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NEW PROPERTIES OF THE INTERSECTION NUMBERS
ON MODULI SPACES OF CURVES

Kefeng Liu and Hao Xu

Abstract. We present certain new properties about the intersection numbers on moduli
spaces of curves Mg,n, including a simple explicit formula of n-point functions and

several new identities of intersection numbers. In particular we prove a new identity,

which together with a conjectural identity implies the famous Faber’s conjecture about
relations in Rg−2(Mg). These new identities clarify the mysterious constant in Faber’s

conjecture and uncover novel combinatorial structures of intersection numbers.
We also discuss some numerical properties of Hodge integrals which have provided

numerous inspirations for this work.

1. Introduction

Denote by Mg,n the moduli space of stable n-pointed genus g complex algebraic
curves. We have the forgetting the last marked point morphism

π : Mg,n+1 −→Mg,n.

Denote by σ1, . . . , σn the canonical sections of π, and byD1, . . . , Dn the corresponding
divisors in Mg,n+1. Let ωπ be the relative dualizing sheaf, we have the following
tautological classes on moduli spaces of curves.

ψi = c1(σ∗i (ωπ))

κi = π∗

(
c1

(
ωπ

(∑
Di

))i+1
)

λl = cl(π∗(ωπ)), 1 ≤ l ≤ g.

The classes κi were first introduced by Mumford [21] on Mg, their generalization to
Mg,n here is due to Arbarello and Cornalba [1].

We use Witten’s notation in this paper,

〈τd1 · · · τdn
λb1 · · ·λbk

〉g :=
∫
Mg,n

ψd1
1 · · ·ψdn

n λb1 · · ·λbk
.

The moduli space of curves is a central object of study in algebraic geometry. The
intersection theory of tautological classes on the moduli space of curves is a very
important subject and has close connections to string theory, quantum gravity and
many branches of mathematics.

Intersection numbers involving only ψ classes can be computed recursively by the
celebrated Witten’s conjecture [24] (proved by Kontsevich [17]) or by the formula
of n-point functions [19]. General intersections involving ψ, λ, κ or boundary divisor
classes can be reduced to intersections of ψ classes by Faber’s algorithm [7].
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The following form of Witten’s conjecture is called the DVV formula [4].

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

 n∑
j=1

(2k + 2dj + 1)!!
(2dj − 1)!!

〈τd1 · · · τdj+k · · · τdn〉g

+
1
2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn
〉g−1

+
1
2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

n=I
‘

J

〈τr
∏
i∈I

τdi
〉g′〈τs

∏
i∈J

τdi
〉g−g′


where n = {1, 2, . . . , n}.

In 1993, Carel Faber [6] proposed his remarkable conjectures about the structure
of tautological ring R∗(Mg). In the past decade, Faber’s conjecture motivated a
tremendous progress toward understanding of the topology of moduli spaces of curves.
For background materials, we recommend Vakil’s excellent survey [23].

An important part of Faber’s conjectures is the famous Faber’s intersection number
conjecture, which is the following relations in Rg−2(Mg), if

∑n
j=1 dj = g − 2,

(1)
∑

σ∈Sn

κσ =
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

j=1(2dj + 1)!!
κg−2,

where
∑

σ∈Sn
κσ = (π1 . . . πn)∗(ψd1+1

1 . . . ψdn+1
n ) and κσ is defined as follows. Write

the permutation σ as a product of ν(σ) disjoint cycles, including 1-cycles: σ =
β1 · · ·βν(σ), where we think of the symmetric group Sn as acting on the n-tuple
(d1, . . . , dn). Denote by |β| the sum of the elements of a cycle β. Then κσ =
κ|β1|κ|β2| . . . κ|βν(σ)|.

By the work of Looijenga [20] and Faber [5], we know that Rg−2(Mg) = Q is
1-dimensional and λgλg−1 vanishes on the boundary of Mg. So Faber’s intersection
number conjecture is equivalent to the following Hodge integral identity.

