ALGEBRAIC CYCLES ON SEVERI-BRAUER SCHEMES OF PRIME DEGREE OVER A CURVE

CRISTIAN D. GONZÁLEZ-AVILÉS

ABSTRACT. Let k be a perfect field and let p be a prime number different from the characteristic of k. Let C be a smooth, projective and geometrically integral k-curve and let X be a Severi-Brauer C-scheme of relative dimension p-1. In this paper we show that $CH^d(X)_{\text{tors}}$ contains a subgroup isomorphic to $CH_0(X/C)$ for every d in the range $2 \leq d \leq p$. We deduce that, if k is a number field, the full Chow ring $CH^*(X)$ is a finitely generated abelian group.

1. Introduction.

Let k be a perfect field with algebraic closure \overline{k} and let p be a prime number different from the characteristic of k. Let C be a smooth, projective and geometrically integral k-curve. In this paper we study a certain subgroup of $CH^d(X)_{\text{tors}}$ for a Severi-Brauer C-scheme $q: X \to C$ of relative dimension p-1 and any integer d such that $2 \leq d \leq p$. Let

$$CH_0(X/C) = \operatorname{Ker}\left[CH_0(X) \xrightarrow{q_*} CH_0(C)\right]$$

and let $\pi^* \colon CH^d(X) \to CH^d(\overline{X})$ be induced by the extension-of-scalars map $\overline{X} \to X$, where $\overline{X} = X \times_{\text{Spec } k} \text{Spec } \overline{k}$. Then the following holds.

Main Theorem. For any d as above, there exists a canonical isomorphism

$$\operatorname{Ker}\left[CH^{d}(X) \xrightarrow{\pi^{*}} CH^{d}\left(\overline{X}\right)\right] \simeq CH_{0}(X/C).$$

Corollary. Assume that k is a number field. Then the Chow ring $CH^*(X)$ is a finitely generated abelian group.

The above corollary confirms a well-known conjecture of S.Bloch in a particular case. Previous work on Bloch's conjecture include [3], where $CH^2(X)$ is shown to be finitely generated for a certain class of varieties X, and [4], where the same result is obtained for $CH_0(X)$ when $X \to C$ is an arbitrary (i.e., not necessarily smooth over C) Severi-Brauer fibration of squarefree index.

Acknowledgements.

I thank B.Kahn for some helpful comments. I also thank the referee for correcting some inaccuracies and for providing Remark 4.5.

Received by the editors January 29, 2007.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 14C25; Secondary 14C15 .

Key words and phrases. Algebraic cycles, Chow groups, curves, Severi-Brauer schemes.

The author is partially supported by Fondecyt grant 1061209 and Universidad Andrés Bello grant DI-29-05/R.

2. Preliminaries.

Let k be a perfect field, fix an algebraic closure \overline{k} of k and let $\Gamma = \operatorname{Gal}(\overline{k}/k)$. Now let C be a smooth, projective and geometrically integral k-curve and let X be a Severi-Brauer scheme over C [6, §8] of dimension $m \geq 2$. There exists a proper and flat k-morphism $q: X \to C$ all of whose fibers are Severi-Brauer varieties of dimension m-1 over the appropriate residue field [loc.cit.]. We will write X_{η} for the generic fiber $X \times_C \operatorname{Spec} k(C)$ of q and A for the central simple k(C)-algebra associated to X_{η} . We define

$$CH_0(X/C) = \operatorname{Ker}\left[CH_0(X) \xrightarrow{q_*} CH_0(C)\right].$$

Now let C_0 be the set of closed points of C. The group of *divisorial norms* of X/C (cf. [8]) is the group

$$k(C)_{dn}^* = \{ f \in k(C)^* \colon \forall y \in C_0, \text{ord}_y(f) \in (q_y)_*(CH_0(X_y)) \}$$

where, for each $y \in C_0$, $q_y \colon X_y \to \operatorname{Spec}(y)$ is the structural morphism of the fiber X_y . This group is closely related to $CH_0(X/C)$ (see [4, Proposition 3.1]). Indeed, there exists a canonical isomorphism

$$CH_0(X/C) \simeq k(C)^*_{\mathrm{dn}}/k^* \mathrm{Nrd} A^*$$

Remark 2.1. Fix an integer d such that $1 \leq d \leq m$ and let

$$CH^{d}(X)' = \operatorname{Ker}\left[CH^{d}(X) \xrightarrow{\pi^{*}} CH^{d}(\overline{X})^{\Gamma}\right],$$

