebra. Define
the Weil algebra W (g) to be ∧•g∗⊗S•g∗. Introduce a grading on W (g) by assigning
elements from ∧ig∗⊗Sjg∗ degree i+2j. The algebra W (g) is filtered by a decreasing
filtration

W (g) = F 0W (g) ⊃ F 1W (g) = F 2W (g) ⊃ F 3W (g) = F 4W (g) ⊃ · · · ,

with F pW (g) =
⊕

2j≥p

∧•g∗ ⊗ Sjg∗.

A differential dW on W (g) can be introduced as follows:

dWψ(g1 ∧ · · · ∧ gi ⊗ h1 ⊗ · · ·hj) =
j∑

t=1

ψ(g1 ∧ · · · ∧ gi ∧ ht ⊗ h1 ⊗ · · · ĥt ⊗ · · · ⊗ hj)

+
i∑

s=1

j∑
t=1

(−1)s−1ψ([gs, ht] ∧ g1 ∧ · · · ĝs · · · ∧ gi ⊗ h1 ⊗ · · · ĥt · · · ⊗ hj)

+
∑

1≤s1<s2≤i

(−1)s1+s2−1ψ([gs1 , gs2 ] ∧ g1 ∧ · · · ĝs1 · · · ĝs2 · · · ∧ gi ⊗ h1 ⊗ · · · ⊗ hj),

and (W (g), dW , F •) forms a filtered differential graded algebra. One computes the
E2 term of the spectral sequence associated to the filtration:

Ep,q
2 =

{
0, p is odd,
Hq(g;Sp/2g∗), p is even.
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We note that (W (g), d) is acyclic.
The Weil algebraW (g) has a lifting property which we will use below. Suppose that

(C•, δ) is a differential graded algebra. Then any linear map f from g∗ to C1 of (C•, δ)
can be lifted to a homogeneous multiplicative homomorphism F from (W (g), dW ) to
(C•, δ), which agrees with f on g∗. To define such a map F , it is sufficient to specify
the image of the generators:

F (g∗ ⊗ 1) = f(g∗), F (1⊗ g∗) = −δ(f(g∗)).

For the purpose of our computation, we need to consider the truncated Weil algebra
W (g)2n = W (g)/F2n+1W (g). The filtration F • descends to a filtration on W (g)2n,
and the E2-term of the spectral sequence associated to the inherited filtration is

Ep,q
2 =

{
Hq(g;Sp/2g∗), p is even and p ≤ 2n,
0, otherwise.

We consider the special case of g = gl(V0)⊕gl(W ). To compute the cohomology of
the truncated Weil algebra of gl(V0)⊕ gl(W ), we need to understand the Lie algebra
cohomology of gl(V0)⊕gl(W ) with coefficient in S•(gl(V0)⊕gl(W ))∗. The cohomology
H•(gl(V0)⊕ gl(W ); S•(gl(V0)⊕ gl(W ))∗) is isomorphic to

H•(gl(V0);S•gl(V0)∗)⊗H•(gl(W );S•gl(W )∗).

By the Casimir element argument, as is explained in Section 2.2, we see that

H•(gl(V0);S•gl(V0)∗) = H•(gl(V0))⊗ (S•gl(V0)∗)gl(V0),

H•(gl(W );S•gl(W )∗) = H•(gl(W ))⊗ (S•gl(W )∗)gl(W ).

Furthermore by [Fu][Theorem 2.1.5], (S•gl(V0)∗)gl(V0) is generated by ξi, i = 1, · · · ,
dim(V0), with deg(ξi) = 2i and

ξi(g1, · · · , gi) =
∑

σ∈Σi

Tr(gσ(1) · · · gσ(i)),

for gs ∈ gl(V0). Here we view an element g in gl(V0) as a linear endomorphism on
V0, and Tr is the trace functional on linear endomorphisms. The same holds for
(S•gl(W )∗)gl(W ). Summarizing, we observe that

H•(gl(V0)⊕ gl(W );S•(gl(V0)⊕ gl(W ))∗)

=H•(gl(V0))⊗H•(gl(W ))⊗ C[ξ1, · · · , ξdim(V0)]⊗ C[η1, · · · , ηdim(W )].

Let us compute the Lie algebra cohomology of WV0 n Poly(V0)⊗ gl(W ) using the
Weil algebra. Consider the “natural” projection pr from WV0 n Poly(V0)⊗ gl(W ) to
gl(V0)⊕ gl(W ). The dual of this map defines a linear map from (gl(V0)⊕ gl(W ))∗ to
(WV0 n Poly(V0)⊗ gl(W ))∗. By the universal lifting property of the Weil algebra we
obtain a map

χ : W (gl(V0)⊕ gl(W )) → ∧•(WV0 n Poly(V0)⊗ gl(W ))∗.

