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MORDELL EXCEPTIONAL LOCUS FOR SUBVARIETIES OF THE
ADDITIVE GROUP

Dragos Ghioca

Abstract. We define the Mordell exceptional locus Z(V ) for affine varieties V ⊂ Gg
a

with respect to the action of a product of Drinfeld modules on the coordinates of Gg
a.

We show that Z(V ) is a closed subset of V . We also show that there are finitely many

maximal algebraic φ-modules whose translates lie in V . Our results are motivated by
Denis-Mordell-Lang conjecture for Drinfeld modules.

1. Introduction

Faltings proved the Mordell-Lang conjecture in the following form (see [Fal94]).

Theorem 1.1 (Faltings). Let G be an abelian variety defined over the field of complex
numbers C. Let X ⊂ G be a closed subvariety and Γ ⊂ G(C) a finitely generated
subgroup of G(C). Then X(C) ∩ Γ is a finite union of cosets of subgroups of Γ.

In particular, Theorem 1.1 says that an irreducible subvariety X of an abelian
variety G has a Zariski dense intersection with a finitely generated subgroup of G(C)
only if X is a translate of an algebraic subgroup of G.

We define the Mordell exceptional locus of X ⊂ G as the set (see also [Abr94])

Z(X) = {x ∈ X | ∃B, dim B > 0, B an algebraic subgroup, x + B ⊂ X}.
Thus, Theorem 1.1 says that for each finitely generated subgroup Γ, we have that
(X \ Z(X)) ∩ Γ is finite. The Mordell exceptional locus of subvarieties of abelian
varieties was shown to be closed (see [Kaw80], [Bog81] and [Abr94]). This last paper
served as inspiration for our work.

If we try to formulate the Mordell-Lang conjecture in the context of algebraic
subvarieties contained in a power of the additive group scheme Ga, the conclusion is
either false (in the characteristic 0 case, as shown by the curve y = x2 which has an
infinite intersection with the finitely generated subgroup Z × Z, without being itself
a translate of an algebraic subgroup of G2

a) or it is trivially true (in the characteristic
p > 0 case, because every finitely generated subgroup of a power of Ga is finite). Denis
[Den92] formulated a Mordell-Lang conjecture for powers of Ga in characteristic p in
the context of Drinfeld modules. Denis replaced the finitely generated subgroup from
the usual Mordell-Lang statement with a finitely generated φ-submodule, where φ is a
Drinfeld module. He also strengthened the conclusion of the Mordell-Lang statement
by asking that the subgroups whose cosets are contained in the intersection of the
algebraic variety with the finitely generated φ-submodule be actually φ-submodules.
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Several cases of Denis-Mordell-Lang conjecture were proved by the author (see [Ghi05]
and [Ghi06]), and by Thomas Tucker and the author (see [GT07]).

Similar with the case of abelian varieties, Denis-Mordell-Lang conjecture suggests
that the intersection of a variety V with a finitely generated φ-module should be finite
outside the Mordell exceptional locus Z(V ) of V (see our Definition 2.2 for Z(V )). In
the present paper we prove that Z(V ) is closed (see our Theorem 2.4). In addition,
we show that there exists no infinite family of algebraic φ-modules (see Corollary 3.9),
and that for every affine variety V ⊂ Gg

a there are finitely many maximal algebraic
φ-modules whose translates lie in V (see our Theorem 2.5). Both of these statements
are further indications that Denis-Mordell-Lang conjecture should be true.

We briefly sketch the plan of our paper. In Section 2 we set the notation, describe
the Denis-Mordell-Lang conjecture and then state our main results. In Section 3 we
prove these main results (Theorems 2.4 and 2.5).

2. Notation and statement of our main results

All subvarieties appearing in this paper are closed. We define next the notion of a
Drinfeld module.

