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A BOUNDEDNESS THEOREM FOR HOM-STACKS

MARTIN OLSSON

1. Statement of Theorem

The purpose of this note is to prove the following “boundedness” stated in [O]].
Let X and Y be separated Deligne-Mumford stacks of finite presentation over an
algebraic space S and define Homg(X',)) as in [Ol, 1.1]. Assume that X is flat and
proper over .S, and that locally in the fppf topology on S, there exists a finite flat
surjection Z — X from an algebraic space Z. Let JJ — W be a quasi-finite proper
surjection over S to a separated algebraic space W over S of finite presentation. By
[O], 1.1] we then have Deligne-Mumford stacks Homg (X', Y) and Homg (X, W).

Theorem 1.1. The natural map
(1.1.1) Homg(X,Y) — Homg (X, W)
is of finite type.

Remark 1.2. For a simple example to illustrate this theorem, consider the case when
X = X is a smooth proper scheme over S, Y = BG for some finite group G, and
W = S. Then the stack Homg¢(X,)) classifies G—torsors on X, and Theorem 1.1
essentially amounts to [SGA4, XVI1.2.2] (this special case is in fact used in the proof;
see section 3).

Note that in the case when S is the spectrum of a field, then A" has a coarse moduli
space 7 : X — X and the formation of this moduli space commutes with arbitrary
base change (see [O], 2.11] for a discussion of this). In this case the right side of 1.1.1
is canonically isomorphic to Homg(X, W) by the universal property of coarse moduli
spaces.

Our interest in this theorem comes from the theory of moduli spaces for twisted
stable maps. As explained in [O12] the above theorem combined with the existence
of a universal twisted curve (constructed in loc. cit.) yields a very quick proof of
boundedness for the Abramovich-Vistoli moduli space of twisted stable maps [A-V].
Considering the very general nature of 1.1 we also hope that it will have interesting
applications elsewhere in proving boundedness for moduli spaces (already some other
applications have been found in recent work of Lieblich and Kovéacs [LK]).

The proof of 1.1 is a rather complicated devissage to the result [SGA4, XVI.2.2].
In section 2 we explain a construction (well-known to experts) called “rigidification”
which enables one to“kill off” generic stabilizers of stacks. In section 3 we study a
key special case of 1.1, from which the general case will be deduced. In section 4 we
collect together various rather general results which will be used for the devissage. In
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section 5 we then start the proof of 1.1 with some preliminary reductions, and then
in section 6 we explain the devissage to the special case of section 3.

Remark 1.3. In subsequent work [A-O-V2, Appendix B] we will generalize 1.1 to
a certain class of Artin stacks with finite diagonal called tame Artin stacks [A-O-V]
(note that the result [Ol, 1.1] holds not just for Deligne-Mumford stacks but also for
Artin stacks with finite diagonal).

1.4. Notation: For an algebraic stack X over a scheme S we denote by I(X) the
inertia stack of X. By definition I(X) is the fiber product of the diagram

X

|a
X —2 . X xgX.
The stack I(X) associates to any S-scheme T the groupoid of pairs (¢,«), where
t € X(T) and « is an automorphism of ¢ in X(T). In particular I(X) is a relative
group space over X.

Let f : G — X be a morphism between Artin stacks of finite presentation and
with finite diagonals over an algebraic space S , and assume that X is flat and proper
over S and that locally in the fppf topology on S there exists a finite flat surjection
Z — X from an algebraic space Z. We denote by Sec(G/X) the stack which to any
S-scheme T associates the groupoid of sections X7 — Gr of the base change G — Xr
of f to T. The stack Sec(G/X) is an Artin stack locally of finite presentation over S
with quasi-compact and separated diagonal, as it is equal to the fiber product of the
diagram

S

(1.4.1) 1

Homg(¥,G) = Homg(¥, ¥).
When G and X are Deligne-Mumford stacks then Sec(G/X) is even a Deligne-Mumford
stack, again by [O], 1.1].

