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ON STRATIFIED MUKAI FLOPS

Pierre-Emmanuel Chaput and Baohua Fu

1. Introduction

In recent studies (see [14], [6]) of birational geometry of symplectic resolutions of
nilpotent orbit closures, three types of flops (which will be called stratified Mukai
flops of type A,D,E6) are shown to be fundamental, in the sense that others can be
decomposed into a sequence of these flops. Stratified Mukai flops of type A are given
by cotangent bundles of dual Grassmanians T ∗G(k, V ) 99K T ∗G(k, V ∗), which has
been previously studied by Markman([12]). The type D stratified Mukai flop is given
by the cotangent bundles of the two connected components of the orthogonal Grass-
mannian Giso(k, 2k), where k is an odd integer. There are two stratified Mukai flops
of type E6, corresponding to the pairs of roots (α1, α6) (type E6,I) and (α3, α5)(type
E6,II).

For a stratified Mukai flop µ : T ∗(G/P ) 99K T ∗(G/Q), an important problem is
to construct explicitly a G-equivariant equivalence between the derived categories of
T ∗(G/P ) and T ∗(G/Q) which is compatible with the flop µ. It is tempting to believe
that a Fourier-Mukai transform with kernel induced by a suitable resolution (possibly
with several irreducible components) of this flop could yield such an equivalence.

In [2] and [6], we showed that the graph of the stratified Mukai flop is in fact
smooth, thus it gives a resolution of the flop. Although very natural, this resolution
does not lead to easy computations in Chow groups nor in the derived categories.
Our first result (Theorem 1, which works also for type D Mukai flops) of this note is
to resolve the stratified Mukai flop of type E6,I by blow-ups along smooth centers. A
similar resolution has already been constructed by Markman [12] for stratified Mukai
flops of type A. As we will see, our resolution is constructed in a very similar way,
blowing up successively the different G-orbits, from the smallest to the biggest.

Like the usual Mukai flops, this resolution does not induce an isomorphism between
the Chow groups (cf. Example 1, Example 2). To find out a natural isomorphism
between the Chow groups, we will first construct a deformation of this flop, then we
will show that the deformed flop can be resolved in a similar way. Using a beautiful
idea of [11], we prove that this leads to a natural isomorphism between Chow groups
and their Chow motifs. This shows that the stratified Mukai flop of type E6,I is very
similar to the usual Mukai flop. Unfortunately, we do not know if this functor also
gives an equivalence between derived categories.
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2. The wonderful resolution

Let G be a simple group of type An, D2n+1 or E6. Let (P,Q) be the maximal
parabolic subgroups corresponding respectively to the roots (αi, αn+1−i) with 2i <
n+ 1, (α2n, α2n+1) and (α1, α6).

Set XP = G/P and TP = T ∗(G/P ). We denote by πP : TP → XP the natural
projection. We know that the order on the set of G-orbits in TP given by O ≤ O′

if O ⊂ O′ is a total order, so we choose a labelling T i
P , 0 ≤ i ≤ r of the G-orbits in

TP such that T i
P ⊂ T j

P if and only if i ≤ j. Note that r = i in type An with P,Q
corresponding to αi, αn+1−i, and that r equals n in type D2n+1 and 2 in type E6.
Similar notations will be used for the parabolic subgroup Q. It is known that there
exists a birational map µ : TP 99K TQ, which will be called a stratified Mukai flop.
Note that µ is an isomorphism between the open orbits T r

P → T r
Q.

We consider successive blow-ups defined recursively as follows. Let Bl0(TP ) := TP

and Bl0(T i
P ) = T i

P . For 1 ≤ k ≤ r an integer, we let Blk(TP ) be the blow-up
of Blk−1(TP ) along Blk−1(T k−1

P ), Blk(T k−1
P ) the exceptional divisor of this blow-up

and Blk(T i
P ) (i 6= k − 1) the proper transform of Blk−1(T i

P ) under this blow-up.
We set T̃P := Blr(TP ) and T̃ i

P := Blr(T i
P ). Note that the natural blow down map

restricts to an isomorphism over the open G-orbit. We also consider the analogous
construction for Q.

Theorem 1. Under the above notations, we have
(i) The varieties Blk(T k

P ), Blk(TP ) are smooth for any k. The divisors T̃ i
P (i =

0, · · · , r − 1) are smooth irreducible with normal crossing inside T̃P and Pic(T̃P ) '
Pic(G/P )⊕r−1

i=0 Z[T̃ i
P ];

(ii) Two points x, y ∈ T̃P belong to the same G-orbit if and only if {i | x ∈ T̃ i
P } =

{j | y ∈ T̃ j
P };

(iii) There is a unique G-equivariant isomorphism µ̃ : T̃P ' T̃Q such that µ̃ iden-
tifies with µ over the open G-orbit.

Remark 1. 1). Claims (i) and (ii) are some properties of wonderful compactifications
of symmetric spaces ([4]). This is why we called this resolution wonderful.

2). We do not know if a similar result holds for stratified Mukai flop of type E6,II .
In this case, the inclusion relationship of orbit closures in T ∗XP is no longer linear.

We will need the following lemma in the proof of the theorem.