where $\pi: \overline{X} \to X$ is the canonical map. A simple transfer argument shows that $CH^d(X)'$ is a subgroup of $CH^d(X)_{\text{tors}}$. Now, since $\overline{X} \to \overline{C}$ has a section, \overline{X} is a projective bundle over \overline{C} . Thus, by [5, Theorem 3.3(b), p.64], there exist isomorphisms

$$CH^{d}(\overline{X}) \simeq \begin{cases} \mathbb{Z} \oplus CH_{0}(\overline{C}) & \text{if } 1 \leq d \leq m-1 \\ CH_{0}(\overline{C}) & \text{if } d = m. \end{cases}$$

Therefore, if $J_C(k)$ is finitely generated, where J_C is the Jacobian variety of C (e.g., k is a number field or $C = \mathbb{P}^1_k$), then $CH^d(X)$ is finitely generated if and only if $CH^d(X)'$ is finite.

3. The general method.

Let C be as above and let X be any smooth, projective and geometrically integral k-variety such that there exists a proper and flat morphism $q: X \to C$ whose generic fiber X_{η} is geometrically integral. We have an exact sequence [9]

(1)
$$H^{d-1}(X_{\eta}, \mathcal{K}_d) \xrightarrow{\delta} \bigoplus_{y \in C_0} CH^{d-1}(X_y) \to CH^d(X) \xrightarrow{j^*} CH^d(X_{\eta}) \to 0,$$

where $j: X_{\eta} \to X$ is the natural map and the map which we have labeled δ will play a role later when $k = \overline{k}$. A similar exact sequence exists over \overline{k} , and we have two natural exact commutative diagrams:

 $\quad \text{and} \quad$

where, for each $y \in C_0$, we have fixed a closed point \overline{y} of \overline{C} lying above y and written $\Gamma_y = \text{Gal}(\overline{k}/k(y))$. Set

$$CH^{d}(X_{\eta})' = \operatorname{Ker}\left[CH^{d}(X_{\eta}) \to CH^{d}\left(\overline{X}_{\overline{\eta}}\right)^{\Gamma}\right]$$

and, for each $y \in C_0$,

$$CH^{d-1}(X_y)' = \operatorname{Ker}\left[CH^{d-1}(X_y) \xrightarrow{\pi_{\overline{y}}^*} CH^{d-1}(\overline{X}_{\overline{y}})^{\Gamma_y}\right].$$

Now define

(3)
$$E(\overline{X}/\overline{C}) = \operatorname{Coker}\left[\frac{H^{d-1}(X_{\eta}, \mathcal{K}_d)}{j^*H^{d-1}(X, \mathcal{K}_d)} \longrightarrow \left(\frac{H^{d-1}(\overline{X}_{\overline{\eta}}, \mathcal{K}_d)}{\overline{j}^*H^{d-1}(\overline{X}, \mathcal{K}_d)}\right)^{\Gamma}\right]$$

Then, applying the snake lemma to the preceding diagrams, we obtain¹

Proposition 3.1. There exists a natural exact sequence

$$\bigoplus_{y \in C_0} CH^{d-1}(X_y)' \to \operatorname{Ker}\left[CH^d(X)' \to CH^d(X_\eta)'\right]$$
$$\to \operatorname{Ker}\left[E\left(\overline{X}/\overline{C}\right) \to \bigoplus_{y \in C_0} \frac{CH^{d-1}\left(\overline{X}_{\overline{y}}\right)^{\Gamma_y}}{\pi_{\overline{y}}^* CH^{d-1}(X_y)}\right] \to 0,$$

where $E(\overline{X}/\overline{C})$ is the group (3).

As regards the right-hand group in the exact sequence of the proposition, the following holds. Let

$$H^{d-1}(X_{\eta}, \mathcal{K}_d)' = \operatorname{Im}\left[H^{d-1}(X_{\eta}, \mathcal{K}_d) \to H^{d-1}(\overline{X}_{\overline{\eta}}, \mathcal{K}_d)^{\Gamma}\right]$$

¹Proposition 3.1 was inspired by [1, Proposition 1.1].

and

$$\operatorname{Sal}_{d}(X/C) = \left\{ f \in H^{d-1}(\overline{X}_{\overline{\eta}}, \mathcal{K}_{d})^{\Gamma} : \forall y \in C_{0}, \, \overline{\delta}_{\overline{y}}(f) \in \pi_{\overline{y}}^{*} C H^{d-1}(X_{y}) \right\},$$

where $\overline{\delta}$ and $\pi_{\overline{y}}^*$ are the maps of diagram (2).