2. Rigidification
We begin by recording the following result which is well-known to experts:

Proposition 2.1. Let X' be a normal Deligne—Mumford stack separated and of finite
presentation over a locally noetherian base scheme S, and let X denote the (separated)
coarse moduli space of X. Then there exists a canonical factorization

(2.1.1) X @ X B X
of the projection X — X, where X is a separated Deligne-Mumford stack of finite

presentation over S with coarse moduli space 8 : X — X, o makes X an étale gerbe
over X, and (3 is an isomorphism over some dense open subspace of X.

Proof. Consider first the special case when X = [V/G] where V is a normal connected
scheme and G is a finite group acting on V. Let H C G be the subgroup of elements
that acts trivially on V. Since V is integral, H is equal to the stabilizer of the generic
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point of V. Also H is normal in G. Let G —>§ be the quotient of G by H so the
action of G on V factors through an action of G on V. In this case set X = [V/G].
The natural projection

a:[V/G] = [V/G]
realizes X as a gerbe over X, and in particular the map « induces an isomorphism on
coarse moduli spaces. We therefore obtain a factorization 2.1.1 of the map X — X
from X to its coarse moduli space. Note also that by construction the generic stabilizer
of the action of G on V is trivial, so the map X — X is an isomorphism over a dense
open subset of X. This gives the proposition in this special case.

The Isom-spaces for X admit the following description which we will use in the
proof of the general case below. The stack X can be viewed as the stack which to
any scheme T associates the groupoid of pairs (P, s), where P is an fppf G—torsor
over T and s : P — V is a G—equivariant map. Note that since H acts trivially on
V this is equivalent to the groupoid of pairs (P,s), where P is a G-torsor on T and
5: Py — V is a G—equivariant map. Here Py is the G-torsor obtained by taking the
quotient of P by the H—action.

Consider two objects t; = (P;,8;) (i = 1,2) of X(T), and let I(¢1,t3) be the
functor on T-schemes which to any g : 77 — T associates the set of isomorphisms
o : g*ty — g*ty in X(T”). There is a natural action of H on I(t1,ts) induced by the
action of H on P;. Let I(t1,t2)(T) be the quotient of I(t1,t2)(T) by this action. The
set I(t1,t2)(T) is the quotient of the set of isomorphisms o : Py — P, of G—torsors
compatible with the maps s; by the natural action of H. Equivalently, I(t1,t2)(T)
is equal to the set of isomorphisms & : Py gy — Pa g of G-torsors compatible with
the maps §; which lift to an isomorphism of G-torsors ¢ : P, — P,. Since any
isomorphism of G-torsors & : Py .y — P> g locally lifts to an isomorphism of G-
torsors o : Py — P, this implies that the space Isom=z(t1,t2) is equal to the sheaf
associated to the presheaf sending (g : T" — T) to I(g*t1, g*t2)(T").

The general case is obtained as follows.

Considering each of the connected components of X’ separately, we can without loss
of generality assume that X is connected, and hence irreducible since X is normal
[L-MB, 4.13]. First we claim that there is a dense open subset U C X such that
Xy =X xx U — U is an étale gerbe. For this, let ng be the minimum of the orders
of the stabilizer groups of geometric points of X'. Consider the substack &/ C X which
to any T associates the sub—groupoid of X(T") consisting of 1-morphisms ¢ : T — X
such that the order of the stabilizer group of ¢ at every geometric point of T is ng.

Lemma 2.2. The substack U C X s an open substack.

Proof. Tt suffices to show that for any scheme T" and morphism ¢ : T — X the fiber
product V := U xx ;T is an open subset of 7. Let G denote the group scheme of
automorphisms of t. Then G is finite over T, for every point z € T the fiber G, has
length at least ng, and V' C T is the subset of points z € T' where the fiber has length
exactly ng. This is clearly an open condition. O

Since the map X — X is proper, the image of X —U in X is a closed subset whose
complement U is the coarse moduli space of U (note that U = U xx X by [Ol, 2.4
(1)]). We claim that the map & — U is an étale gerbe. This assertion is étale local on
U so by [Ol, 2.12] we may assume that U = [V/G] for some U—scheme V separated
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over S with action of a group G of order ng. Since the action of G fixes every point
of V and V is reduced (being étale over U), the action of G on V is trivial and so U
is étale locally on U isomorphic to U x BG for some finite group G.