We write out χ explicitly on the generators of W (gl(V0)⊕ gl(W )),

χ(g∗ ⊗ 1) = g∗, χ(h∗ ⊗ 1) = h∗,

χ(1⊗ g∗) = −dg∗, χ(1⊗ h∗) = −dh∗,
(1)

for g ∈ gl(V0), h ∈ gl(W ).
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We notice that for g ∈ gl(V0), h ∈ gl(W ), dg∗ ∈ V0 ∧ Sym2V ∗
0 ⊗ V0 and dh∗ ∈

V0∧V ∗
0 ⊗W ∗⊗W . It is easy to see that the χ image of F 2n+1W (gl(V0)⊕gl(W )) will

be contained in ∧≥n+1V0⊗∧• · · · . When n+1 is greater than the dimension of V0, then
the above is automatically zero. Therefore, the map χ factors through the quotient
F 2 dim(V0)+1W (gl(V0)⊕ gl(W )). Furthermore, observing that both χ(1⊗ g∗) = −dg∗
and χ(1⊗ h∗) = −dh∗ are contained in

∧2
(SymV ∗

0 ⊗ V0 ⊕W ∗ ⊗W ⊗ SymV ∗
0

V ∗
0 ⊗ V0 ⊕W ∗ ⊕W

)∗
,

and both χ(g∗ ⊗ 1) = g∗ and χ(h∗ ⊗ 1) = h∗ are contained in gl(V0) ⊕ gl(W ), we
conclude that the map χ is compatible with the filtrations on W (gl(V0) ⊕ gl(W ))
and ∧•(WV0 n Poly(V0) ⊗ gl(W ))∗. We remind the reader that the filtration on
∧•(WV0 nPoly(V0)⊗gl(W ))∗ (its associated spectral sequence is the Hochschild-Serre
spectral sequence for the Lie subalgebra gl(V0) ⊕ gl(W )) is defined by the powers of
the wedge

∧•
(SymV ∗

0 ⊗ V0 ⊕W ∗ ⊗W ⊗ SymV ∗
0

V ∗
0 ⊗ V0 ⊕W ∗ ⊗W

)∗
.

In conclusion, we have constructed a filtration compatible differential graded alge-
bra morphism

χ : W (gl(V0)⊕ gl(W ))2 dim(V0) → ∧•(WV0 n Poly(V0)⊗ gl(W ))∗,

where W (gl(V0)⊕ gl(W ))2 dim(V0) is the truncated Weil algebra.

Lemma 2.8. The map χ defined above is a quasi-isomorphism.

Proof. Since χ is compatible with the filtrations, it is sufficient to prove that χ is an
isomorphism on the E2 terms of the spectral sequences associated to the filtrations. As
we know that χ is multiplicative, it is sufficient to show that χ defines isomorphisms
on Ep,0

2 and E0,q
2 .

For E0,q
2 , we easily see from Equation (1) that χ is an identity map on ∧•gl(V0)⊗

∧•gl(W ).
For Ep,0

2 , we observe that E•,0
2 forms an algebra. And as χ is multiplicative, this

reduces to checking the statement on the generators. Observe that E•,0
2 of W (gl(V0)⊕

gl(W )) is generated by ξi and ηj , i = 1, · · · ,dim(V0) and j = 1, · · ·dim(W ). We
compute χ(ξi) and χ(ηj).

(1) The image χ(ξi) was already considered in the proof of Theorem 2.2.4’, [Fu].
Hence, we skip the particulars of this part. The conclusion is that up to a
nonzero constant the image of χ(ξi) is Φi.

(2) For χ(ηj), looking at Equation (1), we observe that χ(ηj) is in

∧jV0 ⊗ ∧j(W ∗ ⊗W ⊗ V ∗),

as χ(1⊗ h) is in V0 ⊗W ∗ ⊗W ⊗ V ∗
0 .

Recall that for an element h ∈ gl(W )∗, χ(h)(v, w ⊗ w∗ ⊗ v′) = h([v, w ⊗
w∗ ⊗ v′]) = v′(v)h(w ⊗ w∗), for v ∈ V0, v′ ∈ V ∗, w ∈ W , and w∗ ∈ W ∗. As
χ is an algebra homomorphism, we generalize the above evaluation to χ(ηj),
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i.e.
χ(ηj)(v1, · · · , vj , w

∗
1 , w

′
1, v

∗
1 , · · · , w∗j , w′j , v∗j )

=
∏

σ∈Σj

sgn(σ)v∗1(vσ(1)) · · · v∗j (vσ(j))ηj(w∗1 ⊗ w′1, · · · , w∗j ⊗ w′j).

