
Math. Res. Lett. 15 (2008), no. 1, 73–81 c© International Press 2008

KAKEYA SETS IN CANTOR DIRECTIONS

Michael Bateman and Nets Hawk Katz

1. Introduction

In this paper, we prove the following.

Theorem 1.1. For any N = 3n, there is a union of N parallelograms P1, . . . PN in
R2 of eccentricity ∼ N and area ∼ 1

N so that the slopes of the long sides of P1, . . . , PN

are all contained in the standard middle-thirds Cantor set, so that

(1.1) |
N⋃

j=1

Pj | .
1

log N
,

but so that, if we let 2Pj be the double of the parallelogram we have

|
N⋃

j=1

2Pj | &
log log N

log N
.

In the statement of the theorem as in the rest of the paper, we use the convention
that when S is a subset of the plane R2, we denote by |S| the Lebesgue measure of
S. Further when AN and BN are numbers depending on N , and we write AN . BN ,
we mean there is a constant C independent of N so that

AN ≤ CBN .

The proof of our theorem is by a probabilistic construction. The estimate which
allows us to prove inequality (1.1) is a now fairly standard estimate on percolation
on trees following the work of Russ Lyons ([5], [6]). As far as we know, this idea has
not appeared in the study of Kakeya sets before. The moral of the story is that if
we define (loosely) a Kakeya set in the plane as a “1 dimensional” family of unit line
segments whose union has measure 0 then while it is true that the random family of
line segments is not a Kakeya set, it is the case that the random, sticky, set of line
segments is a Kakeya set. Here we use the term sticky as in [8].

If we let S be the set of line segments in the plane whose slope is in the standard
Cantor set, and we define for s ∈ S, the expression avs(f) to be the average of a
function f on s, where f must be locally integrable on lines, we may define a maximal
operator

Mf(x) = sup
x∈s∈S

avs|f |.

An immediate consequence of our theorem is

Corollary 1.2. The maximal operator M is unbounded on any Lp(R2) with p 6= ∞.
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This was proved for p ≤ 2 in [7]. Previously, the operator had been explicitly
studied in [2] and [10]. The boundedness of this operator had been known in the
folklore as an open problem for more than a decade previously. Since the publication
of [7], work by Hare and Rönning ([3], [4]) attempted to address the relationship
between various notions of dimensionality (e.g. Hausdorff and box dimension) and the
boundedness of directional maximal operators. They managed to construct Perron-
type trees for a certain class of sets of directions, but their results do not extend to
the traditional Cantor set.

An early result due to Nagel, Stein, and Wainger [9] showed the boundedness of
the directional maximal operator on Lp when the set of directions if lacunary, i.e.,
approaching a limit at least geometrically. On the other hand, the unit interval, for
example, is a set that yields an unbounded directional maximal operator on Lp. This
paper settles the question in the intermediate case of the Cantor set. Recently, the
first author in [1] extended the methods of this paper to achieve a full classification
of the boundedness of directional maximal operators in R2.

2. Geometric Constructions

We denote by Tn the set of all n-digit strings .a1a2 . . . an with each aj taking on
the value 0, 1 or 2. Here we consider T0 to be the singleton set containing “.”, the
empty decimal. We define the maps

πj : Tn −→ {0, 1, 2},

by
πj(.a1a2 . . . an) = aj ,

and for j < n, we define
πj : Tn −→ Tj ,

by
πj(.a1a2 . . . an) = .a1a2 . . . aj .

We define

T ∗
n =

n⋃
j=0

Tj .

We may view T ∗
n as a rooted ternary tree with an edge between s ∈ Tj and t ∈ Tj−1

whenever πj−1(s) = t. We denote this edge by et,πj(s) and say that s is the πj(s)th
child of t. We identify the tree T ∗

n with the triadic intervals of length greater than
3−n, by the map

I(s) = [s, s +
1
3j

],

when s ∈ Tj and s = .a1 . . . aj is identified with the triadic rational
a1

3
+

a2

9
+ · · ·+ aj

3j
.

Whenever s, t ∈ T ∗
n , and I(s) ⊂ I(t), we say that t is an ancestor of s, or s is a

descendant of t.
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We denote by Cn ⊂ Tn the set of all n-digit strings .a1a2 . . . an so that each aj

takes on the value either 0 or 2. Then I(Cn) is the nth stage of the construction of
the standard Cantor set. We will say that a map

σ : Tn −→ Cn,

is sticky provided that for any s ∈ Tn, the value of πj(σ(s)) depends only on πj(s).
We shall define a random variable σn which takes values in sticky maps from Tn to
Cn. This random variable shall in fact be evenly distributed among such maps, but
we define its components more explicitly.