Let I(X) — X be the intertia stack of X. Let I' C I(X) denote the scheme—
theoretic closure of the inclusion I'(U) — I(X). We claim that I" is a normal sub—
group scheme of I(X) which is finite étale over X'. To see this we may work étale
locally on X and hence as before we can assume that X = [V/G] for some finite
group G acting on a connected normal X—scheme V separated over S. In this case,
let H C G be the normal subgroup of elements stabilizing every point of V' as above,
and let W C V be the subset of points at which the stabilizer is equal to H. The
subset W is invariant under the action of G. Furthermore, I(X) x » V is isomorphic
to the fiber product of the diagram

Vv

lA
VG —— VW

In particular, I(X) X x V is closed in V' x G and so ' X x V' is isomorphic to the closure
of W x H CV x G which is just V x H mapping to V by the projection.

We now construct X by “killing off” the group scheme I' as in [A-C-V, 5.1.5]. For
any morphism T — X x X corresponding to objects t1,to € X(T), the finite étale
group scheme #;T" acts on the T—scheme Isomy (t1,t2). An element h € ¢;T'(T) sends
an isomorphism ¢ : t; — t3 to ¢ o h. This action is faithful, and hence we can form
the quotient I(t1,ts) of Isomu(t1,t2) by this action. This quotient I(t1,t3) is an
algebraic space separated over T since tiI' is finite over T. Furthermore, since the
map I(t1,ts) — T is quasi-finite the algebraic space I(t1,ts) is in fact a scheme [Kn,
I1.6.16]. As explained in the proof of [A-C-V, 5.1.5], for three objects t1, t2,t3 € X(T')
there is a unique composition law

T(tl, tg) XT T(tg, t3) — T(tl, t3)
such that the diagram

Isom(tl, tg) XT ISOHl(tQ, t3) E— ISOIIl(t1, tg)

! l

I(t1,t2) x7 I(t2,13) —  I(t1,t3)
commutes. We define X*° to be the prestack which to any T associates the groupoid
whose objects are the objects of X(T") but whose morphisms ¢; — ¢5 are the elements
of T(t1,12)(T), and then define X to be the stack associated to X" .

To prove the remaining statements in the proposition, we may by the construction
of X work étale locally on the coarse moduli space X. It therefore suffices to consider
the case when X = [V/G], where V is a finite X—scheme and G is a finite group.
The remaining statements therefore follow from the special case considered at the
beginning of the proof. O

Remark 2.3. The factorization 2.1.1 has the following universal property. Let )
be an algebraic stack and p : X — ) a morphism of algebraic stacks such that
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the induced map on inertia stacks I(X) — I(Y) sends I' C I(X) to the identity in
I(Y) (where T is defined as in the proof of 2.1). Then p factors uniquely through a
morphism X — Y. This is shown in [A-G-V, C.1.1].

3. A special case

Proposition 3.1. Let f : X — S be a smooth proper scheme over a locally noetherian
base scheme S, and let m : G — X be an étale gerbe over X with G a Deligne—Mumford
stack with finite diagonal. Assume that G — X admits a section s. Then the Deligne—
Mumford stack Sec(G/X) is of finite type.

Remark 3.2. By writing Sec(G/X) as a fiber product as in 1.4.1, one sees that 1.1
implies 3.1. On the other hand, in section 6 we will reduce the proof of 1.1 to 3.1.