If dj ≥ 1 and
∑n

j=1(dj − 1) = g − 2,∫
Mg,n

ψd1
1 . . . ψdn

n λgλg−1 =
∫
Mg

∑
σ∈Sn

κσλgλg−1

=
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

j=1(2dj − 1)!!

∫
Mg

κg−2λgλg−1(2)

=
(2g − 3 + n)!|B2g|

22g−1(2g)!
∏n

j=1(2dj − 1)!!
.

where
∫
Mg

κg−2λgλg−1 = |B2g|(g−1)!
2g(2g)! is proved by Faber [5].

Since λgλg−1 = (−1)g−1(2g − 1)! · ch2g−1(E), we use Mumford’s formula [21] for
the Chern character of Hodge bundles

ch2g−1(E) =
B2g

(2g)!

κ2g−1 −
n∑

i=1

ψ2g−1
i +

1
2

∑
ξ∈∆

lξ∗

(
2g−2∑
i=0

ψi
n+1(−ψn+2)2g−2−i

)
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to get

(3)
(2g − 3 + n)!
22g−1(2g − 1)!

· 1∏n
j=1(2dj − 1)!!

= 〈τd1 · · · τdn
τ2g〉g −

n∑
j=1

〈τd1 · · · τdj−1τdj+2g−1τdj+1 · · · τdn
〉g

+
1
2

2g−2∑
j=0

(−1)j〈τ2g−2−jτjτd1 · · · τdn〉g−1

+
1
2

∑
n=I

‘
J

2g−2∑
j=0

(−1)j〈τj
∏
i∈I

τdi〉g′〈τ2g−2−j

∏
i∈J

τdi〉g−g′

where dj ≥ 1,
∑n

j=1(dj − 1) = g − 2 and n = {1, 2, . . . , n}.
In fact, the proportional constant in identity (1) is observed experimentally by

Faber from identity (3), through implementing Witten’s conjecture to calculate inter-
section numbers.

In this paper, we will abuse terminology by calling either of the equivalent identities
(1), (2) and (3) the Faber’s conjecture.

Getzler and Pandharipande [11] derive Faber’s conjecture from the degree 0 Vi-
rasoro conjecture for P2. On the other hand, Givental [13] has announced a proof
of Virasoro conjecture for Pn. Y.P. Lee and R. Pandharipande are writing a book
supplying the details. Recently, Goulden, Jackson and Vakil [14] have given a more di-
rect and enlightening proof of Faber’s conjecture for up to three points and explained
their approach for the general case. Their method of proof is a marvelous synthesis
of geometry and combinatorics, which has already found other elegant applications
[3, 15].

In this paper, we present a series of simple new identities of intersection numbers,
aiming to clarify combinatorial structures in Faber’s conjecture.

The explicit formula of n-point functions (as stated in theorem 2.8 and proved in
[19]) for intersection numbers will play an important role in this work.
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2. Several new identities of intersection numbers

Now we announce the following identity of intersection numbers which clarifies the
mysterious constants in Faber’s conjecture.
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Theorem 2.1. Let dj ≥ 1 and
∑n

j=1(dj − 1) = g − 1. Then

(4)
2g∑

j=0

(−1)j〈τ2g−jτjτd1 · · · τdn
〉g =

(2g − 1 + n)!
22g(2g + 1)!

· 1∏n
j=1(2dj − 1)!!

When n = 1, identity (4) becomes
2g∑

j=0

(−1)j〈τ2g−jτjτg〉g =
1

22g(2g + 1)!!

which has been proved in [5, 9].
From theorem 2.1, we see that Faber’s conjecture (3) is equivalent to the following

simpler identity.

Conjecture 2.2. Let dj ≥ 0,
∑n

j=1 dj = g + n− 2 and n = {1, 2, . . . , n}. Then

〈τd1 · · · τdn
τ2g〉g =

n∑
j=1

〈τd1 · · · τdj−1τdj+2g−1τdj+1 · · · τdn
〉g

−1
2

∑
n=I

‘
J

2g−2∑
j=0

(−1)j〈τj
∏
i∈I

τdi
〉g′〈τ2g−2−j

∏
i∈J

τdi
〉g−g′(5)

Accompanying identity (4) of theorem 2.1, we also have the following vanishing
theorem of intersection numbers.