Let p be a prime and let q be a power of p. Let C be a projective non-singular
curve defined over Fq. Let A be the ring of Fq-valued functions defined on C, regular
away from a fixed closed point ∞ ∈ C. Let K be a finite field extension of the fraction
field Frac(A) of A. We let Kalg be a fixed algebraic closure of K, and let Ksep be the
separable closure of K inside Kalg.

We define the operator τ as the Frobenius on Fq, extended so that for every x ∈
Kalg, we have τ(x) = xq. Then for every subfield L ⊂ Kalg, we let L{τ} be the ring
of polynomials in τ with coefficients from L (the addition is the usual addition, while
the multiplication is given by the usual composition of functions).

Following Goss [Gos96], we call a Drinfeld module of generic characteristic defined
over K a morphism φ : A → K{τ} for which the coefficient of τ0 in φa is a for every
a ∈ A, and there exists a ∈ A such that φa 6= aτ0. All Drinfeld modules appearing in
this paper are of generic characteristic.

For every field extension K ⊂ L, any Drinfeld module φ induces an action on
Ga(L) by a ∗ x := φa(x), for each a ∈ A.

Let g be a fixed positive integer. Let φ1 : A → K{τ}, . . . , φg : A → K{τ} be
Drinfeld modules. From now on, we denote by φ the (φ1, . . . , φg)-action on Gg

a (where
each Drinfeld module φi acts on the corresponding coordinate of the affine space).

A point x ∈ Gg
a(Kalg) is torsion for the φ-action if there exists a ∈ A \ {0} such

that φa(x) = 0. We denote by φ[a] the finite set of all torsion points x killed by φa.
We denote by φtor the set of all torsion points in Gg

a(Kalg).
The subgroups of Gg

a(Kalg) invariant under the action of φ are called φ-submodules.

Definition 2.1. An algebraic φ-(sub)module of Gg
a is an irreducible algebraic subgroup

of Gg
a invariant under φ.

Now we can define the Mordell exceptional locus of an affine subvariety V ⊂ Gg
a.

Definition 2.2. Let V ⊂ Gg
a be an affine subvariety. We let Z(V ) be the set of

all points y ∈ V with the property that there exists a positive dimensional algebraic
φ-submodule Y ⊂ Gg

a such that (y + Y ) ⊂ V .
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Denis proposed in [Den92] the following conjecture.

Conjecture 2.3. Let V ⊂ Gg
a be an affine variety defined over K. Let Γ be a finitely

generated φ-submodule of Gg
a(K). Then there exist algebraic φ-submodules B1, . . . , Bl

of Gg
a and there exist γ1, . . . , γl ∈ Γ such that

V (K) ∩ Γ =
l⋃

i=1

(γi + Bi(K)) ∩ Γ.

As explained in Introduction, the results of our paper were motivated by Conjec-
ture 2.3. Our main result is the following.

Theorem 2.4. With the above notation for φ and V , the Mordell exceptional locus
Z(V ) is Zariski closed.

The following important result is a consequence of Theorem 2.4.

Theorem 2.5. Let V ⊂ Gg
a be an affine subvariety. There are finitely many maximal

algebraic φ-submodules Y such that a translate of Y lies in V (where Y is maximal
in the sense that there is no larger algebraic φ-module whose translate lies in V ).

3. Proofs of our main results

We continue with the notation from Section 2. Hence φ1, . . . , φg are Drinfeld
modules, and we denote by φ the action of (φ1, . . . , φg) on Gg

a. Unless otherwise
stated, V ⊂ Gg

a is an affine subvariety, and Z(V ) is its Mordell exceptional locus (as
defined in Definition 2.2).

We first state a result which we will use later (Lemme 4 of [Den92]).

Lemma 3.1 (Denis). Let Y ⊂ Gg
a be an irreducible subvariety, and let t ∈ A be a

non-constant function. If φt(Y ) = Y , then Y is a translate of an algebraic φ-module.

The following corollary follows easily from Lemma 3.1.