Proof. By [L-MB, 3.21], the section s identifies G with BG, where G = Aut(s) denotes
the finite étale (since G has finite diagonal and is a gerbe) group scheme over X of
automorphisms of the section s. In this case, the stack Sec(G/X) is isomorphic to
the stack which to any S—scheme T associates the groupoid of étale p*G—torsors P
over X1 := X xXg T (where p : X7 — X is the projection). In particular, the sheaf
associated (with respect to the big étale topology) to the presheaf which associates to
an S—scheme T the set of isomorphism classes of elements in Sec(G/X) is isomorphic
to the sheaf associated to the presheaf which to such a scheme T associates the set
HY((X xg T)et, priG), and the group of automorphisms of any object P — T of
Sec(G/X)(T) is canonically isomorphic to HO((X xg T)e;, P xP1%% pri@), where
P xPriGicon] priG denote the quotient of P x priG by the action of priG given on
scheme-valued points by

v (9= (P97, 1.9€PG, peP.

If f: X — S denotes the structure morphism, then by [SGA4, XVI.2.2] (note that in
the statement of loc. cit. one should further assume that the sheaf F' is locally con-
stant on X) the sheaf R! f,G is locally constant constructible on S.; and its formation
commutes with arbitrary base change. Replace S by an étale cover over which R! f,G
is constant and over which there exist representative G—torsors P; — X (i € R f.G).
For each P;, the sheaf f,(P; xP'1¢:coni pri @) is again by [SGA4, XVI.2.2] locally con-
stant constructible, and its formation commutes with arbitrary base change on S.
After replacing S by another étale cover, we may assume that these sheaves are in
fact constant. Set H; := f,(P; xPr1&:coni pri@).

Each P; induces a map BH; — Sec(G/X). By the preceding discussion the induced
map

(3.2.1) F: [ BH: — Sec(G/X).

induces a bijection on the sheaves associated to the presheaves of isomorphism classes
of objects of the stacks, and in particular any object of Sec(G/X) is locally in the
image of 3.2.1. Furthermore, for any two objects a,b € [[, BH; the natural map of
sheaves

Isomy gy, (a,b) — Isomg, g, x)(F(a), F(b))
is locally surjective and hence an isomorphism since if these sheaves are nonempty
then this is a morphism of fppf H;—torsors if « € BH;. Thus F is fully faithful and
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every object of Sec(G/X) is locally in the essential image. Since both sides of 3.2.1
are stacks it follows that F' is an equivalence. O

4. Some results about modifications

In this section we isolate four propositions (two of which are just quoted from [Ol])
that will be used in the proof of 1.1 in the following sections.

4.1. The stack of proper descent data.

4.2. Let S be a noetherian scheme, and let G — X be a morphism of Artin stacks
of finite type over S with finite diagonals. Assume that X is flat and proper over S
and that fppf-locally on S the stack X admits a finite flat surjection Z — X with Z
a scheme.

Let f : R — X be a proper surjection, with R/S an algebraic stack flat and of
finite type over S and with finite diagonal. Assume that R also admits a finite flat
cover by an algebraic space fppf locally on S (note that this holds automatically if f
is representable). For ¢ > 1, let R® denote the i-fold fiber product of R with itself
over X. Define Des(R/X) to be the stack which to any S-scheme T' associates the
groupoid of pairs (w,¢), where w : R — G is a morphism over X’ and ¢ : prjw — priw
is an isomorphism in G (R(Q)) projecting to the canonical isomorphism pr; o f >~ pryo f
in X(R®), which satisfies the usual cocycle condition when pulled back to G(R®)).

Proposition 4.3. (i) The stack Des(R/X) is an Artin stack locally of finite type
over S with quasi-compact and separated diagonal.

(ii) If the stack Sec(G xx R/R) is of finite type over S, then the stack Des(R/X)
is of finite type over S.

(ii) If G, X, and R are Deligne-Mumford stacks, then Des(R/X) is a Deligne-
Mumford stack.

Proof. Let Gr» denote the fiber product R xx G.
The stack Des(R/X) can be described as follows. As remarked in 1.4, the stacks

Sec(Grm /R™)

are Artin stacks locally of finite type over S with separated and quasi-compact di-
agonals. Furthermore, with the assumptions of (iii) the stack Sec(Gr/R) is even a
Deligne-Mumford stack.

Let P be the fiber product of the diagram

Sec(Gr/R)
|
Sec(Gre /RP)) x Sec(Gre /RP)) «—=— Sec(Gre /R™P).

