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ALGEBRAIC CYCLES ON SEVERI-BRAUER SCHEMES OF
PRIME DEGREE OVER A CURVE

Cristian D. González-Avilés

Abstract. Let k be a perfect field and let p be a prime number different from the

characteristic of k. Let C be a smooth, projective and geometrically integral k-curve

and let X be a Severi-Brauer C-scheme of relative dimension p − 1 . In this paper we
show that CHd(X)tors contains a subgroup isomorphic to CH0(X/C) for every d in the

range 2 ≤ d ≤ p. We deduce that, if k is a number field, the full Chow ring CH∗(X) is

a finitely generated abelian group.

1. Introduction.

Let k be a perfect field with algebraic closure k and let p be a prime number different
from the characteristic of k. Let C be a smooth, projective and geometrically integral
k-curve. In this paper we study a certain subgroup of CHd(X)tors for a Severi-Brauer
C-scheme q : X → C of relative dimension p−1 and any integer d such that 2 ≤ d ≤ p.
Let

CH0(X/C) = Ker
[
CH0(X)

q∗−→ CH0(C)
]

and let π∗ : CHd(X) → CHd
(
X
)

be induced by the extension-of-scalars map X → X,
where X = X ×Spec k Spec k. Then the following holds.

Main Theorem. For any d as above, there exists a canonical isomorphism

Ker
[
CHd(X) π∗−→ CHd

(
X
)]
' CH0(X/C).

Corollary. Assume that k is a number field. Then the Chow ring CH∗(X) is a
finitely generated abelian group.

The above corollary confirms a well-known conjecture of S.Bloch in a particular
case. Previous work on Bloch’s conjecture include [3], where CH2(X) is shown to be
finitely generated for a certain class of varieties X, and [4], where the same result is
obtained for CH0(X) when X → C is an arbitrary (i.e., not necessarily smooth over
C) Severi-Brauer fibration of squarefree index.
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2. Preliminaries.

Let k be a perfect field, fix an algebraic closure k of k and let Γ = Gal
(
k/k

)
.

Now let C be a smooth, projective and geometrically integral k-curve and let X be a
Severi-Brauer scheme over C [6, §8] of dimension m ≥ 2. There exists a proper and
flat k-morphism q : X → C all of whose fibers are Severi-Brauer varieties of dimension
m − 1 over the appropriate residue field [loc.cit.]. We will write Xη for the generic
fiber X×C Speck(C) of q and A for the central simple k(C)-algebra associated to Xη.
We define

CH0(X/C) = Ker
[
CH0(X)

q∗−→ CH0(C)
]
.

Now let C0 be the set of closed points of C. The group of divisorial norms of X/C
(cf. [8]) is the group

k(C)∗dn = {f ∈ k(C)∗ : ∀y ∈ C0, ordy(f) ∈ (qy)∗(CH0(Xy))}

where, for each y ∈ C0, qy : Xy → Speck(y) is the structural morphism of the fiber
Xy. This group is closely related to CH0(X/C) (see [4, Proposition 3.1]). Indeed,
there exists a canonical isomorphism

CH0(X/C) ' k(C)∗dn/k∗NrdA∗.

Remark 2.1. Fix an integer d such that 1 ≤ d ≤ m and let

CHd(X) ′ = Ker
[
CHd(X) π∗−→ CHd

(
X
)Γ ]

,

where π : X → X is the canonical map. A simple transfer argument shows that
CHd(X)′ is a subgroup of CHd(X)tors. Now, since X → C has a section, X is a pro-
jective bundle over C. Thus, by [5, Theorem 3.3(b), p.64], there exist isomorphisms

CHd
(
X
)
'

{
Z⊕ CH0

(
C
)

if 1 ≤ d ≤ m− 1
CH0

(
C
)

if d = m.

Therefore, if JC(k) is finitely generated, where JC is the Jacobian variety of C (e.g.,
k is a number field or C = P1

k), then CHd(X) is finitely generated if and only if
CHd(X) ′ is finite.