Theorem 2.3. Let K > g, dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2K − 1. Then

(6)
2K∑
j=0

(−1)j〈τ2K−jτjτd1 · · · τdn
〉g = 0

The following corollary of Theorem 2.3 is a complement to Conjecture 2.2.

Corollary 2.4. Let K > g, dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2K − 2. Then

〈τd1 · · · τdnτ2K〉g =
n∑

j=1

〈τd1 · · · τdj−1τdj+2K−1τdj+1 · · · τdn〉g

−1
2

∑
n=I

‘
J

2K−2∑
j=0

(−1)j〈τj
∏
i∈I

τdi〉g′〈τ2K−2−j

∏
i∈J

τdi〉g−g′(7)

Proof. The identity follows from Mumford’s formula [21]

ch(E) = g +
∞∑

k=1

B2k

(2k)!

κ2k−1 −
n∑

i=1

ψ2k−1
i +

1
2

∑
ξ∈∆

lξ∗

(
2k−2∑
i=0

ψi
n+1(−ψn+2)2k−2−i

)
where ch2k−1(E) = 0, when k > g. �

Amazingly we also found the following conjectural identity experimentally. Please
compare with the identities (3) and (5),
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Conjecture 2.5. Let g ≥ 2, dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

(8)
(2g − 3 + n)!
22g+1(2g − 3)!

· 1∏n
j=1(2dj − 1)!!

= 〈τd1 · · · τdn
τ2g−2〉g −

n∑
j=1

〈τd1 · · · τdj−1τdj+2g−3τdj+1 · · · τdn
〉g

+
1
2

∑
n=I

‘
J

2g−4∑
j=0

(−1)j〈τj
∏
i∈I

τdi〉g′〈τ2g−4−j

∏
i∈J

τdi〉g−g′ .

Since (2g − 3)! · ch2g−3(E) = (−1)g−1(3λg−3λg − λg−1λg−2), it’s easy to see that
the above identity (8) is equivalent to the following identity of Hodge integrals,

Conjecture 2.6. Let g ≥ 2, dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

2g − 2
|B2g−2|

(∫
Mg,n

ψd1
1 · · ·ψdn

n λg−1λg−2 − 3
∫
Mg,n

ψd1
1 · · ·ψdn

n λg−3λg

)

=
1
2

2g−4∑
j=0

(−1)j〈τ2g−4−jτjτd1 · · · τdn
〉g−1 +

(2g − 3 + n)!
22g+1(2g − 3)!

· 1∏n
j=1(2dj − 1)!!

(9)

Note that Faber’s identity (3) and all of the above identities (4)-(9) are compatible
with the string and dilaton equations, so dj ≥ 2 may be assumed when proving these
identities. We have checked the identities of conjecture 2.2 and conjecture 2.5 for all
g ≤ 20 by computer.

Now we give a proof of Conjecture 2.5 for n = 1.

g − 1
22g(2g + 1)!!

= 〈τg+1τ2g−2〉g − 〈τ3g−2〉g +
2g−4∑
j=0

(−1)j〈τjτg+1〉〈τ2g−4−j〉.

In the last sum of the right hand side, replace j by 3h− g − 2. We need to prove
g∑

h=1

(−1)g−h

24g−h(g − h)!
〈τ3h−g−2τg+1〉h =

g − 1
22g(2g + 1)!!

+ 〈τ3g−2〉g.

Apply the string equation twice, we have
g∑

h=1

(−1)g−h

24g−h(g − h)!
〈τ3h−g−2τg+1〉h

=
g∑

h=1

(−1)g−h

24g−h(g − h)!
(〈τ0τ3h−g−1τg+1〉h − 〈τ3h−g−1τg〉h)

=
g∑

h=1

(−1)g−h

24g−h(g − h)!
(〈τ0τ3h−g−1τg+1〉h − 〈τ0τ3h−gτg〉h + 〈τ3h−gτg−1〉h) .

