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FINITE PRODUCTS OF REGULARIZED PRODUCTS

Francisco Diaz y Diaz and Eduardo Friedman

Abstract. The product
` bQ

mam
´
·
` bQ

mbm
´

of two regularized products is not in general

equal to the regularized product bQ
m(am · bm). We consider the discrepancy F , defined

by

exp(F ) :=
bQ

m(am · bm)` bQ
mam

´
·

` bQ
mbm

´ .

When the terms am and bm depend on parameters, we show in certain cases that F is

a polynomial in these parameters.

1. Introduction

The regularized product
∏̂

mam of a countable set {a1, a2, . . . } of non-zero complex
numbers is defined as ∏̂

m
am := exp

(
− f ′(0)

)
,

where we assume that f(s) :=
∑

m a−s
m converges in some right half-plane and has

a meromorphic continuation to the s-plane which is regular at s = 0, so that its
derivative f ′ can be evaluated there. Several authors [KW] [Mi] have found examples
where (∏̂

m
am

)
·
(∏̂

m
bm

)
=

∏̂
m

(am · bm),

but Mizuno [Mi] has pointed out that this does not hold in general.1 For instance
[FR, eq. (3.10)], if zi and τi (i = 1, 2) are positive real numbers, then∏̂∞

m=0(mτ1 + z1) · (mτ2 + z2)(∏̂∞
m=0(mτ1 + z1)

)
·
(∏̂∞

m=0(mτ2 + z2)
) = exp

(
1
2
(z1

τ1
− z2

τ2

)
log

(τ1

τ2

))
.

A more complicated example was obtained by Mizuno [Mi, p. 157], namely,

(1)

∏̂∞
l,m=0(lτ1 + mη1 + z1) · (lτ2 + mη2 + z2)(∏̂∞

l,m=0(lτ1 + mη1 + z1)
)
·
(∏̂∞

l,m=0(lτ2 + mη2 + z2)
) =: exp(F ),

where

(2) F =
τ1η2 − τ2η1

4

( log
(

η2
η1

)
η1η2

B2

(z2η1 − z1η2

τ2η1 − τ1η2

)
−

log
(

τ2
τ1

)
τ1τ2

B2

( z2τ1 − z1τ2

τ1η2 − τ2η1

))
,
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B2(x) := x2−x+ 1
6 , all parameters zi, τi and ηi are again assumed real and positive,

and τ1η2 − τ2η1 6= 0.
Shintani [Sh, pp. 204, 206] had earlier considered a related example

(3)

∏̂
m∈Nr

0

∏n
j=1 Lj(y + m)∏n

j=1

∏̂
m∈Nr

0
Lj(y + m)

=: eF (y).

Here L1, L2, . . . , Ln are n linear forms with positive coefficients in r positive variables
y = (y1, . . . , yr) and N0 := N ∪ {0}, where N denotes the positive integers. Shintani
showed that F is a polynomial in y of degree at most r and used this to study the
derivative at s = 0 of L-functions L(s, χ) attached to Hecke characters χ of a totally
real number field. In this case Lj is a real embedding of a linear form with coefficients
in the number field and

∏
j Lj is the norm form.

Given a regularized product
∏̂

m

( ∏n
j=1 a

(j)
m

)
of terms that factor in some natu-

ral way, we may compare it with the product of the individual regularized products∏̂
ma

(j)
m (when these are defined). Mizuno suggests studying the discrepancy F , de-

fined by

(4) eF :=

∏̂
m

∏n
j=1 a

(j)
m∏n

j=1

∏̂
ma

(j)
m

,

as it seems that F is often far simpler than the regularized products themselves. In
(1) this is certainly born out since the regularized products involved are essentially
Barnes’ double Γ-functions. The discrepancy F in (2), on the other hand, is just a
polynomial in the constant terms zi of the regularized product, and a somewhat more
complicated function of the coefficients τi and ηi of the terms in degree one.

As the few known examples of the discrepancy F only involve products of terms of
degree one in m, here we consider products of general polynomials. However, in order
to ensure the existence of the regularized products we must make some assumptions
on the polynomials. Several authors [Ma] [Ca2] [Sa] [Li] have given conditions on the
polynomial P guaranteeing the existence of a meromorphic continuation in s of the
Dirichlet series

∑
m∈Nr P (m)−s, or more generally of

∑
m∈Nr ϕ(m)P (m)−s, where

ϕ(m) is an arbitrary complex polynomial. We choose Mahler’s conditions, as they
are simple to state and imply that a meromorphic continuation of the series to the
whole s-plane exists and is regular at s = 0.