We recall that ηj is the element in (Symjgl(W )∗)gl(W ) corresponding to the
j-cycle in the permutation group Σj . The second line of the above equa-
tion agrees with the Ψ̃j ’s evaluation on v1, · · · , vj , w

∗
1 , w1, v

∗
1 , · · · , w∗j , wj , v

∗
j .

Therefore, we have that χ(ηj) = Ψ̃j .
With Lemma 2.6, we conclude that χ is an isomorphism on the E2 terms of the

spectral sequences and therefore induces an isomorphism on the cohomologies. �

Having dealt with the special case of a single nonzero mα, we can state the result
in full generality. The proof is identical though more notationally intensive and so we
omit it.

Theorem 2.9. Let Γ be a finite group acting linearly on a complex vector space V .
Suppose that V decomposes as V = V0⊕

⊕k
α=1mαWα into irreducible representations

of Γ, with V0 = V Γ. Then

H•(WΓ
ρ ) = H•(W (gl(V0)⊕

k⊕
α=1

glmα
(C))2 dim(V0)).

We now wish to give a topological description of H•(WΓ
ρ ). Consider the principal

bundle

π : E(GL(V0)×
k∏

α=1

GLmα
(C)) → B(GL(V0)×

k∏
α=1

GLmα
(C)).

Denote by BΓ
ρ the 2 dim(V0)-th skeleton of B(GL(V0)×

∏k
α=1GLmα

(C)), and by XΓ
ρ

its π preimage inside E(GL(V0) ×
∏k

α=1GLmα(C)). The following Theorem is then
almost an immediate corollary of Thm. 2.9

Theorem 2.10. H•(WΓ
ρ ) ∼= H•(XΓ

ρ ).

Proof. The proof is identical to that of Theorem 2.2.4’, [Fu]. Here we outline the
main ingredients. We compare the spectral sequence associated to the filtration on
W (gl(V0) ⊕

⊕k
α=1 glmα

(C))2dim(V0) with the spectral sequence of the bundle XΓ
ρ →

BΓ
ρ . From the previous computation, we have seen that E2 terms of the two spectral

sequences agree as algebras. Furthermore, by the acyclicity of the untruncated Weil
algebraW (gl(V0)⊕

⊕
α glmα

(C)) and the cohomology of E(GL(V0)×
∏k

α=1GLmα(C)),
we see that in the two spectral sequences the exterior generators of the algebra

E0,•
2 = H•(gl(V0)⊕

k⊕
α=1

glmα
(C)) = H•(GL(V0)×

k∏
α=1

GLmα
(C))

are transgressive and mapped to the multiplicative generators of the algebra

E•,0
2 = (S•(gl(V0)⊕

k⊕
α=1

glmα
(C))∗)

gl(V0)⊕
L

α glmα
(C)

2dim(V0)
= H•(BΓ

ρ )
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by the transgression. Therefor, we conclude that the limits of the two spectral se-
quences agree.

�

Remark 2.11. When both V and W are 1 dimensional, the Lie algebra cohomology
of WV n Poly(V ) ⊗ gl(W ) can be computed directly without using spectral sequence.
Let x be the variable on V and y be the variable on W . Consider the vector field
x ∂

∂x ∈ gl(V ). We find that the adjoint action of x ∂
∂x on WV n Poly(V ) ⊗ gl(W )

and therefore on the cochain complex is diagonal. Accordingly, the cohomology of
WV n Poly(V )⊗ gl(W ) is computed by the 0 eigenvectors in

•∧(
WV n Poly(V )⊗ gl(W )

)∗
.

We can find these 0 eigenvectors explicitly and compute the Lie algebra cohomology
easily without using spectral sequence.

We now have the language to state the following Proposition:

Proposition 2.12. H•(WΓ
ρ , gl(V0)⊕

⊕k
α=1 glmα

(C)) = H•(BΓ
ρ ).

2.4. The real case. In this subsection, we consider the real Lie algebra WΓ
ρ of

Γ invariant formal vector fields on a real vector space V , where ρ denotes the Γ
representation. Let us assume that Γ is a finite cyclic group as that is the case we
need for defining characteristic classes of foliation on an orbifold.

As Γ is finite, the Γ action on V is completely reducible. Suppose that U is
an irreducible component. There are two possibilities: U ⊗ C is irreducible, thus
EndΓ(U ⊗ C) = C and so EndΓ(V ) = R or U ⊗ C = W ⊕W with W irreducible in
which case EndΓ(U⊗C) = C2 since6 W = W (they correspond to different eigenvalues
of the generator of Γ), and so EndΓ(V ) = C. Therefore, we can write, similar to the
complex case:

V = V0 ⊕m−1W−1 ⊕
k⊕

α=1

mαWα,

where Γ acts on V0 trivially, W−1 is the one dimensional representation with character
-1, Wα is an irreducible representation of Γ with dimR(Wα) = 2, and mα is the
multiplicity of the representation Wα in V .