Corollary 3.2. Let 0 ∈ Y ⊂ Gg
a be an irreducible subvariety, and let t ∈ A be a

non-constant function. If φt(Y ) = Y , then Y is an algebraic φ-module.

Proof. According to Lemma 3.1, Y = y+Z is a translate of an algebraic φ-module Z.
Because 0 ∈ Y , then −y ∈ Z, and so, because Z is an algebraic group, we conclude
that y + Z = Z. Therefore Y = Z is an algebraic φ-module. �

The following Fact is a consequence of Lemma 3.1.

Fact 3.3. Let t ∈ A be a non-constant function. Let 0 ∈ Y ⊂ Gg
a be a variety such

that φt(Y ) ⊂ Y . Let Z be an irreducible component of Y containing 0. Then Z is an
algebraic φ-module.

Proof. First we prove the following Claim.

Claim 3.4. Let Z be an irreducible subvariety of Gg
a containing 0. Suppose that for

some positive integers m < n, we have φtm(Z) = φtn(Z). Then Z is an algebraic
φ-module.
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Proof of Claim 3.4. By our assumption, the irreducible subvariety φtm(Z) is invariant
under φtn−m . Hence, using Corollary 3.2, we conclude that Z0 := φtm(Z) is an alge-
braic φ-module. In particular, φtm(Z0) = Z0. Thus, using that φtm(Z) = φtm(Z0),
we get that

(3.4.1) Z ⊂
⋃

z∈φ[tm]

(z + Z0).

Because Z is irreducible, then (3.4.1) yields that there exists z ∈ φ[tm] such that Z ⊂
(z + Z0). Because dim(Z) = dim(φtm(Z)) = dim(Z0), and because Z0 is irreducible,
we conclude that Z = z + Z0. Because 0 ∈ Z = z + Z0, we obtain that −z ∈ Z0, and
so, Z = z + Z0 = Z0 is an algebraic φ-module, as desired. �

The following result is an easy corollary of Claim 3.4.

Corollary 3.5. Let ` be a positive integer, and let S := {Yi}`
i=1 be a finite set of

irreducible subvarieties of Gg
a, each containing 0, such that φt acts on S (by permuting

the varieties). Then each Yi is an algebraic φ-module.

Proof of Corollary 3.5. Because φt acts on the finite set S, then there exist positive
integers m < n such that for each i ∈ {1, . . . , `}, we have φtm(Yi) = φtn(Yi). Then
Claim 3.4 yields the conclusion of Corollary 3.5. �

Let d be the maximal dimension of the irreducible components of Y passing through
0. Let Z be an irreducible component of Y , passing through 0. We will prove Fact 3.3
by induction on s := d− dim(Z).

First we prove the case s = 0. So, let {Zi}`
i=1 be all the irreducible components

of Y of dimension d, which contain 0. Because 0 ∈ φt(Zi) ⊂ φt(Y ) ⊂ Y , then
φt(Zi) is contained in an irreducible component Zj of Y (of maximal dimension d,
because dim(φt(Zi)) = dim(Zi) = d), which passes through 0. Because dim(φt(Zi)) =
dim(Zj) and both φt(Zi) and Zj are irreducible, we conclude that φt(Zi) = Zj . Hence,
φt acts on the finite set {Zi}`

i=1. Thus, Corollary 3.5 yields that each Zi is an algebraic
φ-module.

Let s ≥ 1. We assume that we proved Fact 3.3 for all irreducible components of
dimension greater than (d − s), and we will prove next that Fact 3.3 holds also for
the irreducible components of dimension d− s.

Let T := {Wi}k
i=1 be all the irreducible components of Y of dimension (d − s),

which contain 0. If φt acts on the finite set T , then Corollary 3.5 yields that each Wi

is an algebraic φ-module, as desired. Therefore, assume from now on that φt does not
act on T . However, for each W := Wi, there exists another irreducible component Z
of Y passing through 0, such that φt(W ) ⊂ Z. Assume Z /∈ T . Then dim(Z) > d− s.
By the induction hypothesis, Z is an algebraic φ-module. Hence, because Z = φt(Z)
contains φt(W ), then

(3.5.1) W ⊂
⋃

y∈φ[t]

y + Z.

