
Math. Res. Lett. 14 (2007), no. 6, 995–1008 c© International Press 2007

TWO RESULTS ON THE WEIGHTED POINCARÉ INEQUALITY
ON COMPLETE KÄHLER MANIFOLDS

Ovidiu Munteanu

Abstract. In this paper we consider complete noncompact Kähler manifolds Mm that
satisfy the weighted Poincaré inequality with a weight function ρ(x) that has limit zero

at infinity of M . We prove that if the Ricci curvature lower bound RicM (x) ≥ −4ρ(x)

holds on M then the manifold has one nonparabolic end and if the bisectional curvature

is bounded from below by BKM (x) ≥ − ρ(x)

m2 then the manifold has one end, thus it is

connected at infinity. The two results that we prove are the Kähler version of Theorem

6.3 and Theorem 7.2 in [L-W4] and improve some results in [L-W].

1. Introduction

In [L-W4], P. Li and J. Wang studied the class of Riemannian manifolds that satisfy
a weighted Poincaré inequality and have the Ricci curvature bounded from below in
terms of the weight function. In particular, if the weight function is constant equal
to the greatest lower bound of the spectrum of the Laplacian, the rigidity theorems
proved in [L-W1] and [L-W2] for manifolds with positive spectrum are recovered.
Let us recall that a Riemannian manifold Mn of dimension n is said to satisfy the
weighted Poincaré inequality with a positive weight function ρ (x) if∫

M

ρ (x)φ2 (x) dv ≤
∫

M

|∇φ|2 (x) dv,

for any compactly supported smooth function φ ∈ C∞c (M) .
Moreover, if M is complete with respect to the ρ−metric defined by

ds2ρ = ρds2M ,

M is said to satisfy the property (Pρ).
Corollary 1.4 in [L-W4] states that the weighted Poincaré inequality is equivalent

to nonparabolicity of the manifold and this shows how large the class of manifolds
satisfying (Pρ) is.

We are interested in the manifolds satisfying property (Pρ) for a weight function ρ
that has limit zero at infinity,

lim
x→∞

ρ (x) = 0.

In this case Li-Wang have proved that for n ≥ 3, if

RicM (x) ≥ −n− 1
n− 2

ρ (x) ,

Received by the editors November 7, 2006.
Reaserch partially supported by NSF grant No. DMS-0503735

995



996 OVIDIU MUNTEANU

the manifold has only one nonparabolic end and furthermore if

RicM (x) ≥ − 4
n− 1

ρ (x) ,

then the manifold has one end.
A natural question is to investigate the corresponding setting for Kähler manifolds.

Li and Wang have proved in [L-W] that if Mm is a complete noncompact Kähler
manifold of complex dimension m ≥ 2 satisfying property (Pρ) with

lim
x→∞

ρ (x) = 0,

and the Ricci curvature is bounded from below by

(1) RicM (x) ≥ −4ρ (x)

then M has at most two nonparabolic ends. The result for parabolic ends states that
if

lim
x→∞

ρ (x) = 0,

and the bisectional curvature of M admits the lower bound

(2) BKM (x) ≥ − 1
m2

ρ (x)

then M has at most 2 ends for m ≥ 3 and at most 4 ends if m = 2. Note that
the above assumption on the bisectional curvature means that with respect to any
unitary frame,

Rαᾱββ̄(x) ≥ −(1 + δαβ̄)
1
m2

ρ (x) .

To round off the picture in the Kähler setting, let us recall that when ρ is constant,
ρ = λ1 (M) > 0, if the bisectional curvature lower bound BKM ≥ − 1

m2λ1 (M) holds
onM , then the manifold has at most two ends. Moreover, if the manifold has two ends
and bounded curvature, then it is isometrically covered by CHm. In other words, all
manifolds where equality holds in the Kähler version of Cheng’s upper bound estimate
for λ1(M) have the structure mentioned above ([L-W]).

However, if ρ is not constant so far only in the case ρ → 0 as x → ∞ we are able
to draw some information on the structure of M .

The purpose of this article is to improve the theorems of Li-Wang in the Kähler
category, for ρ → 0 at infinity of M . Our improvement consists of showing that M
needs to have one nonparabolic end if (1) holds and if (2) holds and m ≥ 3 then M
has one end. Therefore, in this sense for Kähler manifolds we have analogous results
to those for Riemannian manifolds.