Similar to the complex case in Section 2.1, there is a Γ-invariant Euler vector
field X on Rn, which acts on WV diagonally with nonnegative eigenvalues. As with
Corollary 2.2, by looking at the eigenvalues of X we reduce the Lie algebra WΓ

ρ to
WX , where WX consists of eigenvectors of X in WΓ

ρ with zero eigenvalue. We see
that WX is somewhat different from the complex case:

WX = WV0 n Poly(V0)⊗
(
glm−1

(R)⊕
k⊕

α=1

glmα

)
,

where glmα
is the complex general Lie algebra glmα

(C) viewed as a real Lie algebra.
Extending results 2.2-2.8, we have

6This is where one needs the assumption that Γ is cyclic. Alternatively, we may simply assume
that W 6= W . This rules out the quaternions.
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Proposition 2.13. There is a natural quasi-isomorphism χ from the truncated Weil
algebra

W
(
gl(V0)⊕ glm−1

(R)⊕
k⊕

α=1

glmα

)
2dim(V0)

to the cochain complex of the real Lie algebra WΓ
ρ .

Proof. The proof is a copy of that of Lemma 2.8. The map χ is defined by the
projection from WX to gl(V0)⊕ glm−1

(R)⊕
⊕k

α=1 glmα
. To prove that χ is a quasi-

isomorphism, we compare the E2 terms of spectral sequences associated to the filtra-
tion on the Weil algebra W (gl(V0)⊕ glm−1

(R)⊕
⊕k

α=1 glmα
)2dim(V0) and to the Lie

subalgebra gl(V0) ⊕ glm−1
(R) ⊕

⊕k
α=1 glmα

of WX . One change we need to make is
to replace glmα

(C) by glmα
, while the algebra of invariant polynomials on glmα

is
computed in Proposition 2.16. �

Furthermore, we may choose a Γ-invariant metric on V and consider the Lie subal-
gebra o(V0)⊕om−1(R)⊕

⊕k
α=1 umα

inside WΓ
ρ , where o is the Lie algebra of orthogonal

matrices, and u is the Lie algebra of skew-hermitian matrices.
We now use the relative version of the Hochschild-Serre spectral sequence to com-

pute the relative cohomology H•(WΓ
ρ , o(V0) ⊕ om−1(R) ⊕

⊕k
α=1 umα). We need the

following Lemma:

Lemma 2.14. Let Vi be real vector spaces, Wi complex vector spaces, oi and ui

reductive subalgebras of gl(Vi) and gl(Wi) respectively, then

H•(
⊕

gl(Vi)⊕
⊕

gl(Wi),
⊕

oi ⊕
⊕

ui;M)

= H•(
⊕

gl(Vi)⊕
⊕

gl(Wi),
⊕

oi ⊕
⊕

ui)⊗M
L

gl(Vi)⊕
L

gl(Wi)

provided M is a “tensor” module.

Proof. Observe that H•(g, k,M) = H•(g, k) ⊗Mg if its complexified version holds.
Note also that gl(W ) ⊗ C = glC(W ) ⊕ glC(W ); this decomposition is given by the
eigenspaces of the “forgotten” multiplication by i acting on gl(W ). The meaning of
a “tensor” module is now clear. We may use the Ext interpretation of the relative
cohomology (valid for reductive subalgebras, see [BW] for example) to conclude that
only a module with a trivial infinitesimal character contributes and thus the earlier
discussion of cohomology of tensor modules over

⊕
gl(Vi) applies. �

Proposition 2.15. Let

W
(
gl(V0)⊕ glm−1

(R)⊕
k⊕

α=1

glmα
, o(V0)⊕ om−1(R)⊕

k⊕
α=1

umα

)
2dim(V0)

be the truncated (at degree > 2dim(V0)) relative Weil algebra. The map χ descends
to a quasi-isomorphism to the relative cochain complex C•(WΓ

ρ , o(V0) ⊕ om−1(R) ⊕⊕n
α=1 umα

).

Proof. The proof consists of checking that the χ is a quasi-isomorphism on the E2

terms associated to the relative spectral sequences, which is analogous to the proof
of Lemma 2.8. �
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To obtain a topological description of the cohomology we compute the invariants
of glm as follows.

Proposition 2.16. There is an isomorphism of algebras

(S•glm)∗glm = R[xs, ys]ms=1

with degree of xs and ys equal to s.