Lemma 1. Let Y be a variety and assume there are morphisms tP : Y → TP , xQ :
Y → XQ such that t−1

P (T r
P ) is dense in Y and ∀y ∈ t−1

P (T r
P ), πQ ◦ µ ◦ tP (y) = xQ(y).

Then there is a unique morphism tQ : Y → TQ which lifts xQ via πQ and such that
∀y ∈ t−1

P (T r
P ), µ ◦ tP (y) = tQ(y).

Proof : The uniqueness of tQ is clear. Now we prove the existence following [2]. A
pair (p, q) ∈ XP ×XQ is called incident if Stab(p) ∩ Stab(q) is a parabolic subgroup
of G. For p ∈ XP , let Cp ⊂ XQ denote the set of points incident to p, and define
similarly Cq, for q ∈ XQ. For an incident pair (p, q), recall that there is a well-
defined linear isomorphism µ(p, q) : TpXP /TpCq → TqXQ/TqCp [2, theorem 4.1].
Let (TqCp)

⊥ be the subspace of T ∗
q XQ consisting of co-vectors vanishing identically
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on TqCp. Similarly, we get (TpCq)
⊥. The transposed map tµ(p, q) : (TqCp)

⊥ →
(TpCq)

⊥ is then again an isomorphism. Furthermore by [2, theorem 4.1], for any
t ∈ (TpCq)

⊥ ∩ T r
P , we have µ(t) = (q, tµ(p, q)−1(t)).

Note that for any y ∈ Y , the pair p := πP ◦ tP (y) and q := xQ(y) are incident. In
fact, this is true if y ∈ t−1

P (T r
P )(see for example [2, theorem 3.3]). Now the density

of t−1
P (T r

P ) implies that this holds for all y ∈ Y . We claim that for any y ∈ Y ,
tP (y) ∈ (TpCq)

⊥
. In fact, if y ∈ t−1

P (T r
P ), then tP (y) ∈ T ∗

pXP ∩ T ∗
q XQ = p⊥ ∩ q⊥ '

(TpCq)⊥, where p and q are the Lie subalgebras of Stab(p) and Stab(q). Again the
claim follows from the density of t−1

P (T r
P ). Therefore, to conclude the proof of the

lemma, it is enough to set xP (y) := πP ◦ tP (y) and define

tQ(y) := (xQ(y), tµ(xP (y), xQ(y))−1(tP (y))).

�

Proof of the theorem : The uniqueness of µ̃ follows from the fact that T̃ r
P is dense

in T̃P , so let us prove the existence of µ̃. Our proof is in three steps : first we give
a description of T̃P in terms of complete collineations; from this description we then
deduce the existence of a morphism T̃P → T̃Q. Finally, we show that this morphism
and the analogous morphism T̃Q → T̃P are inverses one to the other. This method
is very similar to that of Markman ([12]), where he proved the theorem for stratified
Mukai flops of type A. We will give a complete proof in the case of E6, and explain
how this adapts to type D.

So consider first the case G = E6. Then a Levi factor L of P is a semi-direct
product of C∗ and Spin10, and if x denotes the point in G/P with stabilizer P , the
representation T ∗

xXP of L is a (16-dimensional) spin representation [5, theorem 2.10].
We will denote this L-representation by S+.

Let W be the natural 10-dimensional L-representation and Q ⊂ PW the corre-
sponding smooth quadric. The variety PS+ has two L-orbits and the closed one will
be denoted by X+, which is naturally isomorphic to one component of the Grass-
manian of maximal isotropic vector subspaces in W . Let X̂+ ⊂ S+ be the cone of
X+.

Recall that there is an L-equivariant quadratic map ν2 : S+ → W with ν−1
2 (0) =

X̂+ and that the image is contained in the affine cone of Q. This gives a rational map
ν2 : PS+ 99K Q. In fact, let W = N ⊕ P be an orthogonal decomposition of W into
isotropic subspaces; by [3, III, p.134], S+ is defined as the subalgebra CN of C, the
Clifford algebra of W , generated by N . Let f ∈ CP be the product of basis elements
of P and α : C → C the “main antiautomorphism” [3, II, p.102]. By [3, II 1.6, p.105],
there is a natural identification of C with ∧W . For u ∈ C, let β(u) denote the image
under this identification of ufα(u). Then ν2 is defined as the degree-1 coordinate of
the restriction of β to S+. By the symmetry properties of β [3, p.155], β(u) allways
belong to W⊕∧9W ⊂ ∧W , thus the fact that ν−1

2 (0) equals X̂+, that is the set of pure
spinors, follows from [3, III 3.2, p.149 and III 4.3, p.156]. Thanks to [2, proposition
1.4 and its proof], one has an easy formula for ν2 in terms of complexified octonions :
one identifies S+ with OC ⊕OC and W with C⊕OC ⊕ C, and one has the formula

ν2(z1, z2) = (z1z1, z1z2, z2z2).



1058 PIERRE-EMMANUEL CHAPUT AND BAOHUA FU

(therefore ν2 is a kind of octonionic Veronese morphism of degree 2).