Because W is irreducible, then there exists y ∈ φ[t] such that W ⊂ y+Z. But 0 ∈ W ,
and so, 0 ∈ y + Z. Therefore −y ∈ Z, and because Z is an algebraic group, we
conclude that y + Z = Z. Hence W ⊂ Z, which contradicts the fact that W is an
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irreducible component of Y , different from Z. This contradiction shows that actually
φt acts on the finite set T , and so, it concludes our inductive proof. �

We are ready to prove that Z(V ) is a (closed) subvariety of V .

Proof of Theorem 2.4. Our proof follows the second proof of Theorem 1 from [Abr94].
Let t ∈ A be a non-constant function.

For each m ≥ 2 we define the map Fm : (Gg
a)m → (Gg

a)m−1 by

(y1, . . . , ym) → (φt(y1)− y2, φt(y2)− y3, . . . , φt(ym−1)− ym).

Clearly, the map F ′
m : Ggm

a → Ggm
a given by

F ′
m(y1, . . . , ym) := (y1, φt(y1)− y2, φt(y2)− y3, . . . , φt(ym−1)− ym)

is an isomorphism. We let FV
m be the map Fm restricted to V m.

We let Dm : V → Gg(m−1)
a defined by Dm(y) = φt−1 · (y, y, . . . , y). We let Ym ⊂

V m+1 be defined as

(3.5.2) {(y1, . . . , ym, y) ∈ V m × V | FV
m (y1, . . . , ym) = Dm(y)}.

Using the fact that F ′
m is an isomorphism, we obtain that Ym embeds into V × V via

the map

(3.5.3) (y1, . . . , ym, y) → (y1, y).

Let Y ′
m ⊂ V × V be the image of Ym through the map in (3.5.3). We claim that for

n > m, we have Y ′
n ⊂ Y ′

m.
Indeed, if (y1, . . . , yn, y) ∈ Yn, then (y1, . . . , ym, y) ∈ Ym. Therefore {Y ′

m}m≥2 is a
descending chain of subvarieties of V × V , which has to stabilize. Hence, for some
positive integer n, we have Y ′

m = Y ′
n for each m ≥ n.

We note that each Ym contains the diagonal of V m+1. Hence, each Y ′
m contains

the diagonal ∆ of V × V .
We have the natural projection π2 of Y ′

n ⊂ V × V on the second coordinate. The
following Claim is the key to our proof.

Claim 3.6. For each y ∈ V , and for each irreducible component Z × {y} of the
fiber π−1

2 (y), which passes through (y, y), the translate −y + Z is an algebraic φ-
module. Moreover, π−1

2 (y) contains a positive dimensional irreducible component
passing through (y, y) if and only if there exists a positive dimensional algebraic φ-
module Z such that (y + Z) ⊂ V , if and only if y ∈ Z(V ).

Proof of Claim 3.6. Let y ∈ V , and let Y ′ × {y} = π−1
2 (y) ⊂ Y ′

n be the fiber above
y. Hence Y ′ ⊂ V , and we let Y := (Y ′ − y). Then 0 ∈ Y (because ∆ ⊂ Y ′

n, and so,
y ∈ Y ′). We claim that φt(Y ) ⊂ Y .

Indeed, every point y1 ∈ Y ′ lies below a point (y1, y) ∈ Y ′
n, and in addition because

{Y ′
m}m stabilizes for m ≥ n, we obtain that (y1, y) ∈ Y ′

m for all m ≥ n. In particular,
using (3.5.2), we conclude that there exists an infinite sequence {yi}i≥1 ⊂ V such
that

(3.6.1) φt(yi)− yi+1 = φt−1(y) for every i ≥ 1.