Mahler’s hypothesis on P [Ma, p. 385, Klasse A]. P (x) = P (x1, x2, . . . , xr) ∈ C[x]
does not vanish anywhere in the closed real first “octant” xi ≥ 0 (1 ≤ i ≤ r). Its
homogeneous part of highest degree Ptop(x) is not constant and vanishes nowhere in
the closed real first octant, except for Ptop(0) = 0.

Notice that if Pj(x) satisfies this assumption for 1 ≤ j ≤ n, then so does
∏n

j=1 Pj(x).
Under Mahler’s hypothesis on Pj , we can choose for each j a continuous branch
of log Pj(x) for real x in the first octant, this choice being unique up to adding
a fixed single multiple of 2πi. Having fixed these branches for each j, we define
log

∏n
j=1 Pj(x) :=

∑n
j=1 log Pj(x).
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Theorem 1. Let Pj(x) ∈ C[x] be n complex polynomials in r variables, all satisfying
Mahler’s hypothesis above, and define F = F (P1, P2, . . . , Pn) by

(5) eF :=

∏̂
m∈Nr

∏n
j=1 Pj(m)∏n

j=1

∏̂
m∈NrPj(m)

.

Then F is a polynomial of degree at most r in the coefficients of the Pj of non-maximal
degree.

In other words, if we decompose Pj(x) = Pj,top(x)+
∑

Ij
aIj

xIj , where the degree |Ij |
of the multi-indices Ij is strictly less than the degree of Pj , then F is a polynomial of
degree at most r in the aIj (1 ≤ j ≤ n). We note that the logarithm branch for F in
(5) is clear, as it is obtained directly from the Dirichlet series defining the regularized
products

(
see (8)

)
.

Shintani and Mizuno’s examples cited above show that F in (5) is indeed not a
polynomial in the coefficients of the top-degree forms Pj,top. Our proof, based on [FR,
§3], sheds no light on the dependence of F on these coefficients and yields surprisingly
little about F . Rather than compute F explicitly, we show that it is a polynomial by
proving the vanishing of all sufficiently high-order partial derivatives.

A direct corollary of Theorem 1 is a generalization to higher-degree polynomials of
Shintani’s result on products of linear forms (3).

Corollary 2. Fix n polynomials Pj(x) ∈ C[x] in r variables as above. For real
yi ≥ 0 (1 ≤ i ≤ r), let F (y) = F (y1, . . . , yr) be defined by

eF (y) :=

∏̂
m∈Nr

∏n
j=1 Pj(y + m)∏n

j=1

∏̂
m∈NrPj(y + m)

.

Then F is a polynomial in y = (y1, . . . , yr) of degree at most r.

This follows since Pj(y + x) has the same top-degree form in x as Pj(x).
We can also treat the Hurwitz form of a regularized product [JL, p. 1].

Corollary 3. Fix n real polynomials Pj(x) in r variables, all satisfying Mahler’s
hypothesis and having non-negative coefficients. For real zj ≥ 0 (1 ≤ j ≤ n), let

eF (z) :=

∏̂
m∈Nr

∏n
j=1

(
zj + Pj(m)

)∏n
j=1

∏̂
m∈Nr

(
zj + Pj(m)

) .

Then F is a polynomial in z = (z1, . . . , zn) of degree at most r.

We will give in §2 a sharper bound on the degree of F (z). In particular, when
deg(Pj) > r (1 ≤ j ≤ n), we will show that F depends on the polynomials Pj , but
not on z.

In §2 we state and prove a slightly more general form of Theorem 1, where we allow
polynomial powers ϕ(m) and show that F in

eF :=

∏̂
m∈Nr

( ∏n
j=1 Pj(m)

)ϕ(m)∏n
j=1

∏̂
m∈Nr

(
Pj(m)ϕ(m)

)
also satisfies the conclusion of Theorem 1, with the bound r on the degree of the
polynomial replaced by r + deg(ϕ). In §3 we list some formal properties of F .



36 FRANCISCO DIAZ Y DIAZ AND EDUARDO FRIEDMAN

2. Proof of Theorem 1

We first describe Mahler’s results concerning the meromorphic continuation of
Dirichlet series of the form

(5) Z(s) = Z(s; log P,ϕ) :=
∑

m∈Nr

ϕ(m)
P (m)s

,

where ϕ is an arbitrary complex polynomial in r-variables and P satisfies Mahler’s
hypothesis (see §1). Since we have assumed that P (x) 6= 0 for all x = (x1, . . . , xr)
in the (real) first octant xi ≥ 0 (1 ≤ i ≤ r), a continuous branch of log P (x) can
be chosen in this simply connected region [Ma, §3]. To define Z(s) we fix such a
branch. Note that any two continuous branches differ by a continuous discrete-valued
function, and so must differ by a fixed multiple of 2πi.