Proposition 3.2. There exists a natural exact sequence

$$0 \to \frac{\operatorname{Sal}_{d}(X/C)}{\left(\overline{\jmath}^{*}H^{d-1}\left(\overline{X},\mathcal{K}_{d}\right)\right)^{\Gamma} \cdot H^{d-1}(X_{\eta},\mathcal{K}_{d})'}$$
$$\to \operatorname{Ker}\left[E\left(\overline{X}/\overline{C}\right) \to \bigoplus_{y \in C_{0}} \frac{CH^{d-1}\left(\overline{X}_{\overline{y}}\right)^{\Gamma_{y}}}{\pi_{\overline{y}}^{*}CH^{d-1}(X_{y})}\right]$$
$$\to H^{1}(\Gamma,\overline{\jmath}^{*}H^{d-1}\left(\overline{X},\mathcal{K}_{d}\right)).$$

Proof. This follows by applying the snake lemma to a diagram of the form

with $\overline{A} = \overline{\jmath}^* H^{d-1}(\overline{X}, \mathcal{K}_d), \overline{B} = H^{d-1}(\overline{X}_{\overline{\eta}}, \mathcal{K}_d),$ etc.

4. Proof of the main theorem.

Let C and A be as in Section 2, let p be a prime number different from the characteristic of k and let X be a Severi-Brauer scheme over C of relative dimension p-1.

Lemma 4.1. There exists a Γ -isomorphism

$$\overline{\jmath}^* H^{d-1}(\overline{X}, \mathcal{K}_d) \simeq \overline{k}^*.$$

Proof. Clearly, $\overline{\jmath}^* H^{d-1}(\overline{X}, \mathcal{K}_d)$ is the kernel of the map

$$\overline{\delta} \colon H^{d-1}\big(\overline{X}_{\overline{\eta}}, \mathcal{K}_d\big) \to \bigoplus_{\overline{y}|y} CH^{d-1}\big(\overline{X}_{\overline{y}}\big)$$

appearing in the exact sequence (1) over \overline{k} . Now $\overline{X}_{\overline{\eta}} \simeq \mathbb{P}_{\overline{\eta}}^{p-1}$ and $\overline{X}_{\overline{y}} \simeq \mathbb{P}_{\overline{k}}^{p-1}$ for every \overline{y} , whence we have Γ -isomorphisms

$$H^{d-1}(\overline{X}_{\overline{\eta}}, \mathcal{K}_d) \simeq \overline{k}(C)^*$$

and

$$CH^{d-1}(\overline{X}_{\overline{y}}) \simeq \mathbb{Z}$$

for each \overline{y} . Under these isomorphisms, the map $\overline{\delta}$ above corresponds to the canonical map

$$\overline{k}(C)^* \to \bigoplus_{\overline{y}|y} \mathbb{Z},$$
$$f \mapsto (\operatorname{ord}_{\overline{y}}(f))_{\overline{y}|y},$$

which yields the lemma.

Theorem 4.2. For every d such that $2 \le d \le p$, there exists a canonical isomorphism $CH^d(X)' \simeq CH_0(X/C).$

Proof. By Lemma 4.1, Hilbert's Theorem 90 and Proposition 3.2, there exists a natural isomorphism

$$\operatorname{Ker}\left[E\left(\overline{X}/\overline{C}\right) \to \bigoplus_{y \in C_0} \frac{CH^{d-1}\left(\overline{X}_{\overline{y}}\right)^{\Gamma_y}}{\pi_{\overline{y}}^* CH^{d-1}(X_y)}\right] \simeq \frac{\operatorname{Sal}_d(X/C)}{k^* H^{d-1}(X_\eta, \mathcal{K}_d)'}.$$