Therefore,

(3.6.2) φt(yi − y) = yi+1 − y for all i ≥ 1.
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Moreover, (3.6.1) yields that also (y2, y) ∈ Y ′
n, and so (y2 − y) ∈ Y . Hence, (3.6.2)

for i = 1 yields that φt(Y ) ⊂ Y . Therefore, using Fact 3.3, we conclude that each
irreducible component of Y containing 0 is an algebraic φ-module.

Now, conversely, assume (y + Y ) ⊂ V and Y is maximal in the sense that there
exists no larger algebraic φ-module whose translate by y lies in V . Then, because Y
is invariant under φt, for each y1 ∈ (y + Y ) there exists an infinite sequence

{yi}i≥1 ⊂ (y + Y ) ⊂ V

such that (3.6.2) holds, and so, (3.6.1) holds. Therefore (y1, y) ∈ Y ′
n, and so, (y +

Y ) × {y} lies in an irreducible component Z × {y} of the fiber π−1
2 (y). We note

that Z × {y} passes through (y, y) because y ∈ (y + Y ). Moreover, as shown in the
above paragraph, Z ⊂ V is a translate by y of an algebraic φ-module. Because Y is
maximal, then (y +Y ) = Z. Hence dim(Z) > 0 if and only if dim(Y ) > 0, if and only
if y ∈ Z(V ). �

We define the subset U of points x ∈ Y ′
n such that if y := π2(x) ∈ V , then there

exists a positive dimensional irreducible component of the fiber π−1
2 (y), containing x.

According to part (d) of 3.22 (page 95) in [Har77], the subset U is Zariski closed. We
let Z̃ := U ∩∆. Then Z̃ is Zariski closed, and we claim that

(3.6.3) Z̃ = {(y, y) | y ∈ Z(V )}.

Indeed, if y ∈ Z(V ), then there exists a positive dimensional algebraic φ-module Y
such that (y + Y ) ⊂ V . We may assume Y is a maximal algebraic φ-module with the
property that its translate by y lies in V . Then (y + Y )× {y} is an irreducible com-
ponent of the fiber π−1

2 (y), which contains (y, y) (as shown in Claim 3.6). Therefore,
(y, y) ∈ U ∩∆ = Z̃. Now, conversely, if (y, y) ∈ U , then there exists a positive dimen-
sional irreducible component Y ′ of π−1

2 (y) passing through (y, y). Then Y ′ = y + Y
for some positive dimensional algebraic φ-module Y (see Claim 3.6). Thus y ∈ Z(V ),
as desired.

Because Z̃ is Zariski closed, then (3.6.3) yields that also Z(V ) is a closed subvariety.
This concludes the proof of Theorem 2.4. �

Before proceeding to the proof of Theorem 2.5, we will prove several preliminary
results.

Lemma 3.7. Let Y ⊂ Gg
a be an algebraic φ-submodule. Then φtor ∩ Y is Zariski

dense in Y .

Proof. Let m := dim(Y ). Then there exists a suitable finite-to-one, dominant projec-
tion π of Y on m coordinates of Gg

a. At the expense of relabelling the coordinates,
we may assume the projection is on the first m coordinates. Because π(Y ) is actually
an algebraic group, and π is a group homomorphism, we conclude that π(Y ) = Gm

a .
Moreover, π has finite fibers. By abuse of notation, we also denote by φ the induced
action of (φ1, . . . , φm) on Gm

a .