Here we need some knowledge of n-point functions such as in the papers [5, 9,
19]. Since

∑g
h=0

(−1)g−h

24g−h(g−h)!
〈τ0τ3h−g−1τg+1〉h and

∑g
h=0

(−1)g−h

24g−h(g−h)!
〈τ0τ3h−gτg〉h are
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respectively the coefficient of y2g−1zg+1 and y2gzg in

exp
(
z3

24

)∑
k≥0

k!
(2k + 1)!

(
1
2
yz(y + z)

)k

,

we have
g∑

h=1

(−1)g−h

24g−h(g − h)!
〈τ0τ3h−g−1τg+1〉h =

g!
(2g + 1)!

· g
2g
,

g∑
h=1

(−1)g−h

24g−h(g − h)!
〈τ0τ3h−gτg〉h =

g!
(2g + 1)!

· 1
2g
.

Moreover, it has been proved in [5, 9] that
g∑

h=1

(−1)g−h

24g−h(g − h)!
〈τ3h−gτg−1〉h =

1
24gg!

,

so we conclude the proof.

Both of Theorem 2.1 and Theorem 2.3 follow from our recently obtained n-point
functions for intersection numbers.

Definition 2.7. We call the following generating function

F (x1, . . . , xn) =
∞∑

g=0

∑
P

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

the n-point function.

Note that the left hand side of identity (4) in Theorem 2.1 is

[F (y,−y, x1, . . . , xn)]
y2g−2

Qn
j=1 x

dj
j

,

which is the coefficient of the monomial y2g−2
∏n

j=1 x
dj

j in the special (n + 2)-point
function F (y,−y, x1, . . . , xn).

It’s not an easy task to get explicit formulae for n-point functions [2]. Okounkov [22]
has obtained a marvelous analytic formula for n-point functions, however it seems very
difficult to extract information of coefficients from this analytic formula. What’s more
interesting is to find some well organized series expansion for the n-point function.

We introduce the following “normalized” n-point function

G(x1, . . . , xn) = exp

(
−
∑n

j=1 x
3
j

24

)
· F (x1, . . . , xn).

Theorem 2.8. [19] For n ≥ 2,

G(x1, . . . , xn) =
∑

r,s≥0

(2r + n− 3)!!
4s(2r + 2s+ n− 1)!!

Pr(x1, . . . , xn)∆(x1, . . . , xn)s,
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where Pr and ∆ are homogeneous symmetric polynomials defined by

∆(x1, . . . , xn) =
(
∑n

j=1 xj)3 −
∑n

j=1 x
3
j

3
,

Pr(x1, . . . , xn) =

 1
2
∑n

j=1 xj

∑
n=I

‘
J

(
∑
i∈I

xi)2(
∑
i∈J

xi)2G(xI)G(xJ)


3r+n−3

=
1

2
∑n

j=1 xj

∑
n=I

‘
J

(
∑
i∈I

xi)2(
∑
i∈J

xi)2
r∑

r′=0

Gr′(xI)Gr−r′(xJ),

where I, J 6= ∅, n = {1, 2, . . . , n} and Gg(xI) denotes the degree 3g + |I| − 3 ho-
mogeneous component of the normalized |I|-point function G(xk1 , . . . , xk|I|), where
kj ∈ I.

The above formula generalizes Dijkgraaf’s two-point function [5] and Zagier’s three-
point function [25] obtained more than ten years ago.

Let’s turn to the normalized special (n+ 2)-point function,

G(y,−y, x1, . . . , xn) = exp

(
−
∑n

j=1 x
3
j

24

)
· F (y,−y, x1, . . . , xn).

We have the following theorem [19] about the coefficients of G(y,−y, x1, . . . , xn),
which is just a reformulation of Theorem 2.3 and Theorem 2.1.

Theorem 2.9. Let g ≥ 0 and n ≥ 1. We have

(1) Let K > g, dj ≥ 0 and
∑n

j=1 dj = 3g − 1 + n− 2K. Then

[G(y,−y, x1, . . . , xn)]
y2K

Qn
j=1 x

dj
j

= 0.