Before discussing the results, let us make some observations. First, our argument
does not work if m = 2 and (2) holds. There is no indication yet that in this case
the manifold needs to have only one end. Another remark concerns the bisectional
curvature lower bound that is always assumed in the parabolic ends case mentioned
above. Using a different argument, in [M] we generalized Li-Wang’s result for mani-
folds with λ1 (M) > 0 and admitting the corresponding Ricci curvature lower bound,
RicM ≥ − 2(m+1)

m2 λ1 (M). Similar results might hold for the weighted Poincaré in-
equality.
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2. The results

Theorem 1. Let Mm be a complete Kähler manifold of complex dimension m ≥ 2
and with property (Pρ). Suppose that the Ricci curvature of M is bounded from below
at any x ∈M by

RicM (x) ≥ −4ρ (x) .
If moreover

lim
x→∞

ρ (x) = 0

then M has only one nonparabolic end.

Proof. Let us assume by absurd that M has at least two nonparabolic ends and thus
by the theory of Li-Tam ([L-T]) there exists a bounded harmonic function with finite
Dirichlet integral on M .

We may assume that inf f = 0 and sup f = 1 with infimum achieved at infinity
of a nonparabolic end E and supremum at infinity of the other nonparabolic end
F = M\E.

It is a fact that since f is harmonic and with finite Dirichlet integral then f is
pluriharmonic and one has the improved Bochner formula for pluriharmonic functions:

∆h ≥ −2ρh+ h−1 |∇h|2 ,

where h = |∇f |
1
2 .Moreover, Li-Wang [L-W] have shown that this is in fact an equality

and concluded from here that the manifold must have at most two nonparabolic ends.
We will improve their argument using the Bochner formula of a slightly different

function. Let
g = |∇f |

1
2 ϕ (f) ,

with ϕ : (0, 1) → (0,∞) a C∞ function that will be determined later. We need to
compute the Laplacian of g :

∆g = (∆h)ϕ+ h∆ϕ+ 2∇h · ∇ϕ

=
(
−2ρh+ h−1 |∇h|2

)
ϕ+ h∆ϕ+ 2∇h · ∇ϕ

=
(
−2ρh+ (gϕ−1)−1

∣∣∇(gϕ−1)
∣∣2)ϕ+ h∆ϕ+ 2∇(gϕ−1) · ∇ϕ

=
(
−2ρh+ g−1ϕ

(
|∇g|2 ϕ−2 + g2

∣∣∇ϕ−1
∣∣2 + 2ϕ−1g∇ϕ−1 · ∇g

))
ϕ

+h∆ϕ+ 2ϕ−1∇g · ∇ϕ+ 2g∇ϕ−1 · ∇ϕ
and hence we get:

∆g = −2ρg + g−1 |∇g|2 + gϕ−2 |∇ϕ|2 − 2ϕ−1∇ϕ · ∇g + gϕ−1∆ϕ

+2ϕ−1∇g · ∇ϕ− 2gϕ−2 |∇ϕ|2

= −2ρg + g−1 |∇g|2 + gϕ−1∆ϕ− gϕ−2 |∇ϕ|2

= −2ρg + g−1 |∇g|2 + g |∇f |2
(
ϕ−1ϕ′′ − ϕ−2(ϕ′)2

)
.

Since we will use g in the weighted Poincaré inequality, we need also define φ, a
non-negative Lipschitz function with compact support in M ,

φ = χψ,
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with ψ depending on the ρ−distance function

ψ (x) =

 1
R− rρ

0

on
on
on

Bρ(R− 1)
Bρ (R) \Bρ (R− 1)
M\Bρ (R)

and χ defined on the level sets of f as follows

χ (x) =


0

(− log δ)−1(log f − log (δε))
(− log δ)−1(log (1− f)− log (δε))

1

on L (0, δε) ∪ L (1− δε, 1)
on L (δε, ε) ∩ E
on L (1− ε, 1− δε) ∩ F
otherwise.

We used the notation L (a, b) = {x ∈M | a ≤ f (x) ≤ b} . Let us also denote the level
set of f at t by l (t) = {x ∈M | f (x) = t}. In the definition of φ, we fix R, δ and ε ,
and the plan is to first let R→∞ and then make δ and ε → 0.

We have, since φ has compact support in M,∫
M

φg∇φ · ∇g =
1
4

∫
M

∇φ2 · ∇g2

= −1
2

∫
M

φ2g∆g − 1
2

∫
M

φ2 |∇g|2

=
∫

M

φ2ρg2 −
∫

M

φ2 |∇g|2

−1
2

∫
M

φ2g2 |∇f |2
(
ϕ−1ϕ′′ − ϕ−2(ϕ′)2

)
.