Proof. As is explained in the proof of Lemma 2.14, the complexification of glm is
isomorphic to glmC⊕ glm(C). While (S•glm(C))∗glm(C) = C[zs]ms=1 with zs of degree
s given by the symmetric trace, and so (S•glm ⊗ C)∗glm⊗C is a complex polynomial
algebra with 2m generators zs and ts. It is straight forward to trace through the
isomorphisms to check that (S•glm)∗glm (as the subalgebra on which conjugation
acts trivially) is isomorphic to R[ zs+ts

2 , zs−ts

2i ]. �

Proposition 2.17. There exist isomorphisms:
(1) H•(glm) = H•(Um × Um),
(2) H•(glm, um) = H•(Um).

Proof. For statement (1), we notice that glm⊗C = glm(C)⊕glm(C) = (um⊕um)⊗C.
Therefore, H•(glm) = H•(um⊕ um) = H•(Um×Um) because Um×Um is a compact
Lie group.

For statement (2), we observe that under the isomorphism glm ⊗ C = glm(C) ⊕
glm(C), the complexification of um is identified with glm(C) embedded diagonally into
glm ⊗C. Furthermore, the pair (glm(C)⊕ glm(C), glm(C)) is the complexification of
(um⊕um, um) with um embedded into um⊕um diagonally. Therefore, H•(glm, um) =
H•(um ⊕ um, um) = H•(Um × Um/Um) = H•(Um). �

By Proposition 2.16, (S•glm)∗glm is isomorphic to the cohomology ring of the
classifying space B(Um ×Um), a polynomial ring with 2m generators. This brings to
mind the fibration E(Um×Um) → B(Um×Um) with the fiber Um×Um. Thus we ob-
tain the following topological description of the cohomology computed in Proposition
2.13 and 2.15. Consider the fibration

π : E(Udim(V0) × Um−1×
k∏

α=1

(Umα
× Umα

))

−→ B(Udim(V0) × Um−1 ×
k∏

α=1

(Umα
× Umα

)).

LetXΓ
ρ be the π preimage in E(Udim(V0)×Um−1×

∏k
α=1(Umα

×Umα
)) of the 2dim(V0)-

th skeleton BΓ
ρ of B(Udim(V0) × Um−1 ×

∏k
α=1(Umα × Umα)). Note that SO(V0) ×

SOm−1(R)×
∏k

α=1 Umα
and O(V0)×Om−1(R)×

∏k
α=1 Umα

act on the fibers of XΓ
ρ →

BΓ
ρ (Umα

’s are embedded diagonally in Umα
× Umα

). We then have:

Theorem 2.18.
H•(WΓ

ρ ) = H•(XΓ
ρ );

H•(WΓ
ρ , gl(V0)⊕ glm−1

(R)⊕
k⊕

α=1

glmα
) = H•(BΓ

ρ );
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H•(WΓ
ρ , o(V0)⊕ om−1(R)⊕

k⊕
α=1

umα
) = H•(XΓ

ρ /SO(V0)× SOm−1(R)×
k∏

α=1

Umα
);

H•(WΓ
ρ , O(V0)×Om−1(R)×

k∏
α=1

Umα
) = H•(XΓ

ρ /O(V0)×Om−1(R)×
k∏

α=1

Umα
).

Proof. The proof of the first statement is similar to that of Theorem 2.10, ones uses
Proposition 2.13. The second statement was essentially demonstrated in the process
of proving 2.10. With Proposition 2.15, the last two statements follow by comparing
the cohomologies of the Weil algebras and the topological spaces. Compare to [Fu]
Thm. 2.2.6.

�

3. Characteristic Classes for foliations on orbifolds

In this section, we apply the computations of the Lie algebra cohomology above to
define some characteristic classes for foliations on orbifolds.

3.1. Foliations on orbifolds. Here, we introduce a notion of a foliation on an
orbifold. Because all of the following constructions and computations are local, instead
of general orbifolds, we will work with the global quotient, i.e. X = M/Γ, where Γ
is a finite group acting on a smooth manifold M . We consider a foliation F on M ,
which is invariant under the Γ action, and call it a Γ equivariant foliation on M . We
denote by F both the foliation and the distribution defining the foliation.

Theorem 3.1. Let F be a Γ equivariant foliation on M . Then for each γ ∈ Γ, F
restricts to a foliation Fγ on Mγ , where Mγ is the γ fixed point manifold.

Proof. Note that Fγ on Mγ is given by Fγ
x = TxM

γ ∩ Fx. We will prove that Fγ is
indeed a foliation on Mγ , i.e.

(1) Fγ is of constant rank on each connected component of Mγ ;
(2) Fγ is integrable.

We check (1) and (2) separately.
For (1), we notice that for x ∈ Mγ , γ acts on TxM with Fx a submodule, and

Fγ
x = (Fx)G. Where G = 〈γ〉, a finite cyclic group generated by γ. Since in the repre-

sentation space of G, the trivial representation is an isolated point7, the dimension of
Fγ

x is locally constant on Mγ . Therefore, Fγ is of constant rank on each component
of Mγ .