To each edge et,a of T ∗
n , we define a random variable rt,a. The variables rt,a are

independent and take on the values 0 and 2 with probability 1
2 each. Now we define

σn(s) = s′,

where πj(s′) = rπj−1(s),πj(s).
Following [7], we assign a “Kakeya set” to every possible value of the random

variable σn. (In [7], this was actually when rt,a = 0 for a = 0, 1 and rt,a = 2 for
a = 2, independently of t.) Given a sticky map

σ : Tn −→ Cn,

we define for each s ∈ Tn, a parallelogram in R2 which we will denote by Pσ,s. The
parallelogram Pσ,s has as its corners the points (0, s

3 ), (0, s
3 + 1

3n+1 ), (1, s
3 + σ(s)), and

(1, s
3 + 1

3n+1 +σ(s)). (Here we again identify s and σ(s) as real numbers by the ternary
expansion.) We think of Pσ,s as a tube with eccentricity approximately 1

3n+1 which
begins at (0, s

3 ) and has slope σ(s). Then we define a “Kakeya set” by

Kσ =
⋃

s∈Tn

Pσ,s.

Our first goal is to prove

Lemma 2.1. For any choice of a sticky map

σ : Tn −→ Cn,

we have that

|Kσ| &
log n

n
.

Notice that Lemma 2.1 is a generalization of ([7],Lemma 2.3).
To prove this, we first establish the following elementary uniformity inequality in

measure theory.

Proposition 2.2. Suppose (X,N , µ) is a measure space and A1, . . . , AK are sets with
µ(Aj) = α. Let m > 0. Suppose that

K∑
j=1

K∑
k=1

µ(Aj ∩Ak) ≤ Kmα,

then

µ(
K⋃

j=1

Aj) ≥
Kα

16m
.
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(The 16 in the denominator is unnecessary, but simplifies the proof slightly.)

Proof. It must be that there is S ⊂ {1, . . . K} with #(S) ≥ K
2 so that we have∑

j=1

µ(Aj ∩Ak) ≤ 2mα,

whenever k ∈ S. For any such k, there must be a measurable set Bk ⊂ Ak so that
K∑

j=1

χAj
(x) ≤ 4m,

for any x ∈ Bk, and so that µ(Bk) ≥ α
2 . Then∫ ∑

k∈S

χBk
≥ Kα

4
,

but ∑
k∈S

χBk
(x) ≤

K∑
j=1

χAj (x) ≤ 4m,

for x ∈ ∪k∈SBk. Thus by Chebychev’s inequality, we have

Kα

16m
≤ µ(

⋃
k∈S

Bk) ≤ µ(
K⋃

j=1

Aj),

which was to be shown. �

Proof. We will show that for 0 ≤ j < log n, with Sj = [3−j , 31−j ] × R we have the
estimate

|Kσ ∩ Sj | &
1
n

.

We see that
Kσ ∩ Sj =

⋃
s∈Tn

Pσ,s,j ,

where
Pσ,s,j = Pσ,s ∩ Sj .

Since for each value of s, we have

|Pσ,s,j | =
2

3j+n
,

it suffices to show, in light of Proposition 2.2 that

(2.1)
∑

s1∈Tn

∑
s2∈Tn

|Pσ,s1,j ∩ Pσ,s2,j | .
n

32j
.

(Note that the inequality fails for j ≥ log n because of the diagonal part of the sum.)
Between any s1 and s2 we define the triadic distance d(s1, s2) to be 3−k where k is
the largest number for which πk(s1) = πk(s2). Note that for any s1 6= s2, we have
that

Pσ,s1,j ∩ Pσ,s2,j 6= ∅



KAKEYA SETS IN CANTOR DIRECTIONS 77

implies that d(s1, s2) & 3j |s1 − s2|, where again we have identified s1 and s2 as
numbers. Further, we always have the estimate

(2.2) |Pσ,s1,j ∩ Pσ,s2,j | .
1

32n+j |s1 − s2|
,

because 3j |s1 − s2|, bounds below the difference in the slopes σ(s1) and σ(s2). We
divide up the sum in (2.1) according to the approximate value of 3j |s1− s2|. For k =
−n, ...,−1, 0, let Ak,j be the number of pairs (s1, s2) for which d(s1, s2) ≥ 3j |s1 − s2|
and 3j |s1 − s2| ∼ 3k, and observe that

(2.3) Ak,j . 32n+k−2j .