Plugging this relation into the weighted Poincaré inequality∫
M

ρφ2g2 ≤
∫

M

|∇(φg)|2 =
(∫

M

|∇φ|2 g2 +
∫

M

φg∇φ · ∇g
)

+
∫

M

|∇g|2 φ2 +
∫

M

φg∇φ · ∇g

it follows that

(3)
1
2

∫
M

φ2g2 |∇f |2
(
ϕ−1ϕ′′ − ϕ−2(ϕ′)2

)
≤
∫

M

|∇φ|2 g2 +
∫

M

φg∇φ · ∇g.

Notice that if we define ϕ by

ϕ (f) = (f + 1)−
1
2

then ϕ−1ϕ′′ − ϕ−2(ϕ′)2 = 1
2 (f + 1)−2

. It is clear that the contradiction follows if
we prove that the right hand side of (3) vanishes as φ → 1. Let us check this on the
end E, the proof on the end F = M\E is similar. To prove our claim we follow the
argument in [L-W].

Let Eρ (R) = E ∩Bρ (R) and denote

Ω = {x ∈ E | dρ(x,Eρ(R) ∩ L(δε, ε)) ≤ 1} .

In the following, we will use many times the gradient estimate and decay estimate for
f , see [L-W4]. Specifically, the following version of gradient estimate is very useful in
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our context:

|∇f | (x) ≤ C(sup
Ω

√
ρ)f (x) , for any x ∈ L (δε, ε) ∩ Eρ(R).

Recall also the fundamental integral decay estimate for f :

∫
Eρ(R)\Eρ(R−1)

ρf2 ≤ c1 exp (−2R) .

Having these results on the decay of f , we see that

∫
E

|∇φ|2 g2 ≤
∫

E

|∇φ|2 h2

≤ 2
∫

E

|∇ψ|2 h2χ2 + 2
∫

E

|∇χ|2 h2ψ2

≤ 2
∫

Eρ(R)\Eρ(R−1)

ρ |∇f |χ2 + 2(− log δ)−2

∫
L(δε,ε)∩E

|∇f |3 f−2

≤ c2 (δε)−1 exp (−2R) + c3(− log δ)−1,

where the last inequality follows using the Lemma 5.1 of [L-W4]. To estimate

∫
M

φg∇φ · ∇g

we use similar ideas and the fact that ρ → 0 at infinity. We have, integrating by
parts:

2
∫

E

φg∇φ · ∇g =
1
2

∫
E

∇φ2 · ∇g2

=
1
2

∫
L(δε,ε)∩E

ψ2∇χ2 · ∇g2 +
1
2

∫
E

χ2∇ψ2 · ∇g2

≤ −1
2

∫
L(δε,ε)∩E

g2
(
ψ2∆χ2 +∇χ2 · ∇ψ2

)
+

1
2

∫
l(ε)∩E

g2ψ2(χ2)υ −
1
2

∫
l(δε)∩E

g2ψ2(χ2)υ

+
∫

Eρ(R)\Eρ(R−1)

χ2ψ |∇ψ|
∣∣∇g2

∣∣ ,
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where υ is the unit normal given by |∇f | υ = ∇f. The first term in the right hand
side is, using that 0 < ϕ < 1,

−1
2

∫
L(δε,ε)∩E

g2
(
ψ2∆χ2 +∇χ2 · ∇ψ2

)
≤ −

∫
L(δε,ε)∩E

g2
(
ψ2χ∆χ+ |∇χ|2

)
+2
∫

L(δε,ε)∩E

χψ |∇χ| · |∇ψ| g2

≤ −
∫

L(δε,ε)∩E

g2ψ2χ∆χ+
∫

L(δε,ε)∩E

g2χ2 |∇ψ|2

≤ (− log δ)−1

∫
L(δε,ε)∩E

f−2 |∇f |3 ϕ2χ+
∫

E

|∇ψ|2 h2χ2

≤ c4 sup
Ω

√
ρ(− log δ)−1

∫
L(δε,ε)∩E

f−1 |∇f |2 + c5 (δε)−1 exp (−2R)

= c6 sup
Ω

√
ρ+ c5 (δε)−1 exp (−2R) .

Note that the assumption on ρ implies that supΩ
√
ρ → 0 as δ, ε → 0. The nonzero

boundary term can be bounded from above by:

1
2

∫
l(ε)∩E

g2ψ2(χ2)υ ≤
∫

l(ε)∩E

h2χυ = (− log δ)−1

∫
l(ε)∩E

f−1 |∇f |2

≤ c7(− log δ)−1.