To check (2), we observe that a pair of sections η, ν of Fγ can locally be extended
to a pair η̃, ν̃ of G-invariant sections of F . Since F is closed under the commutator
bracket, and the G-action commutes with the bracket, we see that [η̃, ν̃] is a G-
invariant section of F . Thus [η, ν] = [η̃, ν̃]|Mγ is a section of Fγ . �

7This phrasing of the proof is motivated by the remark that follows it. To prove only the statement

of the theorem one can observe that the eigenvalues of γ are n-th roots of unity and so cannot change
continuously. This in effect proves the discreteness of the representation space.



144 ILYA SHAPIRO AND XIANG TANG

Remark 3.2. As is clear from the proof, we can extend Theorem 3.1 to the following
setting. Let G act on a manifold M such that M has a G-invariant hermitian struc-
ture. Suppose that F is a G-invariant foliation on M . Then F restricts to a foliation
on the fixed point manifold MG when G satisfies property T .

3.2. Characteristic classes. In this subsection, we want to define some character-
istic classes for a foliation F on an orbifold X. As foreshadowed by Theorem 3.1, our
characteristic classes map takes values in the cohomology group of the inertia orbifold
H•(X̃).

We review the theory of characteristic classes for foliations on a manifold. Possible
references for the standard approach to this are [Fu], [KT]. Our approach differs
and owes much to the point of view of [K]. In addition we develop the equivariant
version of these methods. Let G be a Lie group with its Lie algebra denoted by g.
Our discussion takes place over R, i.e. all manifolds and Lie algebras are real. It
readily modifies, where appropriate, to C by considering almost complex manifolds
and complex Lie algebras.

Recall that a g-structure on a smooth manifold M is a smooth 1-form ω on M
with values in g, satisfying the Maurer-Cartan equation:

dω +
1
2
[ω, ω] = 0.

The g-structure on M is equivalent to the structure of a trivialized flat principal
G-bundle P = M ×G over M . The flat connection on P defines a g-structure on M .

Given a g-structure ω on a manifold M , we can define a characteristic classes map
χω by

χω : ∧•g∗ → Ω•(M)
φ 7→ φ ◦ ω.

(Note the abuse of notation in writing ω for ∧iω.) Because ω satisfies the Maurer-
Cartan equation, it is straightforward to check that χω commutes with differentials,
therefore we have a map on the cohomologies:

χω : H•(g) → H•(M).

The cohomology classes in the image of χω can be considered as characteristic classes
of the g-structure ω.

In the case of a not necessarily trivialized P over M , with the flat connection
given by a G-equivariant ω ∈ Ω1(P) ⊗ g satisfying the Maurer-Cartan equation, we
analogously obtain a map χω

χω : ∧•g∗ → Ω•(P)
φ 7→ φ ◦ ω.

This again induces a map on cohomologies: χω : H•(g) → H•(P). Should a trivial-
ization of P exist, by choosing one, i.e. picking a section s of P → M we obtain a
map s∗ ◦ χω : H•(g) → H•(M) that recovers the above case; it depends on s up to
homotopy.

In order to deal with the case when a trivialization does not exist we can also
consider the relative version of the above construction. Suppose that K ⊂ G is a
subgroup, denote by p : P → P/K the projection map. The form ω in Ω1(P) ⊗
g specifying the flat connection on P can be considered as a G-equivariant map
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g∗ → Ω1
P . This restricts to a K-equivariant map (g/K)∗ → p∗Ω1

P/K . Thus we have
(∧•(g/K)∗)K → (p∗Ω•

P/K)K = Ω•
P/K . In this way we obtain the relative version of

characteristic classes:

χωK
: H•(g,K) → H•(P/K).

As before, we may pick a section s of π : P/K → M (if it exists) to get the relative
characteristic classes map s∗ ◦χωK

that again depends on the section up to homotopy.
However if G/K is contractible we obtain a canonical map (π∗)−1 ◦ χωK

.
In order to deal with orbifolds we must adapt the above to the equivariant setting.

That is we consider a principal G-bundle P over M with a Γ action. This means that
in addition to the usual structure we have the action of Γ on P and M that makes the
projection map Γ-equivariant, and the actions of Γ andG commute, i.e. γ(xg) = γ(x)g
for γ ∈ Γ, x ∈ P and g ∈ G. If P is equipped with a flat connection, we require the
connection to be Γ-equivariant, i.e. the connection form ω is in (Ω1

P ⊗ g)Γ. We may
now proceed as before with the additional observation that χωK

is Γ-equivariant and
thus

χωK
: H•(g,K) → H•(P/K)Γ

and in the case that G/K is contractible the image of (π∗)−1 ◦ χωK
is contained in