3. The general method.

Let C be as above and let X be any smooth, projective and geometrically integral
k-variety such that there exists a proper and flat morphism q : X → C whose generic
fiber Xη is geometrically integral. We have an exact sequence [9]

(1) Hd−1(Xη,Kd)
δ−→
⊕
y∈C0

CHd−1(Xy) → CHd(X)
j∗→ CHd(Xη) → 0,

where j : Xη → X is the natural map and the map which we have labeled δ will play
a role later when k = k. A similar exact sequence exists over k, and we have two
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natural exact commutative diagrams:

0 // Ker j∗ //

��

CHd(X) //

��

CHd(Xη)

��

// 0

0 // (Ker  ∗)Γ // CHd
(
X
)Γ // CHd

(
Xη

)Γ
and

(2) 0 // Hd−1(Xη,Kd)
j∗Hd−1(X,Kd)

//

��

⊕
y∈C0

CHd−1(Xy)

⊕y |yπ∗y
��

// // Ker j∗

��
0 //

(
Hd−1(Xη,Kd)
 ∗Hd−1(X,Kd)

)Γ
δ //

⊕
y |y

CHd−1
(
Xy

)Γy

// (Ker  ∗)Γ

where, for each y ∈ C0, we have fixed a closed point y of C lying above y and written
Γy = Gal

(
k/k(y)

)
. Set

CHd(Xη) ′ = Ker
[
CHd(Xη) → CHd

(
Xη

)Γ ]
and, for each y ∈ C0,

CHd−1(Xy) ′ = Ker
[
CHd−1(Xy)

π∗y−→ CHd−1
(
Xy

)Γy

]
.

Now define

(3) E
(
X/C

)
= Coker

 Hd−1(Xη, Kd)
j∗Hd−1(X, Kd)

−→

(
Hd−1

(
Xη, Kd

)
∗Hd−1

(
X, Kd

))Γ
 .

Then, applying the snake lemma to the preceding diagrams, we obtain1

Proposition 3.1. There exists a natural exact sequence⊕
y∈C0

CHd−1(Xy) ′ → Ker
[
CHd(X) ′ → CHd(Xη) ′

]

→ Ker

E
(
X/C

)
→
⊕
y∈C0

CHd−1
(
Xy

)Γy

π∗y CHd−1(Xy)

→ 0 ,

where E
(
X/C

)
is the group (3).

As regards the right-hand group in the exact sequence of the proposition, the
following holds. Let

Hd−1(Xη, Kd)
′ = Im

[
Hd−1(Xη, Kd) → Hd−1

(
Xη, Kd

)Γ ]
1 Proposition 3.1 was inspired by [1, Proposition 1.1].
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and

Sald(X/C) =
{
f ∈Hd−1

(
Xη, Kd

)Γ
:∀y ∈ C0, δy (f) ∈ π∗y CHd−1(Xy)

}
,

where δ and π∗y are the maps of diagram (2).

Proposition 3.2. There exists a natural exact sequence

0 → Sald(X/C)(
∗Hd−1

(
X, Kd

))Γ ·Hd−1(Xη, Kd) ′

→ Ker

E
(
X/C

)
→
⊕
y∈C0

CHd−1
(
Xy

)Γy

π∗y CHd−1(Xy)


→ H1

(
Γ, ∗Hd−1

(
X, Kd

))
.

Proof. This follows by applying the snake lemma to a diagram of the form

0 // A //

��

B //

��

B/A

��

// 0

0 //
A

Γ //
B

Γ // (B/A
)Γ // H1

(
Γ, A

)
with A =  ∗Hd−1

(
X, Kd

)
, B = Hd−1

(
Xη, Kd

)
, etc. �

4. Proof of the main theorem.

Let C and A be as in Section 2, let p be a prime number different from the
characteristic of k and let X be a Severi-Brauer scheme over C of relative dimension
p− 1.

Lemma 4.1. There exists a Γ -isomorphism

 ∗Hd−1
(
X, Kd

)
' k ∗.