The morphism A is of finite type, and hence P is of finite type over Sec(Gr/R),
whence also locally of finite type over S with separated and quasi-compact diagonal.
Furthermore with the assumptions of (ii) (resp. (iii)) the stack P is of finite type over
S (resp. a Deligne-Mumford stack).
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For any scheme T' — S, the groupoid P(T) is equivalent to the category of pairs
(s,t), where s : Ry — Ggr, is a section and ¢ : pri(s) ~ pri(s) is an isomor-
phism in Q(Rg)), projecting to the canonical isomorphism in X (Rg? )). It follows
that Des(R/X) is isomorphic to the fiber product of the diagram

P

I(Sec(Gre /R®)) «—— Sec(Vre /R®)),
where I(Sec(Gr /R®))) denotes the inertia stack of Sec(Gr @ /R)) over S, 7 sends
(s,1) to
(73 (), o (e) 0 m33(e) 0 7y5 ' (1)),

where 7; : R®) — R (resp. m;; : R©®) — R(?)) denotes the projection to the i-th
factor (resp. i-th and j—th factor) and e sends ¢ to (¢,id). Since the morphism e
is a closed immersion (since Sec(Gr ) /R®)) has separated diagonal), it follows that
Des(R/X) is a closed substack of P. In particular, Des(R/X) is locally of finite type

over S with separated and quasi-compact diagonal, and with the assumptions of (ii)
(resp. (iii)) of finite type (resp. a Deligne-Mumford stack). O

Remark 4.4. Note that by descent theory, if R — X is flat then the pullback functor
Sec(G/X) — Des(R/X)

is an isomorphism of stacks. In particular, in this case it follows from (4.3 (ii)) that
if Sec(G xx R/R) is of finite type over S, then the stack Sec(G/X) is also of finite
type over S.

4.5. Passage to the maximal reduced subspace.

4.6. Let S be a noetherian scheme, X/S an algebraic S-space of finite type, and let
G — X be a quasi-finite and proper morphism from a finite type Deligne-Mumford
stack G/S with finite diagonal. Assume further that X is flat and proper over S.

Proposition 4.7 ([Ol, 5.11)). Let Xo <— X be a closed immersion defined by a
nilpotent ideal J C Ox, and assume X is flat over S. Let Gy denote the base change
G xx Xo. Then the natural map

Sec(G/X) — Sec(Go/Xo)
is of finite type.
4.8. The case of a finite morphism of spaces.

4.9. Let S be a noetherian scheme, and X/S a proper flat algebraic space over S.
Let G — X be a finite morphism (so G is also an algebraic space).

Proposition 4.10 ([O], 5.10]). The algebraic space Sec(G/X) is of finite type over
S.
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4.11. Behavior with respect to proper modifications of X.

4.12. Let S be a noetherian scheme, X/S an algebraic space of finite type, and let )
be a Deligne-Mumford stack of finite type over S with finite diagonal. Assume that
the following conditions hold:

(i) The formation of the coarse space 7y : Y — Y commutes with arbitrary base
change S’ — S.
(ii) X is proper and flat over S.

Proposition 4.13. Let m : X' — X be a proper surjection with X' a proper and
flat algebraic space over S. Let f : X — Y be a morphism and let G — X (resp.
G — X') denote the pullback along f (resp. fom) of Y. Then the pullback map

(4.13.1) Sec(G/X) — Sec(G'/X")
is of finite type.

Proof. By noetherian induction it suffices to show that 4.13.1 is of finite type after
making a dominant base change S’ — S of finite type. We may therefore assume that
S is integral. Note also that the projections G’ — X’ and G — X are proper and
quasi-finite since the morphism )} — Y is proper and quasi-finite.

Let

x Ltz 1. Xx
be the Stein factorization of m so that p is proper with p,Ox/ = Oz and q is finite.
After shrinking on S we may assume that Z is also flat over S and that the map
0Oz — p.Ox' remains an isomorphism after arbitrary base change on S. If Gz denotes
G X x Z then we have maps

Sec(G/X) — Sec(9z/2) — Sec(G'/X).