Finally, let us deal with the|∇ψ| term:∫
Eρ(R)\Eρ(R−1)

χ2ψ |∇ψ|
∣∣∇g2

∣∣ ≤
∫

Eρ(R)\Eρ(R−1)

χ2√ρ
∣∣∇ϕ2

∣∣h2

+
∫

Eρ(R)\Eρ(R−1)

χ2√ρ
∣∣∇h2

∣∣ϕ2.

In the right hand side of the above formula and many times in this paper we mention
χ2 in various integrals only as a reminder that we are also integrating on the support
of χ. Note that by Schwarz inequality,∫

Eρ(R)\Eρ(R−1)

χ2√ρ
∣∣∇h2

∣∣ϕ2 ≤

(∫
Eρ(R)\Eρ(R−1)

χ2ρ

) 1
2

×

×

(∫
Eρ(R)\Eρ(R−1)

χ2
∣∣∇h2

∣∣2) 1
2

.

Furthermore, we have∫
Eρ(R)\Eρ(R−1)

χ2ρ ≤ (δε)−2
∫

Eρ(R)\Eρ(R−1)

ρf2 ≤ (δε)−2 exp (−2R) .

To estimate the second term in the right hand side, one can use again the Bochner
formula ∆h2 ≥ −4ρh2, and integrate this formula with η2h2, where η is a compactly
supported function depending on the ρ−distance with support in Eρ(R+1)\Eρ(R−2)
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and η = 1 on Eρ(R)\Eρ(R−1). Then, using computations similar to above it follows∫
Eρ(R)\Eρ(R−1)

∣∣∇h2
∣∣2 ≤ c9

∫
Eρ(R+1)\Eρ(R−2)

ρh4 ≤ c10 exp (−2R) .

Finally, observe that∫
Eρ(R)\Eρ(R−1)

√
ρ
∣∣∇ϕ2

∣∣h2 ≤
∫

Eρ(R)\Eρ(R−1)

√
ρ |∇f |2 ≤ c11 exp (−2R) ,

by Corollary 2.3 in [L-W4]. Putting everything together we see that the right hand
side of (3) vanishes if we first allow R→∞, and then make δ, ε→ 0. Hence f has to
be constant, i.e. M has one nonparabolic end. �

The following Corollary shows that Theorem 1 can be localized on each end of M .
Now ρ is assumed to converge to zero at infinity of only one end, but it can have any
bounded behaviour on the other ends (if they exist).

Corollary 1. Let Mm be a complete Kähler manifold of complex dimension m ≥ 2
and with property (Pρ) for ρ bounded. Suppose that the Ricci curvature of M is
bounded from below by

RicM (x) ≥ −4ρ (x)
and that there exists a nonparabolic end E where

lim
x→∞, x∈E

ρ (x) = 0.

Then E is the only nonparabolic end of M .

Proof. Using the same notations as in Theorem 1, we need to show that∫
M

φg∇φ · ∇g → 0,

for g = ϕ |∇f |
1
2 . Without loss of generality assume that

inf
x∈E

f (x) = 0 and sup
x∈M\E

f (x) = 1.

Now we will choose a different ϕ, maintaining that ϕ−1ϕ′′ − ϕ−2(ϕ′)2 > 0. Hence
let

ϕ (f) =
(
f +

1
2

)−α

,

for a fixed α > 0. Then ϕ−1ϕ′′−ϕ−2(ϕ′)2 = α(f + 1
2 )−2 > 0 and it is easy to see that

(− log δ)−1

∫
L(δε,ε)∩E

f−2 |∇f |3 ϕ2 ≤ c1 sup
Ω

√
ρ

(
1
2

+ δε

)−2α

,

(− log δ)−1

∫
L(1−ε,1−δε)∩(M\E)

f−2 |∇f |3 ϕ2 ≤ c2

(
1
2

+ 1− ε

)−2α

.

Therefore, using the estimates in Theorem 1 we get after letting R→∞

α

2

∫
M

χ2g2 |∇f |2 (f +
1
2
)−2 ≤ c1 sup

Ω

√
ρ

(
1
2

+ δε

)−2α

+ c2

(
1
2

+ 1− ε

)−2α

+c322α (− log δ)−1
.
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Using the assumption on ρ it follows that after we let δ, ε → 0 the above inequality
becomes

α

2

∫
M

g2 |∇f |2 (f +
1
2
)−2 ≤ c2

(
3
2

)−2α

.