Mahler showed [Ma, pp. 397–398, Satz II] that the series (5) converges absolutely
and uniformly in compact subsets of the right half-plane defined by

(6) Re(s) deg(P )− deg(ϕ) > r,

and that Z(s) has a meromorphic continuation to all of C, regular at s = 0. Mahler’s
proof also yields that Z(s) is analytic in the coefficients of P in a small enough
neighborhood (in coefficient-space) of P . The point here is that a branch of log P (x)
on the entire first octant can be chosen locally analytically in coefficient-space.

We shall need the following computation, readily proved by induction on k.

Lemma. Write the polynomial P in r variables x = (x1, . . . xr) as P (x) =
∑

I aIxI ,

where I = (I1, . . . , Ir) runs over distinct multi-indices, aI ∈ C and xI :=
∏r

i=1 xIi
i .

Let D = ∂k

∂a
I(1)∂a

I(2) ··· ∂a
I(k)

be a differential operator consisting of k successive partial
derivatives with respect to any sequence aI(1) , aI(2) , . . . , aI(k) of coefficients of P . Then

D
(
P (x)−s

)
= (−1)k

( k−1∏
p=0

(s + p)
)
x

Pk
p=1 I(p)

P (x)−s−k.

We now prove the following generalization of Theorem 1, which we state in terms
of Dirichlet series rather than regularized products.

Theorem 4. Let Pj(x) ∈ C[x] be n complex polynomials in r variables, all satisfying
Mahler’s hypothesis above, and let ϕ(x) ∈ C[x] be any polynomial in x. Define for
Re(s) � 0,

(7) fj(s) :=
∑

m∈Nr

ϕ(m)
Pj(m)s

(1 ≤ j ≤ n), f0(s) :=
∑

m∈Nr

ϕ(m)∏n
j=1 Pj(m)s

,

and, after analytically continuing the fj (0 ≤ j ≤ n),

(8) F := −f ′0(0) +
n∑

j=1

f ′j(0).

Then F is a polynomial of degree at most r + deg(ϕ) in the coefficients of the Pj of
non-maximal degree.

Note that F , and even each fj(s), depends linearly on ϕ, so we ignore this dependence
in the above theorem.
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Proof. We shall actually prove a more precise bound on the degree of F . Namely,

Claim. Given n non-negative integers `j < deg(Pj), consider F as a function of just

the aI(j) appearing in the Pj(x) (1 ≤ j ≤ n) as coefficients of terms aI(j)xI(j)
having

degree at most `j in x. Then, as a polynomial in these aI(j) (1 ≤ j ≤ n), the degree

of F does not exceed max
1≤j≤n

{⌊
r+deg(ϕ)

deg(Pj)−`j

⌋}
.

Here, btc is the integer such that btc ≤ t < btc+ 1.
To prove the Claim, let

D = D1D2 · · · Dn, Dj =
∂kj

∂aI(j,1)∂aI(j,2) · · · ∂a
I(j,kj)

,

be the composition of n commuting differential operators Dj , each involving only
coefficients aI(j,p) of Pj in degree at most `j . Our Claim amounts to showing that if
the order k =

∑n
j=1 kj of D satisfies

(9) k > max
1≤j≤n

{
r + deg(ϕ)

deg(Pj)− `j

}
,

then D(F ) = 0 identically. For the remainder of this proof we assume (9).
We first prove the formula for 1 ≤ j ≤ n,

(10)

∂

∂s

∣∣∣∣
s=0

D
(
fj(s)

)
=


(−1)kj (kj − 1)!

∑
m∈Nr

ϕ(m)m
Pkj

p=1 I(j,p)
Pj(m)−kj if D = Dj ;

0, otherwise,

where we shall presently see that the Dirichlet series on the right converges absolutely.
If D 6= Dj , so that D involves derivatives with respect to coefficients of some Pj′

(j 6= j′), then D
(
fj(s)

)
= 0 since fj depends only on Pj . In proving (10) we may

therefore assume D = Dj , so that kj = k > r+deg(ϕ)
deg(Pj)−`j

.
Take Re(s) � 0 and apply the Lemma to obtain

(11) Dj

(
fj(s)

)
=

(
(−1)kj

kj−1∏
p=0

(s + p)
) ∑

m∈Nr

ϕ(m)m
Pkj

p=1 I(j,p)
Pj(m)−s−kj .