Combining (2.2) and (2.3) and summing over k proves the estimate (2.1). �

For the remainder of this section, we fix a point (t, y) ∈ R2 with 1
3 < t < 1. We

investigate the probability Pn(t, y) of the event that (t, y) ∈ Kσn .
For every s ∈ Tk and every c ∈ Ck, we consider Is,c,t which is the set of y so that

(t, y) is contained in a line whose y-intercept is in the interval [ s
3 , s

3 + 1
3k+1 ] and whose

slope is contained in [c, c + 1
3k ]. We easily see that

Is,c,t = [
s

3
+ tc,

s

3
+

1 + 3t

3k+1
+ tc].

We observe that for any distinct c1, c2 ∈ Ck, we have |c1 − c2| ≥ 2
3k , so that since

t > 1
3 , the collection

{Is,c,t}c∈Ck
,

is pairwise disjoint. Therefore for each value of s, there is at most one value of c so
that y ∈ Is,c,t. (There may be no such value.) If such a value c exists we denote
it by c = ct,y(s). Otherwise, we write ct,y(s) = ∞. Note that, by definition, if
ct,y(s) is finite then ct,y(s′) is finite for any ancestor s′ of s. Note further that if
we are given s1 and s2 with ct,y(s1), ct,y(s2) both finite and if I(s2) ⊂ I(s1) then
I(ct,y(s2)) ⊂ I(ct,y(s1)). We denote by T ∗

n,t,y, the set of those s ∈ T ∗
n so that ct,y(s)

is finite. Then the collection T ∗
n,t,y is a subtree of T ∗

n .
We make two observations about the tree T ∗

n,t,y. The first observation is that the
event (t, y) ∈ Kσn

occurs only if there is some s ∈ Tn ∩ T ∗
n,t,y so that σn(s) = ct,y(s).

This, in turn, happens if and only if for every 0 < k ≤ n we have that

(2.4) πk(ct,y(s)) = rπk−1(s),πk(s).

The events in (2.4) are in one to one correspondence with the edges eπk−1(s),πk(s), are
independent of one another, and occur with probability 1

2 . Thus Pn(t, y) is bounded
by the probability that if we remove each edge of T ∗

n,t,y independently with probability
1
2 , that we leave in place a path from the root to the nth generation. This is called,
in the probability literature, (see e.g. [5],[6]) the survival probability of Bernoulli( 1

2 )
percolation on the tree T ∗

n,t,y. We record this observation as a Lemma.

Lemma 2.3. With 1
3 < t < 1, we have that Pn(t, y), the probability that (t, y) is in

the random “Kakeya set” Kσn
is bounded by the survival probability of Bernoulli( 1

2)
percolation on the associated tree T ∗

n,t,y.
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The second observation is that for any k, the set of s ∈ Tk such that y ∈ Is,c,t for
some c is contained in 2k intervals of length t3−k which in turn is contained in . 2k

triadic intervals of length 3−(k+1). Thus, we get immediately

Lemma 2.4. We have, for every 0 ≤ k ≤ n the estimate

#(Tk ∩ T ∗
n,t,y) . 2k.

Lemmas 2.3 and 2.4 will be enough to allow us to obtain the estimate which we
require for Pn(t, y). We carry this out in the following section.

3. Percolation on Trees

In this section, we review part of the theory of percolation on trees. We do not
claim any originality. All results are special cases of theorems of Russ Lyons (see e.g.
[5],[6]). Pointers may be found there to a much wider literature).

We let T ′ ⊂ T ∗
n be a subtree. We remove each edge of T ′ independently with

probability 1
2 . We denote by P (T ′) the probability that a path remains from the root

to Tn ∩ T ′.
We introduce one other quantity associated to T ′. We view T ′ as an electric circuit

which has a battery whose positive node is connected to the root and whose negative
part is connected in parallel to each vertex of Tn ∩ T ′. On each edge of T ′ which
connects a vertex of Tk−1 to a vertex of Tk, we place a resistor with resistance 2k.
We denote by R(T ′), the resistance between the root of T ′ and the bottom T ′ ∩ Tn.
(For more on the mathematical theory of electrical circuits, see [6].) The following
theorem is due to Lyons [5], in greater generality and with a better constant. We
include the proof which follows simply to make the paper self-contained.