Let us denote by CS+ the variety of “complete 10-dimensional spinors” defined as
the graph closure of the rational map ν2. This name comes from the casesA,D. By the
following lemma 3, CS+ → PS+ is isomorphic to the blow-up φ : BlX+(PS+)→ PS+

of PS+ along X+.

Let Bl1(S+) → S+ be the blow-up of S+ along the origin, then the exceptional
fiber is PS+ and Bl1(S+) is the total space of the tautological line bundle O(−1)
over PS+. The strict transform of X̂+ is then the total space of the line bundle
O(−1)|X+ , which is smooth. Claims (i) and (ii) of the theorem follow immediately.
Let Bl2(S+) be the blow-up of Bl1(S+) along the strict transform of X̂+. Then the
above discussions give that Bl2(S+) is just the total space of the line bundle φ∗O(−1)
over BlX+(S+) ' CS+. The second graph projection gives a morphism CS+ → Q,
thus a morphism φ∗O(−1) → Q. This is the local model, and the globalization can
be obtained as follows.

By the Bruhat decomposition theorem, all homogeneous spaces (such as XP ) are
covered by affine spaces, and thus are locally isomorphic with their tangent spaces.
In our case, we thus have an isomorphism UP ' S∗+ (where UP ⊂ XP is a suitable
open subset). We deduce that that the restriction of T ∗XP to UP is isomorphic with
S∗+ × S+. Moreover, this isomorphism is L-equivariant.

By [9], there are three L-orbits in S+, which give via this isomorphism the inter-
section of the three G-orbits in T ∗XP with T ∗UP . Therefore, above UP , the closure
of the G-orbits are trivial fibrations, and to understand the result of the successive
blow-ups, it is enough to understand this in one fiber.

Recall from [2] that XP has a minimal equivariant projective embedding XP ⊂
PV , with dimV = 27, and that XQ naturally embeds in PV ∗. In terms of this
embedding, W is a linear subspace of V ∗ (in fact, it is the orthogonal of the 17-
dimensional affine tangent space T̂xXP ⊂ V ), and Q = XQ ∩ PW ⊂ PW . Recall
that L is a Levi subgroup of P , so we can regard W as a P -representation. Now
consider the vector bundle G ×P W over XP (it is in fact the conormal bundle of
XP in PV ) and the relative quadric over XP defined by G ×P Q. The previous
construction gives a map T̃P → G ×P Q over XP . We have a natural inclusion
G×P Q→ G×P (G/Q) ' G/P ×G/Q. The second projection of the latter yields our
desired morphism T̃P → XQ. Its restriction to each fiber, considered as a rational
map, is an L-equivariant rational map from a projectivised spinor representation of
L to the 8-dimensional projective smooth quadric; since by [2, proposition 1.5], there
is only one such equivariant rational map, it coincides with πQ ◦ µ.

By lemma 1 and [2, theorem 4.1], this morphism lifts to a morphism T̃P → TQ.
Assume that it lifts further to a G-equivariant morphism T̃P → Blk−1(TQ) for some
k ∈ {1, 2}, then one checks that the preimage of Blk−1(T k−1

Q ) is a divisor, which
implies that this morphism lifts to a G-equivariant morphism T̃P → Blk(TQ). We
thus get a morphism µ̃ : T̃P → T̃Q. We have already checked that the restriction of µ̃
to T̃ r

P ' T r
P to T̃ r

Q ' T r
Q identifies with the flop µ.
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We now consider the analogous morphism µ̃Q : T̃Q → T̃P . Since it also coincides
with the Mukai flop on the open orbit, it follows that µ̃Q ◦ µ̃ : T̃P → T̃P is the identity
on the open orbit; therefore it is the identity. So the theorem is proved in type E6.

We finally explain how this proof adapts to the type D2n+1. Assume that G is
of type D2n+1. Let C4n+2 be equipped with a non-degenerate quadratic form. Let
α ∈ G/P and Lα the corresponding maximal isotropic subspace. As before, the fiber
T̃α of T̃P → XP over α is the result of the successive blowups of Tα(G/P ) ' ∧2Lα

along the strict transforms of the P -orbits in Tα(G/P ). Recall that the space of
complete skew-symmetric forms in L∗α is the graph of the rational morphism

P(∧2Lα) 99K P(∧2Lα)× P(∧4Lα)× · · · × P(∧2nLα)
[ω] 7→ ([ω], [ω ∧ ω], . . . , [ω∧n])

By the following proposition 1, T̃α identifies with the total space of a line bundle over
the space of complete skew-symmetric forms in L∗α.

Now, a point in T̃α therefore defines an element (x1, . . . , xn) ∈ P(∧2Lα)×P(∧2Lα)×
· · · × P(∧2nLα) in the set of complete skew-symmetric forms in L∗α. The last element
xn belongs to P(∧2nLα) = PL∗α; thus it defines a hyperplane in Lα. Since there is a
unique maximal isotropic subspace parameterized by an element in XQ and meeting
Lα along this hyperplane, there is a natural morphism T̃α → XQ. Then we can apply
Lemma 1 and the previous arguments to conclude. �

We now turn to the proof of the lemma used in the previous proof. Recall that we
defined

CS+ := {([s], [ν2(s)]) | s ∈ S+ − X̂+} ⊂ PS+ × Q,

where ν2 : S+ →W is a Spin10-equivariant quadratic map.
Recall that there exists a unique symmetric bilinear map ν̃2 : S+ × S+ → W such

that ν̃2(s, s) = 2ν2(s). Recall that W is the natural 10-dimensional reprenstation of
Spin10; it is therefore equipped with a scalar product that we denote by 〈·, ·〉.