From this it follows that it suffices to consider the following two special cases.

Case 1: m,Ox: = Ox and the formation of m,Ox: commutes with arbitrary base
change on S.

Fix a section s’ : X’ — G’ and define A, to be the coherent sheaf of algebras on G
obtained by pushing forward O/ via the composite X’ — G’ — G. After shrinking
on S we may assume that the formation of Ay commutes with arbitrary base change
on S. If ¢’ is obtained from a morphism s : X — G, then since m,Ox, = Ox we have
Specg (Ay) mapping isomorphically to X. The fiber product

Sec(G/X) Xgec(gr/x7),s S

is therefore represented by the condition that the map Specg(As) — X is an isomor-
phism. If Z denotes the proper X-stack Specg(As) and g : Z — X the projection,
then the condition that g is étale is represented by an open subscheme of S and when
g is étale the condition that ¢ is an isomorphism is represented by an open of S.

Case 2: m is finite. By 4.7 it suffices to consider the case when X is reduced. In
this case by the same argument proving [SGAG6, XII.2.6] there exists a factorization
of m

X=X, —2 X, 2 P X=X

such that for every i if g; : Z; — X;_1 denotes X; X x, , X; then the sequence

(4.13.2) Ox, , — pi:Ox, = ¢+ Oz,
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is exact. After shrinking on S we may assume that all the X; and Z; are flat over S.
Let G; denote G x x X;. Then it suffices to show that each of the morphisms

Sec(Gi—1/Xi—1) — Sec(Gi/X;)

is of finite type.
In addition to assuming m finite, we may therefore also assume that the sequence

Ox = m.Ox = g.Oxrxx7

is exact, and that the same holds after arbitrary base change on S (after possibly
further shrinking on S). Let X denote the i + 1-fold fiber product of X’ over X.
After shrinking on S we may assume that X and X®) are flat over S. Define
Des(X’/X) as in 4.2. By 4.3 the stack Des(X’/X) is algebraic over S with separated
and quasi—compact diagonal.

The map 4.13.1 then factors as

Sec(G/X) —— Des(X'/X) —%— Sec(G'/X')

where F' is the functor sending a morphism s : X — G to the pullback of s to X’ with
the tautological descent datum. The morphism G sends (s’,0) to s’. We show that
both F' and G are of finite type.

That F' is of finite type can be seen as follows. Let (s’,0) € Des(X’/X)(S) denote
an object and consider the fiber product

P = M(Q/X) X%(X//X) S
Define A to be the equalizer of the two maps of sheaves on G
S;OX/ = s;prl*OXu)

induced by o. After shrinking on S we may assume that the formation of A commutes
with arbitrary base change on S. If (s’,0) is induced by a morphism s : X — G then
by the exactness of 4.13.2 the projection Specg(A) — X is an isomorphism. It follows,
as in case 1, that P is represented by an open subscheme of S.

To see that G is of finite type, consider a section s’ : X’ — G’ and let I denote the
finite X (M—space classifying isomorphisms prjo — prio. Then the fiber product

(4.13.3) Des(X"/X) Xsec(g/x7) S

is equal to the subfunctor of Sec(I/X ™) classifying isomorphisms o : pris’ — prs’
which satisfy the cocycle condition on X(?). By 4.10 the space Sec(I/X ™) is quasi—
compact with separated and quasi-compact diagonal. Let A denote the finite X (-
space classifying automorphisms of pris’. Then 4.13.3 is equal to the fiber product
of the diagram

Sec(I/XM) —“— Sec(A/X®?)