H•(M)Γ.
Consider a γ ∈ Γ and let Mγ =

∐
Mγ

i , where Mγ
i is a Γγ-orbit of a connected

component of Mγ . To any x ∈ Mγ
i we may associate 〈γx〉 a conjugacy class in G

of γx ∈ G that satisfies yγx = γ(y) for some choice of y ∈ P|x. While γx depends
on y, its conjugacy class in G does not. If P is equipped with a Γ-equivariant flat
connection then 〈γx〉 will be constant on each connected component of Mγ

i and thus
on Mγ

i itself. Thus for a choice of γi ∈ 〈γx〉 (notice that γi ∈ G unlike γ ∈ Γ) we may
reduce the structure of P|Mγ

i
to Gγi . Explicitly, we consider the principal Gγi-bundle

with the fiber over x ∈ Mγ
i consisting of all y ∈ P|x such that γ(y) = yγi. Let us

denote this principal Gγi-bundle over Mγ
i by Pγi . It is evidently Γγ-equivariant and

it is easy to see that the Γ-equivariant connection on P will induce a Γγ-equivariant
connection on Pγi .

The characteristic classes formalism above can then be used to supply the classes
associated with P. Namely, for every γ ∈ Γ (we need only choose one per conjugacy
class), and a choice of Mγ

i ⊂ Mγ , choose a γi ∈ 〈γx〉 ⊂ G and suppose further that
we have a Kγi

⊂ Gγi with Gγi/Kγi
contractible. Then we get a characteristic classes

map

H•(gγi ,Kγi
) → H•(Mγ

i )Γ
γ

that essentially does not depend on the choices of conjugacy class representatives. We
note that the classes obtained in this way are located inside the cohomology of the
inertia orbifold X̃.

Now we can apply all this to obtain characteristic classes of foliations. The key
to the application is the consideration of an appropriate principal G-bundle with
flat connection. The “group” G will be the cross product of the group of formal
coordinates around 0 ∈ Rn and the group of formal translations in Rn. Denote this
group by Diffn and note that its Lie algebra is Wn. Observe that GLn(R) ⊂ Diffn

and Diffn/GLn(R) is contractible.
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First, let us recall the non-equivariant situation. Let F be a foliation on a man-
ifold M of codimension n. We define the principal Diffn-bundle PDiff over M as
follows. Let R̂n

0 denote the formal neighborhood of 0 in Rn and Autn the group of
diffeomorphisms of R̂n

0 . With this notation Diffn = Autn n R̂n
0 . Define the Autn-

bundle PAut by setting the fiber over x ∈ M to be the set of diffeomorphisms from
R̂n

0 to the formal neighborhood of x in the local leaf space around x, i.e. the quotient
of the formal neighborhood of x ∈ M by the connected components of the leaves.
Let PDiff = PAut ×Autn

Diffn. The resulting Diffn-bundle has a canonical flat
connection. By the general theory we get a map:

H•(Wn, GLn(R)) → H•(M)

that encodes information about the foliation F . More precisely, these are the real
Pontryagin classes of the normal bundle NF to F (see Remark 2.7). As pointed
out in [Fu] this gives the well known vanishing theorem of Bott: monomials of the
real Pontryagin classes of NF that have degree > 2n are equal to 0. However one
does obtain extra information using this method, namely since GLn(R)/On(R) is
contractible we have:

H•(Wn, On(R)) → H•(M)
that extends the map above and thus defines extra classes called secondary charac-
teristic classes for a general foliation.

We can refine this type of analysis in the special case of a framed foliation. Suppose
that NF is trivialized. Choosing a metric yields an exponential map that gives a
reduction of structure of PDiff to F (NF), the frame bundle of NF . At the same
time the trivialization provides a smooth section of F (NF) and since any two metrics
are homotopic, we have a canonical map:

H•(Wn) → H•(M)

encoding the data of the framing as well.
Now we want to use the above idea to define characteristic classes for a foliation on

an orbifold. For simplicity of exposition let us assume that we are in the setting of a
manifold M with a finite group Γ action that preserves a foliation F (of codimension
n) on M . Then the principal Diffn-bundle PDiff as defined above is automatically
Γ-equivariant with an equivariant flat connection. One can choose a Γ-equivariant
metric on NF (any two such metrics are homotopic), then the exponential map
gives a Γ-equivariant reduction of structure of PDiff to F (NF). This reduction
allows us to choose γi ∈ GLn(R). Since Diffγi

n /GLγi
n (R) is contractible, we have the

characteristic classes map:

H•(W γi
n , GLγi

n (R)) → H•(Mγ
i )Γ

γ

that can, similarly to the non-equivariant discussion, be interpreted as a mixture
of Pontryagin and Chern classes for the direct sum decomposition of the restriction
of NF to Mγ

i induced by the action of γ. Namely, by restricting NF to Mγ
i we

obatin a real vector bundle with a fiberwise action of γ. This action produces a
decomposition into irreducible component subbundles. The components on which the
action is diagonalizable give rise to the Pontryagin classes, whereas the remaining
part of the decomposition acquires a complex structure and so defines Chern classes.
Consequently we obtain an equivariant version of Bott’s vanishing theorem that is
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stronger than the original. More precisely, monomials in the Pontryagin and Chern
classes having degree exceeding 2 rank(NFγ) are cohomologically trivial(see Lemma
2.6 and Remark 2.7).