(2) Let dj ≥ 1 and
∑n

j=1 dj = g − 1 + n. Then

[G(y,−y, x1, . . . , xn)]
y2g

Qn
j=1 x

dj
j

=
(2g + n− 1)!

4g(2g + 1)! ·
∏n

j=1(2dj − 1)!!
.

3. Vanishing phenomenon of intersection numbers

We investigate a sort of vanishing phenomenon of intersection numbers and seek
further clarification for our simplified version of Faber’s conjecture. First we state a
generalization of Theorem 2.3.

Conjecture 3.1. Let K > g, dj ≥ 0 and Λ be a monomial of λ classes. Then

2K∑
j=0

(−1)j〈τ2K−jτjΛ
n∏

j=1

τdj
〉g = 0
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Take Λ = λ1 in Conjecture 3.1. Since λ1 = ch1(E), we have

0 = 12
2K∑
j=0

(−1)j〈τ2K−jτjλ1

n∏
j=1

τdj 〉g

= −
2K∑
j=0

(−1)j

〈τ2K−j+1τj

n∏
j=1

τdj
〉g + 〈τ2K−jτj+1

n∏
j=1

τdj
〉g


+

∑
n=I

‘
J

2K∑
j=0

(−1)j〈τjτ0
∏
i∈I

τdi
〉g′〈τ2K−jτ0

∏
i∈J

τdi
〉g−g′

=
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τjτ0
∏
i∈I

τdi〉g′〈τ2K−jτ0
∏
i∈J

τdi〉g−g′ − 2〈τ2K+1τ0

n∏
j=1

τdj 〉g.

We have used Theorem 2.3 in the above equations. In fact, we have identities much
more general than the above equation.

Conjecture 3.2. We have

(1) Let K ≥ g, r, s ≥ 0, dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2K − r − s− 2. Then

〈τ2K+r+1τs

n∏
j=1

τdj
〉g + 〈τ2K+s+1τr

n∏
j=1

τdj
〉g

=
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τjτr
∏
i∈I

τdi
〉g′〈τ2K−jτs

∏
i∈J

τdi
〉g−g′ .

(2) Let r, s ≥ 0, dj ≥ 1 and
∑n

j=1 dj = g + n− r − s. Then

1
(2r + 1)!!(2s+ 1)!!

· (2g − 1 + n)!
4g(2g − 1)!

∏n
j=1(2dj − 1)!!

= 〈τ2g+r−1τs

n∏
j=1

τdj
〉g + 〈τ2g+s−1τr

n∏
j=1

τdj
〉g

−
∑

n=I
‘

J

2g−2∑
j=0

(−1)j〈τjτr
∏
i∈I

τdi
〉g′〈τ2g−2−jτs

∏
i∈J

τdi
〉g−g′ .

Identities in Conjecture 3.2 have the same structures as results in the last section,
we believe there is a uniform way to prove these conjectural identities.
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Taking Λ = ch2r+1(E) in Conjecture 3.1 and K > g, we have

0 =
(2r + 2)!
B2r+2

2K∑
j=0

(−1)j〈τ2K−jτjch2r+1(E)
n∏

i=1

τdi〉g

= −
2K∑
j=0

(−1)j

(
〈τ2K−j+2r+1τj

n∏
i=1

τdi〉g + 〈τ2K−jτj+2r+1

n∏
i=1

τdi〉g

)

+
∑

n=I
‘

J

2r∑
i=0

2K∑
j=0

(−1)i+j〈τiτj
∏
t∈I

τdt〉g′〈τ2r−iτ2K−j

∏
t∈J

τdt〉g−g′

= −2
2r∑

i=0

(−1)i〈τ2K+2r+1−iτi

n∏
j=1

τdj 〉g

+
∑

n=I
‘

J

2r∑
i=0

2K∑
j=0

(−1)i+j〈τiτj
∏
t∈I

τdt〉g′〈τ2r−iτ2K−j

∏
t∈J

τdt〉g−g′ .

It’s not difficult to see that conjecture 3.2(1) implies Conjecture 3.1 in the case
Λ = ch2r+1(E).

Now we present a hierarchy of conjectural identities of intersection numbers, which
provide further insights to Faber’s conjecture.