Tid
s,

where w is the map sending o to pri;(c)~! o priz(o) o pris(o). It follows that 4.13.3
is of finite type over S. (]
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5. Preliminary reductions

5.1. We now begin the proof of 1.1 by making some preliminary reductions. Using
[O], 2.3], we can assume that S is a noetherian scheme. By noetherian induction, to
prove that the map

(5.1.1) @S(‘X’y) —>Ho7mS(X,W)

is of finite type, it suffices to find a dominant morphism S’ — S of finite type such
that the pullback of 5.1.1 to S’ is of finite type. In particular we may assume S is
integral. By [O], 2.11], we may also assume that the formation of the coarse moduli
spaces of X and Y commute with arbitrary base change on S. In this case the right
side of 5.1.1 is canonically isomorphic to Homg(X, W), where X is the coarse moduli
space for X (with X proper over S by [Ol, 2.10]). Further shrinking on S lets us
assume that X is flat over S.

Let my : Y — Y denote the coarse moduli space of . The universal property
of the coarse moduli space [Ol, 2.4 (ii)] gives a map Y — W under ), and hence a
factorization

(5.1.2) Homg(X,Y) —%— Homg(X,Y) —— Homg(X, W)

of 5.1.1. Since the morphism 7y is proper and surjective [Ol, 2.6 (i)], and the map
Y — W is proper and quasi-finite, the morphism Y — W is proper and quasi—finite,
whence finite. By 4.10 the map b in 5.1.2 is of finite type since for any morphism
T — Homg(X,W) from a noetherian scheme T' corresponding to an S-morphism
f: Xy — W, the fiber product

Homg(X,Y) Xpom, (x,w) T

is isomorphic to Secp (Y xw, s X7 /Xr). To prove that 5.1.1 is of finite type it therefore
suffices to prove that the map a is of finite type.

To prove 1.1 we may therefore make the following additional assumptions which
will be in effect for the rest of this paper:

(i) The formation of the coarse space 7y : Y — Y commutes with arbitrary base
change S — S.
(ii) The space W is equal to Y.
(iii) S is noetherian.

6. Devissage to the case of a gerbe

Let the notation be as in 1.1.

6.1 (Reduction to the case X = X). After replacing S by an fppf cover, there exists
by assumption a finite flat cover Z — X with Z an algebraic space. In particular, Z
is proper over S. By 4.4 and 4.3 (ii), it suffices to prove 1.1 for Z, and so replacing
X by Z we may assume that X = X.

6.2. To prove that 1.1.1 is of finite type, it suffices to show that for any morphism
S’ — S of finite type and morphism S’ — Homg(X,Y") corresponding to a map
f: Xg — Yg, the fiber product

(6.2.1) Sec(G/Xs) = Homg (X, V) X pom, (x,v) S’



A BOUNDEDNESS THEOREM FOR HOM-STACKS 1019

is of finite type over S, where G = Y Xy, 5 Xg. To prove this we can without loss
of generality replace S by S’ and hence may assume that S = S’. Note that G — X
is proper and quasi-finite. Note also that without loss of generality, we can assume
that S is the spectrum of a noetherian integal domain. Furthermore, by noetherian
induction it suffices to exhibit a dominant morphism S’ — S of finite type such that
Sec(G/X) xg S’ is of finite type over S’.

6.3 (Reduction to the case when X is reduced with geometrically reduced generic
fiber). After possibly making a base change along a dominant generically finite mor-
phism S’ — S of finite type, where S’ is an integral affine scheme, we may assume that
the maximal reduced closed subscheme Xy, C X has geometrically reduced generic
fiber. After shrinking on S we may further assume that X is flat over S. By 4.7 the
map
Sec(G/X) — Sec(Go/Xo)

is of finite type (where Gy := G X x Xo). Replacing X by X, we may therefore assume
that X is reduced with geometrically reduced generic fiber.

6.4 (Reduction to the case when X/S is smooth and G/X has a section). Let k
denote an algebraic closure of k(S). By Chow’s lemma [L-MB, 16.6.1] there exists
a proper surjection Z; — G xg Spec(k) with Z; a scheme. Then by [deJ, 4.1] there
exists a proper surjective morphism Z — Z;, where Z/k is smooth. Note that G — X
is a proper surjection, so Z; — X xg Spec(k) is a proper surjection. By a standard
limit argument, it follows that we can find an integral affine scheme S’, a dominant
generically finite morphism S’ — S of finite type, a proper surjection Z — Xg/ such
that Z/S’ is smooth and proper, and a section Z — G over X. Replacing S by S’
we may therefore assume that there exists a proper surjection 7 : Z — X with Z/S
smooth and proper, and G X x Z — Z having a section. By 4.13, it therefore suffices
to consider X = Z.