Claim 3.8. The preimage of a torsion point of Gm
a through π−1 is a finite set of

torsion points in Y .
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Proof of Claim 3.8. Let x be a torsion point of Gm
a . Let S0 be the orbit of x under

the action of φ; hence S0 is a finite φ-submodule of Gm
a . Moreover S0 is a finite

set of torsion points. Because π has finite fibers, S := π−1(S0) is a finite subset of
Y . Moreover, because π commutes with the φ-action, we conclude that S is also a
φ-module. Hence, S consists of finitely many torsion points (if S would contain a non-
torsion point z, then the infinite φ-orbit of z would be contained in S, contradicting
the fact that S is finite). Therefore, the preimage of x is indeed a finite set of torsion
points in Y . �

Because φtor(Gm
a ) is a cartesian product of infinite subsets of the affine line,

then φtor(Gm
a ) is Zariski dense in Gm

a . We conclude that the Zariski closure of
π−1(φtor(Gm

a )) ⊂ Y has dimension m. Hence, it equals Y (because Y is irreducible).
Thus π−1(φtor(Gm

a )) is a Zariski dense set of torsion points in Y (see Claim 3.8). This
concludes the proof of Lemma 3.7. �

The following key result is an immediate corollary of Lemma 3.7.

Corollary 3.9. There are no infinite algebraic families of algebraic φ-submodules of
Gg

a.

Proof. Using Lemma 3.7, every algebraic φ-submodule of Gg
a contains a Zariski dense

set of torsion points. Hence each algebraic φ-submodule of Gg
a is defined over Ksep

(because every torsion point of φ is defined over Ksep). Therefore, there are no infinite
algebraic families of algebraic φ-submodules of Gg

a. �

Definition 3.10. For an irreducible subvariety V ⊂ Gg
a, we call the φ-stabilizer of

V (denoted by Stabφ(V )) the largest algebraic φ-submodule Y such that Y + V = V .

The φ-stabilizer of V is well-defined because if the algebraic φ-modules Y1 and Y2

have the property that Y1 + V = V and Y2 + V = V , then the connected component
Y0 of (Y1 + Y2) is also an algebraic φ-module such that Y0 + V = V . Moreover, Y1

and Y2 are contained in Y0.
The following result is a corollary of Theorem 2.4.

Corollary 3.11. Let V ⊂ Gg
a be a positive dimensional irreducible affine variety. If

Z(V ) = V , then dim Stabφ(V ) > 0. More precisely, Stabφ(V ) is the unique maximal
algebraic φ-submodule whose translate lies in V .

Proof. Using the notation as in the proof of Theorem 2.4, the fact that Z(V ) = V

yields that Z̃ = ∆. In particular, ∆ ⊂ U . Because V is irreducible, then ∆ is
irreducible. Let U0 be an irreducible component of U which contains ∆. Then the
restriction of π2 : Y ′

n → V to U0 is a dominant morphism. By abuse of notation, this
restriction will also be called π2.

The fibers of π2 : U0 → V form an algebraic family of algebraic φ-submodules
(there is only one family because both V and U0 are irreducible). Thus, they are
translates of the same positive dimensional algebraic φ-submodule Y , since there is
no non-constant algebraic family of algebraic φ-modules (see Corollary 3.9). Therefore
for each y ∈ V , we have y+Y ⊂ V . Hence Y ⊂ Stabφ(V ), which shows that Stabφ(V )
is positive dimensional. Moreover, no algebraic φ-submodule Y ′ larger than Stabφ(V )
has a translate which lies in V (because all fibers of π2 restricted to each irreducible
component of U which contains ∆ are translates of the same algebraic φ-module). �
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We are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Clearly, there is only one algebraic φ-module of dimension 0.
So, let Y be a maximal algebraic φ-module (of positive dimension) whose coset lies
in V . Therefore, a coset (y + Y ) lies in Z(V ). Because Z(V ) is a closed subset of
V (as shown by Theorem 2.4), then (y + Y ) lies in one of the finitely many irre-
ducible components V1 of Z(V ). Because V1 is irreducible and Z(V1) = V1 (because
Z(Z(V )) = Z(V )), then Corollary 3.11 shows that there exists a unique maximal
algebraic φ-submodule whose coset lies in V1. Therefore Y is one of the finitely many
φ-stabilizers of the irreducible components of Z(V ), which concludes the proof of
Theorem 2.5. �
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