Lemma 2. The variety CS+ coincides with the variety

C := {([s], [x]) ∈ PS+ × Q|∀t ∈ S+, 〈ν̃2(s, t), x〉 = 0}.

Proof : For s ∈ S+ − X̂+, let x = ν2(s) ∈ Q̂. For any t ∈ S+, we have ν2(s+ tε) ∈ Q̂

for all ε. Thus d
dε |ε=0ν2(s+ tε) = ν̃2(s, t) ∈ T̂xQ = x⊥, thus CS+ ⊂ C. On the other

hand, the projection morphism C → Q is a locally trivial bundle with projective
spaces as fibers, so C is irreducible. Note that if ([s], [x]) ∈ C with ν2(s) 6= 0, then
[ν2(s)] = [x] because Im(ν̃2(s, ·)) = x⊥. This shows that over PS+ − X+, the two
irreducible projective varieties CS+ and C coincide. As CS+ ⊂ C, we have the
equality. �

Lemma 3. CS+ ' BlX+(PS+).

Proof : By lemma 2, CS+ is the total space of a locally trivial fibration with projec-
tive spaces as fibers, thus CS+ is a smooth variety. Moreover, the fiber over a point
[s] ∈ X+ of the graph projection CS+ → PS+ is then isomorphic to PIm(ν̃2(s, .)) ' P4.
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From this, we see that the preimage of X+ in CS+ is a divisor. By the universal prop-
erty of blow-ups, it follows that there is a morphism f : CS+ → BlX+(PS+). Note
that the kernel of ν̃2(s, .) is the affine tangent space T̂[s]X+, and f restricts to an
isomorphism between PIm(ν̃2(s, .)) and P(S+/T̂[s]X+). Therefore, f is a bijective bi-
rational morphism. By Zariski’s main theorem, it is an isomorphism. �

We now turn to the case of complete skew-forms. Let n be an integer, and let V
be a vector space of dimension 2n or 2n+ 1.

Definition 1.

• The variety of complete skew-forms on V is the closure of the graph (denoted
by P ∧2 V ∗) of the rational map

ψ : P(∧2V ∗) 99K P(∧4V ∗)× · · · × P(∧2nV ∗)
[ω] 7→ ([ω ∧ ω], . . . , [ω∧n]).

• We denote by Bl(P∧2V ∗) the variety obtained by blowing up successively the
strict transforms of the different SL(V )-orbits in P ∧2 V ∗, from the smallest
to the biggest.

Proposition 1. There is an SL(V )-equivariant isomorphism P ∧2 V ∗ ' Bl(P∧2V ∗).

Proof : This result on such a classical subject should be known to specialists. We
include a short proof here, taking advantage of the recursive nature of complete skew
forms, only because we were not able to find it in the literature. In [15, theorem 11.1],
a similar result is proved, but it is not precisely what we need.

We first show by induction that P ∧2 V ∗ and Bl(P ∧2 V ∗) are smooth, and that
the pre-image of each orbit in P∧2 V ∗ is an irreducible divisor. We choose a subspace
L ⊂ V of dimension 2. Let U denote the open subset of P∧2 V ∗ of elements [ω′] such
that ω′|L 6= 0. Given [ω′] ∈ U , let S[ω′] be the orthogonal of L in V with respect to

ω′, which defines a morphism p : U → G(dimV − 2, V ). Let q : P ∧2 V ∗ → P ∧2 V ∗

be the natural projection and g : q−1(U) → G(dimV − 2, V ) the composition. Fix
an element S[ω′] ∈ G(dimV − 2, V ), then V = L ⊕ S[ω′]. By definition, g−1(S[ω′]) =
{([ω], · · · , [ω∧n])|ω ∈ ∧2V ∗, ω(L, S[ω′]) = 0}.

We fix a non-zero element λ ∈ ∧2L∗. Any element [ω] such that ω(L, S[ω′]) = 0 can
be uniquely written as the class of λ+ω0, with ω0 ∈ ∧2S∗[ω′]. Note that (λ+ω0)∧i =
ω0

∧i+iλ∧ω0
∧(i−1). From this one can deduce that g−1(S[ω′]) is isomorphic to the total

space of a line bundle L over {([ω0], · · · , [ω∧n−1
0 ])|ω0 ∈ ∧2S∗[ω′]}, namely the pull-back

of the tautological line bundle on P ∧2 S∗[ω′]. Thus g : q−1(U) → G(dimV − 2, V ) is
a fibration with fiber L. Thus the claim follows from induction. Similar arguments
prove the claim for Bl(P ∧2 V ∗).