Proof. Clearly,  ∗Hd−1
(
X, Kd

)
is the kernel of the map

δ : Hd−1
(
Xη, Kd

)
→
⊕
y |y

CHd−1
(
Xy

)
appearing in the exact sequence (1) over k. Now Xη ' Pp−1

η and Xy ' Pp−1

k
for

every y, whence we have Γ -isomorphisms

Hd−1
(
Xη, Kd

)
' k(C)∗

and
CHd−1

(
Xy

)
' Z

for each y. Under these isomorphisms, the map δ above corresponds to the canonical
map

k(C)∗ →
⊕
y |y

Z,

f 7→ (ord y(f))y |y,

which yields the lemma. �
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Theorem 4.2. For every d such that 2 ≤ d ≤ p, there exists a canonical isomorphism

CHd(X) ′ ' CH0(X/C).

Proof. By Lemma 4.1, Hilbert’s Theorem 90 and Proposition 3.2, there exists a nat-
ural isomorphism

Ker

E
(
X/C

)
→
⊕
y∈C0

CHd−1
(
Xy

)Γy

π∗y CHd−1(Xy)

 ' Sald(X/C)
k∗Hd−1(Xη, Kd) ′

.

On the other hand, by [7,(8.7.2)], Hd−1(Xη, Kd)
′ = NrdA∗ for every d such that

2 ≤ d ≤ p and, for each y ∈ C0,

π∗y CHd−1(Xy) ' π∗y CHp−1(Xy) ' (qy)∗CH0(Xy) (= Z or pZ).

The latter implies that Sald(X/C) = k(C)∗dn, whence

Sald(X/C)/k∗Hd−1(Xη, Kd)
′ ' k(C)∗dn/k∗NrdA∗

' CH0(X/C).

Finally, [loc.cit.] shows that the groups CHd(Xη) and CHd−1(Xy) (y ∈ C0) are
torsion free, whence CHd(Xη)′ and CHd−1(Xy)′ vanish. The theorem now follows
from Proposition 3.1. �

Corollary 4.3. Let d be such that 2 ≤ d ≤ p. Then CHd(X) ′ is finite if
(1) k is a number field, or
(2) k is a field of finite type over Q, C = P1

k and X has a 0-cycle of degree one.

Proof. Indeed, in these cases the group CH0(X/C) is finite [4]. �

Corollary 4.4. In each of the cases listed in the previous corollary, the Chow ring
CH∗(X) is finitely generated as an abelian group.

Proof. The above corollary and Remark 2.1 show that CHd(X) is finitely generated
for any d such that 2 ≤ d ≤ p. Since CH0(X) and CH1(X) = Pic(X) are well-known
to be finitely generated (see [2, §1]), the proof is complete. �

Remark 4.5. The referee has suggested the following alternative approach to this
paper.

Since there is only p-torsion in the Chow groups and dim X = p, it is not difficult
to relate the E2 and E∞ terms in the Gersten-Quillen spectral sequence (see, e.g.,
[7, Proposition (8.6.2), p.320]). Hence if K0(X) is finitely generated, then the Chow
groups of X are also finitely generated. Now let Λ be the Azumaya algebra over C
corresponding to the Severi-Brauer scheme X → C (see [6]). Then, by a well-known
theorem of Quillen, K0(X) ' K0(C) ⊕ K0(Λ)p−1. Hence if K0(C) and K0(Λ) are
finitely generated, then the Chow groups of X are also finitely generated. Now one
can construct a commutative diagram with Swan’s localization sequences for Λ and C
and use it to relate the kernel of the restriction map from K0(Λ) to K0(C) (or K0(Λ))
to the group k(C)∗/k∗NrdA∗. This gives more transparent proofs of the finiteness
results and the introduction of the Azumaya algebra Λ provides a natural explanation
for the appearance of the group k(C)∗/k∗NrdA∗.
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Departamento de Matemáticas, Universidad Andrés Bello, Chile
E-mail address: cristiangonzalez@unab.cl


	1. Introduction.
	Acknowledgements.
	2. Preliminaries.
	3. The general method.
	4. Proof of the main theorem.
	References