To obtain extra information beyond the standard characteristic classes, observe
that GLγi

n (R)/Oγi
n (R) is contractible, thus we have:

χγ,i : H•(W γi
n , Oγi

n (R)) → H•(Mγ
i )Γ

γ

.

Explicitly, using the conventions of Section 2.4, the action of γi on Rn gives a decom-
position Rn = V0⊕m−1W−1⊕

⊕k
α=1mαWα. Then GLγi

n (R) = GL(V0)×GLm−1(R)×∏
GLmα

(C) and Oγi
n (R) = O(V0)×Om−1(R)×

∏
Umα

.

Definition 3.3. For a foliation F on an orbifold X, we define the characteristic
classes of F to be the elements in the image of the map

χ = ⊕χγ,i :
⊕

〈γ〉⊂Γ, i

H•(W γi
n , Oγi

n (R)) → H•(X̃).

The cohomology of H•(W γi
n , Oγi

n (R)) is computed in Theorem 2.18. It is isomor-
phic to the cohomology of the topological space Xγi

ρ /O
γi
n , which is fibered over Bγi

ρ .
The cohomology ring of Bγi

ρ is the polynomial ring with dim(V0) + m−1 + 2
∑
mα

generators truncated at degree > 2dim(V0). The images under χ of these gener-
ators correspond to the Pontryagin and Chern classes as explained above. Fur-
thermore, we notice that Xγi

ρ /O
γi
n → Bγi

ρ has a cohomologically nontrivial fiber
Udim(V0)×Um−1 ×

∏
(Umα ×Umα)/O(V0)×Om−1(R)×

∏
Umα . Thus the cohomology

group of Xγi
ρ /O

γi
n is larger than the one of Bγi

ρ . The extra cohomology classes give
rise to the secondary characteristic classes of F . For example, looking at the E2 term
of the spectral sequence associated to the fibration, we see that any class in the upper
right hand corner will survive as a class in the cohomology of Xγi

ρ /O
γi
n . These can be

thought of as generalizations of the Godbillon-Vey class.

Example 1. We consider the 0-dimensional foliation F on a manifold M . Any finite
group Γ action on this manifold preserves F . Definition 3.3 defines on each piece of
Mγ characteristic classes of the tangent bundle TMγ , and also characteristic classes
of the normal bundle NMγ of the embedding Mγ ↪→ M . Correspondingly, on the
inertia orbifold X̃, Definition 3.3 defines characteristic classes of both the tangent
bundle of each Xγ and also the normal bundle of Xγ ↪→ X. These provide all the
characteristic classes needed in the topological index of an elliptic differential operator
on an orbifold [PPT].

Example 2. Let F be a foliation on a manifold M . We consider the manifold
M ×M with the foliation F × F . We have the group Z2 = Z/2Z acting on M ×M
by switching the components. This action preserves the foliation F × F . We write
elements in Z2 as id and σ. Associated to the element id, Definition 3.3 defines
Gelfand-Fuchs classes of the foliation F ×F on M ×M , which are invariant under Z2

action. For the element σ, its fixed point set is the diagonal ∆ in M ×M , which is
diffeomorphic to M . The intersection J of the foliation F × F with the diagonal ∆
defines a foliation on ∆, which is equal to F if we identify ∆ with M . We denote the
restriction to ∆ of the normal bundle of F × F inside TM × TM by NF . σ acts on
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NF fiberwisely, and we denote the corresponding -1 eigen subbundle in NF by NJ .
Then associated to the element σ, Definition 3.3 defines Gelfand-Fuchs classes of J
on ∆, and also the characteristic classes of NJ on ∆. Under the identification (∆,J )
with (M,F), the Gelfand-Fuchs classes of J on ∆ and F on M are indentified. We
see that the σ component of the Definition 3.3 contains the information of the original
foliation (M,F). We remark that one easily generalizes this example to M×n and the
n-th permutation group Σn. Definition 3.3 provides much more information than the
Gelfand-Fuchs classes of the foliation F×n on M×n.

Remark 3.4. Different approaches such as [KT] can also be used to define character-
istic classes for foliations on orbifolds. Here, the Gelfand-Fuchs cohomology approach
is used as an application of the Lie algebra cohomology computation.
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