We have a surjective morphism f : P ∧2 V ∗ → Bl(P∧2V ∗) by the universal property
of blow-ups. By Zariski’s main theorem, f has connected fibers, thus every exceptional
divisor of the morphism P ∧2 V ∗ → P∧2 V ∗ is mapped birationally to an exceptional
divisor of Bl(P ∧2 V ∗) → P ∧2 V ∗, which gives that Exc(f) has codimension ≥ 2 if
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non-empty. As f is a birational map between two smooth varieties, thus Exc(f) is
empty and f is an isomorphism. �

We will now study in more detail the case of G = E6, in particular, we will give
another more geometric proof of our theorem in this case. Let Z denote the graph
closure of the flop TP 99K TQ and R = P ∩ Q the standard parabolic subgroup
corresponding to the roots α1, α6. We denote by u(P ), u(Q) the nilradical of the Lie
algebras of P and Q respectively. Let n := u(P ) ∩ u(Q). Then n is an 8-dimensional
R-representation and it is shown in [6, Theorem 6.1] that the graph closure Z is
isomorphic to G×R n. Furthermore the first graph projection Z → TP is isomorphic
to the composition of natural maps G ×R n ' G ×P (P ×R n) → G ×P (P · n). In
particular, P · n = u(P ) is naturally identified to S+.

Lemma 4. The natural map η : P×RPn→ PS+ is the blow-up φ : BlX+(PS+)→ PS+

of PS+ along X+. The natural map G ×R Pn → G ×P P(u(P )) is the blow-up of
G×P P(u(P )) along the unique G-closed orbit, say OP .

Proof : First we study the R-representation n. Let L be a Levi factor of R. As one
can see on the Dynkin diagram, L contains Spin8, so let M ' Spin8 be a subgroup of
L. We consider an element x in the root space corresponding to the highest root of e6.
With the notations of [1], this highest root is α̃ = α1 +2α3 +3α4 +2α5 +α6 +2α2. If
hαi is the element of the Cartan subalgebra corresponding to the simple root αi, it is
therefore easy to compute that α̃(hαi) = 0, 0, 0, 1 for i = 3, 4, 5, 2. It therefore follows
that x, considered as an element of the M -representation n, has positive weight, and
is not a sum of two positive weights. Therefore, its weight is a fundamental weight of
M ' Spin8, and since dim n = 8, we deduce that n is either the natural or a spinor
representation of M ' Spin8. It is thus a consequence of the triality principle which
exchanges these three representations that there are three R-orbits in n, of dimensions
0, 7 and 8 respectively. This implies that in Pn there are only two R-orbits.

Let O be the closed P -orbit in P ×R Pn, which is of codimension 1. The map η
contracts O to X+, and it maps the open P -orbit isomorphically to the open P -orbit
in PS+. By the universal property of blow-ups, we have a morphism ψ : P ×R Pn→
BlX+(PS+), which induces a surjective (thus generically finite) map ψ1 : O → Exc(φ).
By Zariski’s main theorem, the fibers of ψ (thus also ψ1) are connected, so ψ1 is
generically of degree one, which implies that codim Exc(ψ) ≥ 2 if Exc(ψ) 6= ∅. On
the other hand, ψ is a birational morphism between two smooth varieties, so Exc(ψ)
is either empty or of pure codimension 1. Thus Exc(ψ) = ∅ and ψ is an isomorphism.
The second claim follows immediately.

�

Lemma 5. The birational map G ×P P(u(P )) 99K G ×Q P(u(Q)) is a family of P5-
Mukai flops with center OP .

Proof : Note that OP has two natural fibrations: OP → G/P and f : OP → POmin =
G/P2, where P2 is the maximal parabolic associated to the root α2. Since moreover
OP is closed, this shows that OP is the incidence variety G/(P ∩ P2). Thus f is a
locally trivial P2/(P ∩P2) ' P5-bundle. Let ÕP be its pre-image in G×P (u(P )− 0),
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then f̃ : ÕP → Omin is again a P5-bundle, thus the normal bundle of ÕP is isomorphic
to Ω ef (see for example [8], section 3). Now it follows that the normal bundle of OP

in G×P P(u(P )) is isomorphic to Ωf . By Lemma 4, the blowing-up of G×P P(u(P ))
along OP gives G×R Pn, while the latter is also the blowing-up of G×Q P(u(Q)) along
OQ, concluding the proof. �

We now give a more geometric proof of theorem 1 in the case E6,I :

Theorem 2. Consider the stratified Mukai flop of type E6,I , µ : TP 99K TQ. Let
Bl1(TP ) → TP (resp. Bl1(TQ) → TQ) be the blow-up of TP (resp. TQ) along the
zero section and Bl1(T

1

P ) (resp. Bl1(T
1

Q)) the strict transform of the closure of ÕP

(resp. ÕQ). Then the birational map Bl1(TP ) 99K Bl1(TQ) is a family of P5-Mukai
flops with center Bl1(T

1

P ). In particular, there exists a G-equivariant isomorphism
µ̃ : T̃P ' T̃Q which identifies with µ over the open G-orbits.