To check where the above series converges, note that

(
kj + Re(s)

)
deg(Pj)−deg(ϕ)−

kj∑
p=1

|I(j,p)|

≥ −deg(ϕ)− `jkj +
(
kj + Re(s)

)
deg(Pj)(12)

= −deg(ϕ) + kj

(
deg(Pj)− `j

)
+ Re(s) deg(Pj),

since we have assumed that Dj involves only coefficients of terms xI of degree |I| at
most `j . By (6) and (12), the right-hand side of (11) converges and gives an analytic
function of s, provided

kj

(
deg(Pj)− `j

)
+ Re(s) deg(Pj) > r + deg(ϕ).
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In particular, since kj > r+deg(ϕ)
deg(Pj)−`j

, we find that right-hand side of (11) converges
absolutely in an open right half-plane containing s = 0. Thus, although (11) was
derived for Re(s) large enough, by analytic continuation it also holds at s = 0. We
may therefore differentiate both sides of (11) with respect to s and set s = 0 to obtain
(10).

To state the next formula it will be convenient to call D pure if D = Dj for some
j (1 ≤ j ≤ n). Otherwise we will call D mixed. We now prove

(13)
∂

∂s

∣∣∣∣
s=0

D
(
f0(s)

)
=

{
0, if D is mixed;
∂
∂s

∣∣
s=0

D
(
fj(s)

)
if D = Dj .

As before, the Lemma gives for Re(s) � 0,
(14)

D
(
f0(s)

)
= (−1)k

( n∏
j=1

kj−1∏
p=0

(s + p)
) ∑

m∈Nr

ϕ(m)m
Pn

j=1
Pkj

p=1 I(j,p)
n∏

j=1

Pj(m)−s−kj .

Note that here we have used our choice of branch of log
∏

j Pj .
For convergence of the Dirichlet series (14) we need

n∑
j=1

((
kj + Re(s)

)
deg(Pj)−

kj∑
p=1

|I(j,p)|
)

> r + deg(ϕ).

But |I(j,p)| ≤ `j , so for convergence it suffices to ensure that
n∑

j=1

kj

(
deg(Pj)− `j

)
+ Re(s)

n∑
j=1

deg(Pj) > r + deg(ϕ).

Setting s = 0 on the left-hand side above, we calculate
n∑

j=1

kj

(
deg(Pj)− `j

)
≥

n∑
j=1

kj min
1≤j≤n

{
deg(Pj)− `j

}
= k min

1≤j≤n

{
deg(Pj)− `j

}
> r + deg(ϕ),

by (9). The series in (14) thus converges in an open neighborhood of s = 0, so (14)
holds there.

We can now conclude the proof of (13). If D is mixed, then
∏n

j=1

∏kj−1
p=0 (s + p) on

the right-hand side of (14) includes a factor of s2. We then have the trivial vanishing
∂
∂s

∣∣
s=0

D
(
f0(s)

)
= 0. If D = Dj is pure, we have only a single factor of s. From (14)

we then find, using D = Dj and k = kj ,

∂

∂s

∣∣∣∣
s=0

D
(
f0(s)

)
= (−1)kj (kj−1)!

∑
m∈Nr

ϕ(m)m
Pkj

p=1 I(j,p)
Pj(m)−kj =

∂

∂s

∣∣∣∣
s=0

D
(
fj(s)

)
,

by (10).
Having now established (10) and (13), we deduce

D(F ) = D

(
− f ′0(s) +

n∑
j=1

f ′j(s)
)

= 0,
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as claimed after (9). �

We can sharpen Corollary 3 by taking all `j = 0 in the Claim above.

Corollary 5. Fix n real polynomials Pj(x) in r variables, all satisfying Mahler’s
hypothesis and having non-negative coefficients. For Re(zj) > 0 (1 ≤ j ≤ n) and
Re(s) � 0, define

fj(s) :=
∑

m∈Nr

ϕ(m)
(
zj + Pj(m)

)−s
, f0(s) :=

∑
m∈Nr

ϕ(m)
n∏

j=1

(
zj + Pj(m)

)−s
,

and,

F := −f ′0(0) +
n∑

j=1

f ′j(0).

Then F is a polynomial in the zj of degree at most max
1≤j≤n

{⌊
r+deg(ϕ)
deg(Pj)

⌋}
.

In particular, F is independent of z if ϕ is constant and if all the Pj are of degree at
least r + 1.

We conclude this section with some remarks on Theorem 4.