Conjecture 3.3. For m ≥ 2, we have
(1) Let K ≥ g+ bm

2 c−1, rp ≥ 0, dj ≥ 0 and
∑n

j=1 dj = 3g+n−2K−
∑m

p=1 rp +
m− 4. Then

〈τ2K+2

m∏
p=1

τrp

n∏
j=1

τdj 〉g =
n∑

j=1

〈τd1 . . . τdj−1τdj+2K+1τdj+1 . . . τdn

m∏
p=1

τrp〉g

−
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
i∈I

τdi〉g′〈τ2K−j

∏
i∈J

τdi〉g−g′ .

(2) Let K = g + bm
2 c − 2, dj ≥ 1 and

∑n
j=1 dj = g + n −

∑
p rp + m − 2bm

2 c.
Define

C(g,m, rp) =

{
(
∑

p 2rp +m)(g + m−3
2 ) if m is odd,

1 if m is even.

Then we have

C(g,m, rp)∏m
p=1(2rp + 1)!!

· (2g − 3 + n+m)!
4g(2g − 3 +m)!

∏n
j=1(2dj − 1)!!

= 〈τ2K+2

m∏
p=1

τrp

n∏
j=1

τdj 〉g −
n∑

j=1

〈τd1 . . . τdj−1τdj+2K+1τdj+1 . . . τdn

m∏
p=1

τrp〉g

+
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
i∈I

τdi〉g′〈τ2K−j

∏
i∈J

τdi〉g−g′ .

If m is odd, we require rp ≥ 1 in the above identity.
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Conjecture 3.4. For m ≥ 2, we have

(1) Let K ≥ g+ bm−1
2 c, s ≥ 0, rp ≥ 0, dj ≥ 0 and

∑n
j=1 dj = 3g+ n− 2K − s−∑m

p=1 rp +m− 3. Then

〈τ2K+s+1

m∏
p=1

τrp

n∏
j=1

τdj
〉g

=
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
i∈I

τdi
〉g′〈τ2K−jτs

∏
i∈J

τdi
〉g−g′ .

(2) Let K = g + bm−1
2 c − 1, dj ≥ 1 and

∑n
j=1 dj = g + n − s −

∑
p rp + m −

2bm−1
2 c − 1. Define

C(g,m, s, rp) =

{
(
∑

p 2rp − 2s+m− 1)(g + m
2 − 1) if m is even,

1 if m is odd.

Then we have

C(g,m, s, rp)
(2s+ 1)!!

∏m
p=1(2rp + 1)!!

· (2g − 2 + n+m)!
4g(2g − 2 +m)!

∏n
j=1(2dj − 1)!!

= 〈τ2K+s+1

m∏
p=1

τrp

n∏
j=1

τdj 〉g

−
∑

n=I
‘

J

2K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
i∈I

τdi〉g′〈τ2K−jτs
∏
i∈J

τdi〉g−g′ .

If m is even, we require s ≥ 1 and rp ≥ 1 in the above identity.

The following conjecture generalizes results of [19].

Conjecture 3.5. For m, l ≥ 2, we have

(1) Let K > 2g +m+ l − 4, rp, sp ≥ 0, dj ≥ 0 and
∑n

j=1 dj = 3g + n+m+ l −
K −

∑m
p=1 rp −

∑l
p=1 sp − 4. Then

∑
n=I

‘
J

K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
t∈I

τdt〉〈τK−j

l∏
p=1

τsp

∏
t∈J

τdt〉 = 0.

(2) Let K = 2g+m+ l− 4, dj ≥ 1 and
∑n

j=1 dj = g+ n−
∑

p rp −
∑

p sp. Then

∑
n=I

‘
J

K∑
j=0

(−1)j〈τj
m∏

p=1

τrp

∏
t∈I

τdt〉〈τK−j

l∏
p=1

τsp

∏
t∈J

τdt〉

=
1∏m

p=1(2rp + 1)!!
∏l

p=1(2sp + 1)!!
· (−1)m(2g + n+m+ l − 3)!
4g(2g +m+ l − 3)!