Proof : Let O be the nilpotent orbit closure which is resolved by TP and TQ. Let
Bl1(O) be the blow-up of O along the origin. By the universal property of blow-
ups, we obtain morphisms Bl1(TP )→ Bl1(O)← Bl1(TQ). To simplify the notations,
we let YP = G×P P(u(P )) and YQ = G×Q P(u(Q)). Then Bl1(TP ) (resp. Bl1(TQ),
Bl1(O)) is just the total space of the tautological line bundle OYP

(−1) (resp. OYQ
(−1),

OPO(−1)). The birational map Bl1(TP ) 99K Bl1(TQ) is just the pull-back via the
morphism OPO(−1) → PO of the birational map YP 99K YQ. Now the claim follows
from the precedent lemma.

�

Now we will relate the variety T̃P to the graph closure Z of the flop µ. Let S ' G/R
denote the closed G-orbit in Z. By the precedent theorem, T̃P gives a resolution of
the flop µ : TP 99K TQ, thus there exists a birational morphism γ : T̃P → Z.

Corollary 1. The morphism γ : T̃P → Z is isomorphic to the blow-up of Z along S.

Proof : Note that Z is smooth, so Exc(γ) is of pure codimension 1. The complemen-
tary of the open G-orbit in T̃P consists of two irreducible divisors: T̃ 0

P and T̃ 1
P . By

Lemma 4, γ maps T̃ 1
P − T̃ 0

P isomorphically to its image, which is the blow-up of the
27-dimensional G-orbit in TP . This implies that supp(Exc(γ)) = T̃ 0

P . Now a similar
argument as that in the proof of Lemma 4 proves the corollary.

�

To summarise, the geometric picture of the flop µ : TP 99K TQ is as follows: the
27-dimensional G-orbit is a P5-bundle over the 22-dimensional orbit in the nilpotent
orbit closure O. The flop µ when restricted to the complementary of the zero section
in TP is just a standard Mukai flop of P5-bundles. This restricted flop is resolved by
just one blow-up, which is given by G ×R (n − {0}). Thus µ can be regarded as a
degeneration of a 22-dimensional family of P5-Mukai flops. Note that such a picture
is very similar to stratified Mukai flops: T ∗Gr(2, V ) 99K T ∗Gr(2, V ∗).
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3. Deformations of stratified Mukai flops

In this section, we will consider only the E6,I case, which share many analogous
properties with the standard Muaki flop (see for example [2]). As before, let P :=
P1 and P6 be the maximal parabolic subgroups of E6. They have conjugate Levi
subgroups, so we can choose Q in the conjugacy class of P6 such that P and Q
have the same Levi subgroup L. Note that the center c of the Lie algebra of L is
one-dimensional.

Lemma 6. c⊕ u(P ) is stable under P , and the stabilizer of the line c, considered as
an element in Pg, is L.

Proof : Let U denote the unipotent radical of P . According to the Levi decomposi-
tion theorem, we have P = LU . Therefore, if p = lu, and x ∈ c, we have p.x ≡ l.x ≡ x
modulo u(P ), proving the first point.

For the second point, denote z(c) the set of elements z ∈ g such that ∀c ∈ c, [z, c] = 0
and Stab(c) = {g ∈ G : g.c ⊂ c}. Note that l ⊂ z(c), and for reason of equal dimension,
we have the equality . Therefore, Stab(c) ⊂ Stab(z(c)) = Stab(l). Now let p and q
be the two parabolic subalgebras containing l, and let P,Q be the corresponding
parabolic subgroups. We have Stab(l) ⊂ Stab(p) ∩ Stab(q) = P ∩Q = L. �

Let TP = T ∗(G/P ) and TQ = T ∗(G/Q) be the cotangent spaces. We have the one-
dimensional smooth flat deformations of these two varieties: EP := G×P (c + u(P ))
and EQ := G×Q (c + u(Q)).

Lemma 7. There exists a G-equivariant birational map ψ : EP 99K EQ which deforms
the Mukai flop µ : TP 99K TQ to isomorphisms outside the zero fibers.

Proof : Let z ∈ c be a non-zero element. By the previous lemma, its stabilizer in G
is L itself. Let U be the unipotent part of P , then P · z = U · z. Note that U · z is
closed and has z + u(P ) as the tangent space at z, which gives z + u(P ) = P · z, thus
G · (z + u(P )) = G · z and N := G · (c + u(P )) = G · (c + u(Q)).

We have a natural G-equivariant projective morphism eP : EP → N. Lemma 6
implies that eP is an isomorphism outside the singular locus of O := G·u(P ) = G·u(Q),
so eP is a small resolution. In a similar way, we have a small resolution eQ : EQ → N.
Now the claim follows. �

Our next task is to resolve this birational map. Recall we have a stratification
T 0

P ⊂ T 1
P ⊂ TP . We will regard these varieties as subvarieties in EP . Let Bl1(EP ) be

the blow-up of EP along T 0
P and ẼP the blow-up of Bl1(EP ) along the strict transform

of T 1
P . Similarly we can get ẼQ. The next theorem is analogous to Theorem 1.

Theorem 3. There exists a unique G-equivariant isomorphism ẼP ' ẼQ.