1. Examination of the proof shows that the conclusion of Theorem 4 still holds if in
the definition of fj(s) (0 ≤ j ≤ n) the sum

∑
m∈Nr ϕ(m)Pj(m)−s is replaced by the

integral
∫
x∈Rr

+
ϕ(x)Pj(x)−s dx. Here P0(x) :=

∏n
j=1 Pj(x). The only additional point

needed in the proof is Mahler’s result [Ma, p. 392, Satz I] showing the convergence
and meromorphic continuation of these integrals (still assuming Mahler’s hypothesis
for each Pj , of course).

2. We have assumed that the polynomials Pj satisfy Mahler’s hypothesis, but the
formal nature of our proof shows that what matters is that the Dirichlet series fj(s)
is defined, converges absolutely for Re(s) deg(Pj) − deg(ϕ) > r, and analytically
extends to a function regular at s = 0. As we mentioned in §1, other authors have
found alternative hypotheses that guarantee this.

Even the polynomial nature of the Pj or ϕ is not essential, as we could consider
series of the form

fj(s) =
∑
m

ϕ(m)Pj(m,aj)−s,

where Pj depends on some parameter aj ranging over some open subset of some
Euclidean space, and m runs over a countable set. Aside from the obviously necessary
convergence for Re(s) � 0 and the existence of a meromorphic continuation in s of
fj(s) (0 ≤ j ≤ n) , what matters in the proof of Theorem 4 is that all sufficiently high-
order derivatives DjPj(m,aj)−s (taken with respect to aj) decrease quickly enough
with m for

∑
m ϕ(m)DjPj(m,aj)−s

∣∣
s=0

to converge.

3. Our proof yields that the values fj(0), and more generally the values fj(−N) for
each fixed non-negative integer N , are also polynomial functions of the coefficients
of Pj of non-maximal degree (1 ≤ j ≤ n). To see this it suffices to take kj >
N deg(Pj)+r+deg ϕ

deg(Pj)−`j
in (11) and set s = −N . Thus, for fixed j, `j < deg(Pj) and

N , considered as a function of just the aI(j) appearing in Pj(x) as coefficients of
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terms aI(j)xI(j)
having degree at most `j , fj(−N) is a polynomial of degree not

exceeding
{⌊

N deg(Pj)+r+deg(ϕ)
deg(Pj)−`j

⌋}
. For a detailed study of fj(−N) for certain classes

of polynomials see [Ca1] [Ca2].

4. The discrepancy F in

eF :=

∏̂
m

∏n
j=1 a

(j)
m∏n

j=1

∏̂
ma

(j)
m

.

has the curious property of being unaltered by the omission of any finite number of
indices m from all the regularized products.

3. Properties of F

In this brief section we list some formal properties of F in Theorem 4. To make
these properties clearer we will write Fn(P1, . . . , Pn;ϕ) for F . One should bear in
mind that F also depends on the branches of log Pj used.

Proposition 6. F has the following properties.

(a) Symmetry: Fn(P1, . . . , Pn;ϕ) is independent of the order of the Pj.
(b) Vanishing on the diagonal: Fn(P, P, . . . , P ;ϕ) = 0.
(c) Reduction of n: For n ≥ 3,

Fn(P1, P2, . . . , Pn;ϕ) = Fn−1(P1 · P2, . . . , Pn;ϕ) + F2(P1, P2;ϕ).

(d) Reduction to two polynomials: For n ≥ 2,

Fn(P1, P2, . . . , Pn;ϕ) =
n−1∑
j=1

F2

( j∏
k=1

Pk, Pj+1;ϕ
)
.

Proof. Property (a) is immediate from the definition of F given in (8). If Pj = P for
1 ≤ j ≤ n, then f0(s) = fj(ns). Property (b) then follows. To prove (c), observe that
for Re(s) � 0,

n∑
j=1

∑
m

ϕ(m)Pj(m)−s −
∑
m

ϕ(m)
n∏

j=1

Pj(m)−s

(13)

=
∑
m

ϕ(m)
(
P1(m)P2(m)

)−s +
n∑

j=3

∑
m

ϕ(m)Pj(m)−s −
∑
m

ϕ(m)
n∏

j=1

Pj(m)−s

+
2∑

j=1

∑
m

ϕ(m)Pj(m)−s −
∑
m

ϕ(m)
(
P1(m)P2(m)

)−s
,

where we have used our convention that logarithm branches are always chosen for
products so that

(
P1(x)P2(x) · · ·Pk(x)

)−s = P1(x)−sP2(x)−s · · ·Pk(x)−s for x in
the first octant. Property (c) follows from (13) by analytic continuation to s = 0.
Property (d) follows from (c) by induction on n. �
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Departamento de Matemática, Universidad de Chile, Casilla 653, Santiago 1, Chile

E-mail address: friedman@uchile.cl