∏n
j=1(2dj − 1)!!

.
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4. Denominators of intersection numbers

Let denom(r) denotes the denominator of a rational number r in reduced form
(coprime numerator and denominator, positive denominator). We define

Dg,n = lcm

{
denom

(∫
Mg,n

ψd1
1 · · ·ψdn

n

)∣∣∣ n∑
i=1

di = 3g − 3 + n

}
and for g ≥ 2,

Dg = lcm

{
denom

(∫
Mg

κa1 · · ·κam

)∣∣∣ m∑
i=1

am = 3g − 3

}
where lcm is the abbreviation of least common multiple.

We proved in our previous paper [18] that Dg,n | Dg and Dg,n = Dg for n ≥ 3g−3.
Now we present the conjectural exact values of Dg.

Conjecture 4.1. Let p denotes a prime number and g ≥ 2. Let ord(p, n) denotes the
maximum integer such that pord(p,n) | n. Then

(1) ord(2,Dg) = 3g + ord(2, g!),
(2) ord(3,Dg) = g + ord(3, g!),
(3) ord(p,Dg) = b 2g

p−1c for p ≥ 5, where bxc denotes the maximum integer that
is not larger than x.

We order all Witten-Kontsevich tau functions of given genus g by the following
lexicographical rule,

〈τd1 · · · τdn
〉g ≺ 〈τk1 · · · τkm

〉g
if n < m or n = m and there exists some i, such that dj = kj for j < i and di < ki.

If 5 ≤ p ≤ 2g + 1 is a prime number, then the smallest tau function of genus g in
the above lexicographical order that satisfies ord(p, denom〈τd1 · · · τdn

〉g) = b 2g
p−1c is

〈τ p−1
2
· · · τ p−1

2︸ ︷︷ ︸
b 2g

p−1 c

τd〉g

where d+ p−1
2 b 2g

p−1c = 3g − 2 + b 2g
p−1c.

We have checked Conjecture 4.1 for all g ≤ 20 by a computer.

Corollary 4.2. We have Dg,n = Dg for n ≥ b g
2c+ 1.

Corollary 4.3. Let D0 = 1 and D1 = 24, then DgDh | Dg+h, for g, h ≥ 0.

Note that b g
2c+ 1 is just the number of codimension one boundary strata of Mg,

we don’t know whether this has any implications.
We remark that that Dg does not control the denominators of general Hodge inte-

grals, since we have ord(5, denom〈τ19λ9〉10) = 6 > ord(5,D10).
Let Sg be the least common multiple of {|Aut(Σg)|}, where Σg takes over all stable

curves of genus g. By arranging components of stable curves in a most symmetric
way, it’s not difficult to see that

ord(2,Sg) ≥ 2g + bg/2c+ bbg/2c/2c+ bbbg/2c/2c/2c+ · · ·
ord(p,Sg) ≥ k + bk/pc+ bbk/pc/pc+ bbbk/pc/pc/pc+ · · · , if prime p ≥ 3,
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where k = b 2g
p−1c. We conjecture that the above relations are actually equalities

giving exact values of Sg.
It’s easy to see that ord(2,Dg) > ord(2,Sg), ord(3,Dg) ≥ ord(3,Sg) and for p ≥ 5,

ord(p,Dg) ≤ ord(p,Sg). Roughly speaking, this means that top intersections of kappa
classes fail to detect all singularities on the orbifold Mg.

5. Numerical properties of intersection numbers

From Okounkov’s analytic formula of n-point functions [22], we have

F (x1, . . . , xn) =
∞∑

g=0

∑
P

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j <∞.

for arbitrary positive real numbers xi. So 〈τd1 · · · τdn
〉g decreases very rapidly when

g increases. In this section, we will discuss a kind of multinomial-type property for
intersection numbers.

Conjecture 5.1. Let Λ be a monomial of the form λk1
1 · · ·λkg

g . Then for
∑n

j=1 dj =
3g − 3 + n−

∑g
j=1 kj · j and d1 < d2, we have∫
Mg,n

ψd1
1 ψd2

2 · · ·ψdn
n Λ ≤

∫
Mg,n

ψd1+1
1 ψd2−1

2 · · ·ψdn
n Λ.