Theorem 3.1. (Lyons)We have that

P (T ′) .
1

2 + R(T ′)
.

Proof. We prove this by induction on n. Clearly it is true for constant 2, when n = 0.
We assume up to n− 1, we have

P (T ′) ≤ 12
2 + R(T ′)

.

We observe that if T ′ is subtree of T containing the root, we may view T ′ as the
root, together with up to 3 edges connected to 3 trees T1, T2, and T3. (If some of these
trees are empty, we assign them probabilty zero and infinite resistance.) We denote

P (Tj) = Pj ,

and
R(Tj) = Rj .

Then we have the recursive formulae

(3.1) P (T ) =
1
2
(P1 + P2 + P3)−

1
4
(P1P2 + P1P3 + P2P3) +

1
8
P1P2P3

and
1

R(T )
=

1
2 + 2R1

+
1

2 + 2R2
+

1
2 + 2R3

.
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Now we break into two cases. In the first case, we have 12
2+Rj

> 2 for some j.
Then we have Rj < 4. This implies R(T ) < 10 which implies 12

2+R(T ) > 1, so that we
certainly have

P (T ) ≤ 12
2 + R(T )

.

We define
Qj =

12
2 + Rj

.

We may assume each Qj ≤ 2. Observe that if we define

F (x, y, z) = 1− (1− 1
2
x)(1− 1

2
y)(1− 1

2
z),

on the domain [0, 2] × [0, 2] × [0, 2] then F is monotone increasing in each variable.
Therefore we have that

P (T ) = F (P1, P2, P3)(3.2)
= F (Q1, Q2, Q3)

≤ 1
2
(Q1 + Q2 + Q3)−

1
6
(Q1Q2 + Q1Q3 + Q2Q3).

Note that the equality is (3.1), while for the two inequalities we have used that the
Q’s are ≤ 2.

Now plugging the definition of the Q’s into (3.2), we obtain

P (T ) ≤ 12
2

[
(R1 + 2)(R2 + 2) + (R1 + 2)(R3 + 2) + (R2 + 2)(R3 + 2)− 4(R1 + R2 + R3 + 6)

(R1 + 2)(R2 + 2)(R3 + 2)
]

≤ 12
2

[
(R1 + 2)(R2 + 2) + (R1 + 2)(R3 + 2) + (R2 + 2)(R3 + 2)− 4(R1 + R2 + R3 + 6)

(R1 + 2)(R2 + 2)(R3 + 2)−R1 −R2 −R3 − 4
]

≤ 12
2

[
(R1 + 1)(R2 + 1) + (R1 + 1)(R3 + 1) + (R2 + 1)(R3 + 1)

(R1 + 2)(R2 + 2)(R3 + 2)−R1 −R2 −R3 − 4
]

=
12

R(T ) + 2
.

Here the second inequality is by decreasing the denominator and the third inequality
is by increasing the numerator. �

Next we estimate the resistance of the trees we are interested in.

Lemma 3.2. Let T ∗
n,t,y be as in section 1. Then

R(T ∗
n,t,y) & n.

Proof. We use the basic physical principle, that the resistance of any circuit may be
reduced by shortcircuiting it with perfect conductors. We identify all vertices in each
Tk, thus reducing the resistance. Then by Lemma 2.4, we have that Tk−1 and Tk are
connected by . 2k resistors of resistance 2k connected in parallel. Thus the resistance
between Tk−1 and Tk is & 1. Thus the total resistance is & n. �

Corollary 3.3. Let 1
3 < t ≤ 1. Then with Pn(t, y), the probability that (t, y) ∈ Kσn ,

we have that
Pn(t, y) .

1
n

.
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Proof. We combine Lemma 2.3, Theorem 3.1, and Lemma 3.2. �

4. Proof of the main theorem

Proof. We observe that in order for a point (t, y) to be in any set Kσ, it must be that
0 ≤ y ≤ 4

3 . Thus E, the expected measure of Kσn
∩ ([ 13 , 1]× R) is given by

E =
∫

(
∫ 1

1
3

∫ 4
3

0

χKσ (t, y)dydt)dσ,

where the outside integral takes place on a finite probability space. Interchanging the
integrals, we see that

E =
∫ 1

1
3

∫ 4
3

0

Pn(t, y)dydt .
1
n

.

Therefore there is a choice of σ for which

|Kσ ∩ ([
1
3
, 1]× R)| . 1

n
.

On the other hand

|Kσ| &
log n

n
.

Thus Kσ is the desired example. �
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