Proof : Let O1 be the 22-dimensional nilpotent orbit in O. The pre-image of O1

under the symplectic resolution ΠP : TP → O is a P5-bundle, i.e. Π−1
P (O1) = P(F )

for some vector bundle φ : F → O1 of rank 6. By our discussions in the precedent
section, the variety Π−1

Q (O1) is isomorphic to P(F ∗).
Let v ∈ H2(T ∗G/P ) ' H2(G/P ) be the Kodaira-Spencer class of the deformation

EP → c. Note that v 6= 0 since the deformation is non-trivial. The Picard group of
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G/P has rank one, thus either v or −v is πP -ample. In both cases, the restriction of
v to a fiber of φ is non-trivial. By the proof of [8, Lemma 3.6], the normal bundle
NΠ−1

P (O1)|TP
is isomorphic to φ∗(F ∗) ⊗ Oφ(−1). Let us denote by pP : Bl1(PEP ) →

PEP the blow-up of PEP along PT 1
P . Then we have an isomorphism Bl1(PEP ) '

Bl1(PEQ). In particular, the birational map: PEP 99K PEQ is a family of P5-standard
flops. Now the claim follows from the same arguments of the proof of Theorem 2.

�

Remark 2. Another proof of this theorem goes as follows: let Ñ → N be the com-
position of the blow-ups of N along 0, then along the strict transform of Omin. Then

we obtain two morphisms ẼP
eeP−−→ Ñ

eeQ←−− ẼQ with relative Picard number one. Let
L be an ẽP -ample line bundle and L′ its strict transform under the birational map
ψ̃ : ẼP 99K ẼQ. By our theorem in the precedent section, ψ̃ restricts to an isomor-
phism on T̃P , thus L′ is ẽQ|eTQ

-ample. As ẽQ is projective with relative Picard number

one, we get that L′ is ẽQ-ample, thus ψ̃ is an isomorphism.

4. Chow groups

We will denote by Ẽ the variety ẼP ' ẼQ. Let fP : Ẽ → EP and fQ : Ẽ → EQ

be the two natural morphisms. Let T̃ be the central fiber of the family Ẽ → C.
Note that T̃ has three irreducible components, one of which is T̃P . Let fP

0 : T̃ → TP

and fQ
0 : T̃ → TQ be the natural morphisms. We define two homomorphisms Ψ =

fQ
∗ ◦ (fP )∗ : CH(EP ) → CH(EQ) and Ψ0 = (fQ

0 )∗ ◦ (fP
0 )∗ : CH(TP ) → CH(TQ).

Here CH(X) denotes the Chow ring with integer coefficients of the variety X.

Theorem 4. The maps Ψ,Ψ0 are both isomorphisms.

Proof : For the proof of the first part, we will follow the proof of Theorem 2.1 in
[11], where a similar result is proved for standard flops.

Let WP be any k-dimensional sub-variety in EP , by Chow’s moving Lemma (see for
example [7], section 11.4), up to replacing WP by an equivalent cycle, we can assume
that WP intersects properly with the cycle T

1

P + T 0
P . Applying twice the blow-up

formula (see [7], Theorem 6.7), we obtain that (fP )∗(WP ) = W̃ , where W̃ is the strict
transform of WP under the birational map fP , which gives that Ψ(WP ) = WQ, where
WQ is the strict transform of WP under the birational rational map ψ : EP 99K EQ.
Remark that WQ intersects no longer properly with the cycle T

1

Q + T 0
Q.

Note that for any irreducible component C of WQ∩T
1

Q, there exists an irreducible

component B of the intersectionWP∩T
1

P such that C ⊂ e−1
Q (eP (B)). Let (fQ)∗WQ =

W̃ + ΣFC , where FC ⊂ (fQ)−1e−1
Q eP (B). Note that we have dimB = dimWP −

codimT
1

P . For a generic point s ∈ eP (fP (FC)), we have

dimFC,s = dimFC − dim eP (B) ≥ dimWP − dimB = codimT
1

P = 6.
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However a generic fiber of eP |T 1
P

is 5-dimensional, thus FC,s contains positive dimen-
sional fibers of fP , thus fP

∗ (FC) = 0, which gives that fP
∗ (fQ)∗ is an inverse of Ψ,

thus the claim of the first part.
Let iP : TP → EP , iQ : TQ → EQ and i : T̃ → Ẽ be the natural inclusions. The

notations are summarized in the following diagram:

TP
iP- EP

T̃
i -

f
P
0

-

Ẽ

f
P -

N

e
P

-

TQ

iQ-

f Q
0

-

EQ

eQ
-f Q

-

We have the following diagrams:

CH(EP )
(fP )∗−−−−→ CH(Ẽ)

(fQ)∗−−−−→ CH(EQ)

i∗P

y i∗
y yi∗Q

CH(TP )
(fP

0 )∗−−−−→ CH(T̃ )
(fQ

0 )∗−−−−→ CH(TQ)

The first diagram is commutative since fP ◦ i = iP ◦ fP
0 : T̃ → EP . Now we show

that the second diagram is also commutative. In fact, for any [Y ] ∈ CHk(Ẽ), we
may assume it intersects properly with T̃ by using Chow’s moving lemma. Note
that fQ is an isomorphism outside T̃ , thus (fQ)∗[Y ] = [fQ(Y )]k. It follows that
i∗Q(fQ)∗[Y ] = [fQ(Y ) ∩ TQ]k. Similarly we have (fQ

0 )∗i∗[Y ] = [fQ
0 (T̃ ∩ Y )]k, which

gives (fQ
0 )∗i∗ = i∗Q(fQ)∗. It follows that i∗Q ◦ Ψ = Ψ0 ◦ i∗P . Now the claim follows

from the fact that both i∗Q and i∗P are both isomorphisms. �

Remark 3. (i). As shown in [11], this also proves that Ψ (resp. Ψ0) induces an
equivalence between the motives [EP ] and [EQ] (resp. [TP ] and [TQ]).