Namely the more evenly 3g − 3 + n be distributed among indices, the larger the
value of Hodge integrals.

From the argument of Proposition 5.1 of [18], we see it’s enough to check only those
Hodge integrals with d3 ≥ 2, . . . , dn ≥ 2. We have checked Conjecture 5.1 in various
cases.

For Λ = 1, namely in the case of tau functions, we have checked Conjecture 5.1 for
g ≤ 20. Moreover, for n = 2, we have checked all g ≤ 1000 (using Dijkgraaf’s 2-point
function); for n = 3, we have checked all g ≤ 100 (using Zagier’s 3-point function).

For Λ = λg, we have the λg theorem proved by Faber and Pandharipande [8],∫
Mg,n

ψd1
1 · · ·ψdn

n λg =
(

2g + n− 3
d1, . . . , dn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

.

For Λ = λgλg−1, we have the Faber’s conjecture.
For Λ = λk1

1 · · ·λkg
g , where

∑g
i=1 iki = 3g − 3, we can use the same argument as

Proposition 5.1 in [18].
For Λ = λg−1, there is a closed formula for Hodge integrals with λg−1 class in [12],

we have checked the case of two-point Hodge integrals for g ≤ 100.
Based on a large amount of experiment, we speculate that the following general-

ization of Conjecture 5.1 should be true.

Conjecture 5.2. Consider the following general intersection numbers,

〈τdκaλb〉g,n :=
∫
Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κamλb1 · · ·λbk
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where the indices {dj , aj , bj} are nonnegative integers. If p < q we have

〈τpτqτdκaλb〉g,n ≤ 〈τp+1τq−1τdκaλb〉g,n,

〈κpκqτdκaλb〉g,n ≤ 〈κp+1κq−1τdκaλb〉g,n,

〈λpλqτdκaλb〉g,n ≤ 〈λp+1λq−1τdκaλb〉g,n.

We make some remarks about Conjecture 5.2. First recall the definition of Schur
polynomials. Let E be a vector bundle of rank r on a projective variety X and µ be
a partition of integer n into integers ≤ r,

r ≥ µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0.

Define the Schur polynomials sµ(E) by

sµ(E) = det(cµi+j−i(E))1≤i,j≤n.

So sµ(E) is a polynomial in Chern classes of E with weighted degree n. If E is ample,
then we know that sµ(E) behave numerical positively on X.

However the Hodge bundle E on Mg is not ample, only its determinant det(E) is
semi-ample. If µ = (b2, b1, 0, . . . , 0), then sµ(E) = λb2λb1 −λb2+1λb1−1. So conjecture
5.2(3) essentially says that Schur polynomials of the form s(b2,b1)(E) behave numerical
positively on the moduli space of curves.

There are several natural consequences from Conjecture 5.2. For example, we could
get simple lower and upper bounds for intersections of kappa classes, the so called
higher Weil-Petersson volumes of the moduli space of curves [16].

Corollary 5.3. Let aj ≥ 0,
∑m

j=1 aj = 3g − 3 + n and g ≥ 1. We have

(2g − 2 + n)m−1

24g · g!
≤ 〈κa1 · · ·κam

〉g,n ≤
〈κ3g−3+n

1 〉g,n

(2g − 2 + n)3g−3+n−m
.

In particular, we get a simple lower bound for Weil-Petersson volumes

〈κ3g−3+n
1 〉g,n ≥

(2g − 2 + n)3g−4+n

24g · g!
.

Proof. Since κ0 = 2g − 2 + n in R0(Mg,n), we have

〈κa1 · · ·κam
〉g,n ≥ 〈κ3g−3+nκ

m−1
0 〉g,n =

(2g − 2 + n)m−1

24g · g!
.

The other inequality can be proved similarly. �

Corollary 5.4. For dj ≥ 0 and
∑n

j=1 dj = 3g − 3 + n,

〈τd1 · · · τdn
〉g ≥

1
24g · g!

.
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