On the other hand, by [7,(8.7.2)], $H^{d-1}(X_{\eta}, \mathcal{K}_d)' = \operatorname{Nrd} A^*$ for every d such that $2 \leq d \leq p$ and, for each $y \in C_0$,

$$\pi_{\overline{y}}^* CH^{d-1}(X_y) \simeq \pi_{\overline{y}}^* CH^{p-1}(X_y) \simeq (q_y)_* CH_0(X_y) \quad (=\mathbb{Z} \text{ or } p\mathbb{Z}).$$

The latter implies that $\operatorname{Sal}_d(X/C) = k(C)^*_{\operatorname{dn}}$, whence

$$\operatorname{Sal}_{d}(X/C)/k^{*}H^{d-1}(X_{\eta}, \mathcal{K}_{d})' \simeq k(C)_{\operatorname{dn}}^{*}/k^{*}\operatorname{Nrd} A^{*}$$
$$\simeq CH_{0}(X/C).$$

Finally, [loc.cit.] shows that the groups $CH^d(X_\eta)$ and $CH^{d-1}(X_y)$ $(y \in C_0)$ are torsion free, whence $CH^d(X_\eta)'$ and $CH^{d-1}(X_y)'$ vanish. The theorem now follows from Proposition 3.1.

Corollary 4.3. Let d be such that $2 \le d \le p$. Then $CH^d(X)'$ is finite if

(1) k is a number field, or

(2) k is a field of finite type over \mathbb{Q} , $C = \mathbb{P}^1_k$ and X has a 0-cycle of degree one.

Proof. Indeed, in these cases the group $CH_0(X/C)$ is finite [4].

Corollary 4.4. In each of the cases listed in the previous corollary, the Chow ring $CH^*(X)$ is finitely generated as an abelian group.

Proof. The above corollary and Remark 2.1 show that $CH^d(X)$ is finitely generated for any d such that $2 \le d \le p$. Since $CH^0(X)$ and $CH^1(X) = Pic(X)$ are well-known to be finitely generated (see [2, §1]), the proof is complete.

Remark 4.5. The referee has suggested the following alternative approach to this paper.

Since there is only *p*-torsion in the Chow groups and dim X = p, it is not difficult to relate the E_2 and E_{∞} terms in the Gersten-Quillen spectral sequence (see, e.g., [7, Proposition (8.6.2), p.320]). Hence if $K_0(X)$ is finitely generated, then the Chow groups of X are also finitely generated. Now let Λ be the Azumaya algebra over C corresponding to the Severi-Brauer scheme $X \to C$ (see [6]). Then, by a well-known theorem of Quillen, $K_0(X) \simeq K_0(C) \oplus K_0(\Lambda)^{p-1}$. Hence if $K_0(C)$ and $K_0(\Lambda)$ are finitely generated, then the Chow groups of X are also finitely generated. Now one can construct a commutative diagram with Swan's localization sequences for Λ and C and use it to relate the kernel of the restriction map from $K_0(\Lambda)$ to $K_0(C)$ (or $K_0(\overline{\Lambda})$) to the group $k(C)^*/k^* \operatorname{Nrd} A^*$. This gives more transparent proofs of the finiteness results and the introduction of the Azumaya algebra Λ provides a natural explanation for the appearance of the group $k(C)^*/k^* \operatorname{Nrd} A^*$.

References

- J. L. Colliot-Thélène and A. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory 7 (1993), 477–500.
- J. L. Colliot-Thélène, Cycles algébriques de torsion et K-théorie algébrique, In: Lecture notes in Math. 1553 (1991), Springer, New York, 1–49.
- [3] J. L. Colliot-Thélène and W. Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. Math. 105 (1991), 221–245.
- [4] E. Frossard, Groupe de Chow de dimension zéro des fibrations en variétés de Severi-Brauer, Comp. Math. 110 (1998), 187–213.
- [5] W. Fulton, Intersection Theory, Second Ed. Springer-Verlag, 1998.
- [6] A. Grothendieck, Le Groupe de Brauer I, In: Dix Exposés sur la Cohomologie des Schémas. North-Holland, Amsterdam, (1968), 46–66.
- [7] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izv. 21 (1982), No. 2, 307–340.
- [8] P. Salberger, Galois descent and class groups of orders, Lect. Notes in Math. 1142 (1985), 239-255.
- [9] C. Sherman, Some theorems on the K-Theory of coherent sheaves, Comm. in Alg. 7 (1979), no. 14, 1489–1508.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD ANDRÉS BELLO, CHILE *E-mail address*: cristiangonzalez@unab.cl