(ii). The same proof also works for stratified Mukai flops such as T ∗Gr(2, V ) 99K
T ∗Gr(2, V ∗), which has been proved using a different method by Namikawa ([13]) on
the level of K-groups. His proof morally works for stratified Mukai flops of type D.
So the only unsolved case is the stratified Mukai flops of type E6,II .

Example 1. To simplify the notations, we denote by bP : BP → TP the blow-up
along XP and FP its exceptional divisor. Let ΣP ⊂ TP be the closure of the 27-
dimensional G-orbit and Σ̃P its proper transform under bP . Let hP : T̃P → BP

the blow-up along Σ̃P . Similar notations will be used on the dual-side. Finally let
TP

gP←−− T̃P ' T̃Q
gQ−−→ TQ be the compositions of blow-ups. Now we will show that

the naturally defined morphism Φ := (gQ)∗ ◦ (gP )∗ : CH(TP ) → CH(TQ) is not an
isomorphism. Note that this situation is very similar to that of usual Mukai flops (see
for example [13, section 2], [11, section 6]).
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By the blow-up formula, we have (bP )∗(ΣP ) = Σ̃P + ΓP , where ΓP is a cycle
supported on FP . Using Chow’s moving lemma (with ambient space FP ) , we can
assume that ΓP intersects properly with FP ∩ Σ̃P . Then γ := (hQ)∗ ◦ (hP )∗ΓP will
be a cycle supported on FQ. Note that bQ(FQ) is 16-dimensional, so (bQ)∗γ = 0.
Note that the birational map BP 99K BQ is a family of P5 Mukai flops. One deduces
that (see Example 6.5 [11]) that (hQ)∗ ◦ (gP )∗(ΣP ) = 5Σ̃Q + γ, which gives that
Φ(ΣP ) = 5ΣQ. Similarly for Φ′ := (gP )∗ ◦ (gQ)∗ : CH(TQ) → CH(TP ), we get
Φ′(ΣQ) = 5ΣP . Thus Φ and Φ′ are not isomorphisms if ΣP is non-zero in CH5(TP ).
This can be seen as follows.

Let q : P(T ∗XP ⊕ O) → XP be the natural projection and ΣP the closure of ΣP .
By [7, Prop. 3.3], we have (π∗P )−1(ΣP ) = q∗(c16(ξ) ∩ ΣP ), where ξ is the universal
quotient bundle (of rank 16) of q∗(T ∗(XP )⊕O). Note that c16(ξ) =

∑16
i=0 c1(O(1))i ∩

c16−i(q∗T ∗XP ). Thus we get (π∗P )−1(ΣP ) =
∑16

i=0 q∗(c16−i(q∗T ∗XP ) ∩ c1(O(1))i ∩
ΣP ) =

∑16
i=0 c16−i(T ∗XP )∩q∗(c1(O(1))i∩ΣP ). For reason of dimension, q∗(c1(O(1))i∩

ΣP ) = 0 if i 6= 5, and q∗(c1(O(1))5 ∩ΣP ) = d [X/P ], where d is the degree of the clo-
sure of X̂+. From this, we deduce that (π∗P )−1(ΣP ) = d c5(T ∗XP ), which is non-zero
since c5(T ∗XP ) 6= 0 (this can be deduced for example from the calculus made in [10,
section 7]).

As pointed out by M. Brion, for any rational homogeneous variety Z of dimension
n, the classes ci(T ∗Z) are never zero when 0 ≤ i ≤ n. In fact, if ci(T ∗Z) = 0 =
ci(TZ), then by [7, Example 12.1.8], there exists a sub-bundle F of TZ isomorphic to
the trivial bundle such that the rank of the quotient TZ/F is < i. On the other hand,
TZ has no trivial sub-bundles, since every vector field on Z has a zero.

Example 2. Let Z be the graph of the flop TP 99K TQ and TP
q1←− Z

q2−→ TQ the
two graph projections. Let γ : T̃P → Z be the natural morphism, which is a blow-
up along a smooth subvariety (Corollary 1). By proposition 6.7 (b) ([7]), the map
γ∗ ◦ γ∗ : CH(Z)→ CH(Z) is the identity.

Now consider the morphism Γ := (q2)∗ ◦ q∗1 : CH(TP ) → CH(TQ). Then Γ =
(q2)∗ ◦ γ∗ ◦ γ∗ ◦ q∗1 = Φ. Thus the morphism Γ induced by the graph of the flop does
not give an isomorphism.
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