6.5. Assume that X/S is smooth and that there exist a section s : X — G. Shrinking
the excellent S if necessary we may assume that S is regular. Hence X is also regular.
We can also assume X is connected so irreducible. Then G is also irreducible. Let
G* denote the normalization of the reduced and irreducible stack G,o.q. The stack G*
is also irreducible. Let U C G,eq be the dense open substack where G,oq is normal.
After shrinking S, we may assume that Geq is flat over S, and hence the image of U
in S is open. Furthermore by a standard reduction to the case of schemes, we can by
[EGA, IV.13.1.3] shrink some more on S so that G and G* have equidimensional fibers
over S of some pure dimension, say d. We can assume X is nonempty, so that G is
nonempty, and hence also U/ is nonempty. Also by reduction to the case of schemes,
one sees that by [EGA, IV.9.6] we can after shrinking some more on S assume that
the open immersion U — G .oq is fiberwise dense. This reduction implies that for any
point s € S the map G} — Geq,s is generically an isomorphism.

Lemma 6.6. (i) The morphism Greqa — X is a coarse moduli space for Gyeq.

(ii) The projection p : G* — X is a coarse moduli space for G*.

Proof. Since X is reduced, the section s : X — G is induced by a unique morphism
Sred : X — Greda over X. Therefore (i) follows from [Ol, 2.9 (i)]. For (ii), let Z C
Greqa be the complement of U and let Z C X be the closed image in X. Then the
complement U C X of Z is dense and satisfies the assumptions of [Ol, 2.9 (ii)]. O
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In fact the section s : X — G lifts uniquely to a section s* : X — G*. This follows
from the following general result:

Proposition 6.7. Let X be an integral Artin stack of finite type over a locally noe-
therian base scheme S, and let m : X* — X be its normalization. Then for any normal

integral scheme Z and dominant morphism f : Z — X there exists a unique lifting
1 Z—=X"of f.

Proof. By smooth descent theory and the uniqueness part of the proposition, it suffices
to construct the morphism locally in the smooth topology on X. We may therefore
assume that X is a scheme, in which case the result is standard [EGA, 11.6.3.9]. O

Let G* — G — X be the factorization given by 2.1.

Lemma 6.8. The proper, quasi-finite, and surjective map E* — X 1is an isomor-
phism.

Proof. To see that the morphism 7’ G = X is an isomorphism, we may work étale
locally on X and hence by [Ol, 2.12] can write G = [V/G] for some finite X -scheme
V. Since G is normal and V is étale over g the scheme V is also normal. Moreover,
the section s* induces a commutative dlagram

N, V4

x 9 x

where P is an étale G—torsor and « is G—equivariant. Since G — Xisan isomorphism
over a dense open subset of X, the map « is an isomorphism over a dense open subset
of X. Since P and V are both finite over X, the morphism « is also finite. Hence «
is a finite birational morphism between normal schemes whence an isomorphism. [

6.9. It follows that G* is an étale gerbe over X, and in particular is smooth over S.
For any point s € S, the equidimensional fiber G} is normal and the map G — G,
between pure d—dimensional reduced stacks is finite and even an isomorphism over
a dense open substack of the target. The same therefore also holds for the map
G¥ — (Gs)rea- By [EGA, 111.4.4.9] it follows that G is equal to the normalization of
(Gs)rea. In particular, any section X, — G lifts uniquely to a section X, — G (since
X5 — G5 necessarily factors through (Gg)rea). It follows that the map

Sec(G*/X) — Sec(G/X)

is surjective on field valued points. Hence to verify that Sec(G/X) is quasi—compact
it suffices to show that Sec(G*/X) is quasi-compact, which follows from 3.1.
This completes the proof of 1.1. O
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