However,

α

2

∫
L(0, 1

2 )∩E

h2 |∇f |2 (f +
1
2
)−2 ≤ α

2

∫
M

g2 |∇f |2 (f +
1
2
)−2 ≤ c2

(
3
2

)−2α

,

which is true for any α > 0. This clearly yields a contradiction if we let α→∞ . �

Theorem 2. Let Mm be a complete Kähler manifold of complex dimension m ≥ 3
and with property (Pρ). Suppose that the bisectional curvature of M is bounded from
below by

BKM (x) ≥ −ρ (x)
m2

.

If
lim

x→∞
ρ (x) = 0

then M has one end.

Proof. To prove Theorem 2 we exploit the same idea, though there are some particu-
larities here. First, there is the fact that the function is not necessarily pluriharmonic,
so the Bochner formula is not as simple as the one used in Theorem 1. Second, to
obtain the contradiction, we will have to manipulate various integral estimates of the
complex Hessian, which are more technical.

It is clear from Theorem 1 that M has exactly one nonparabolic end F , so let us
assume by absurd that M has another end E, which has to be parabolic. Then there
exists a positive harmonic function f with the following properties ([L-W4, L-W]):

1. On F the function satisfies the decay estimate∫
Fρ(R)\Fρ(R−1)

ρf2 ≤ c exp (−2R) ,

2. On E the function is proper and
3. f (x) →∞ as x→∞, x ∈ E and infF f = 0.
Let us consider

h =| fαβ |
1
2

and for a smooth function ϕ : (0,∞) → (0,∞) let

g = hϕ (f) .

Recall that under the assumption on the bisectional curvature, the following Bochner
formula holds ([L-W3]):

∆h ≥ − 2
m
ρh− m− 2

m
h−1 |∇h|2 .

In fact, P. Li and J. Wang have proved in [L-W] that this must be an equality if ρ→ 0
at infinity and concluded from here that M has at most two ends. The same as in
the proof of Theorem 1, we can improve Li-Wang’s result using g as a test function
instead of h, for a suitable choice of ϕ.

Now it is time to fix the cut-off functions. On the parabolic end E we consider



TWO RESULTS ON THE WEIGHTED POINCARÉ INEQUALITY 1003

φ =

 1
T−1 (3T − f)

0

on
on
on

L (0, 2T ) ∩ E
L (2T, 3T ) ∩ E
L (3T,∞) ∩ E

,

because f is proper on this end so there is no need of another cut-off ψ. On the
nonparabolic end F we consider the same φ = χψ as in the proof of Theorem 1.

Let us compute the Laplacian of g :

∆g = (∆h)ϕ+ h∆ϕ+ 2∇h · ∇ϕ

=
(
− 2
m
ρh− m− 2

m
h−1 |∇h|2

)
ϕ+ h∆ϕ+ 2∇h · ∇ϕ

=
(
− 2
m
ρgϕ−1 − m− 2

m
(gϕ−1)−1

∣∣∇(gϕ−1)
∣∣2)ϕ

+gϕ−1∆ϕ+ 2∇(gϕ−1) · ∇ϕ

= − 2
m
ρg − m− 2

m
ϕ2g−1

(
ϕ−2 |∇g|2 + g2ϕ−4 |∇ϕ|2 − 2ϕ−3g∇ϕ · ∇g

)
+gϕ−1∆ϕ+ 2ϕ−1∇g · ∇ϕ− 2gϕ−2 |∇ϕ|2 ,

and therefore

∆g = − 2
m
ρg − m− 2

m
g−1 |∇g|2 + 2

m− 2
m

ϕ−1∇ϕ · ∇g

−m− 2
m

gϕ−2 |∇ϕ|2 + gϕ−1∆ϕ+ 2ϕ−1∇g · ∇ϕ− 2gϕ−2 |∇ϕ|2

= − 2
m
ρg − m− 2

m
g−1 |∇g|2 − (

m− 2
m

+ 2)gϕ−2 |∇ϕ|2

+2(
m− 2
m

+ 1)ϕ−1∇ϕ · ∇g + gϕ−1∆ϕ.

Now let us use this formula to compute the following integral:

−
∫

M

φ2g∆g =
2
m

∫
M

ρg2φ2 +
m− 2
m

∫
M

φ2 |∇g|2

+(
m− 2
m

+ 2)
∫

M

φ2g2ϕ−2 |∇ϕ|2 + (
m− 2
m

+ 1)
∫

M

φ2g2∆ logϕ

−
∫

M

φ2g2ϕ−1∆ϕ+ (
m− 2
m

+ 1)
∫

M

g2∇ logϕ · ∇φ2

=
2
m

∫
M

ρg2φ2 +
m− 2
m

∫
M

φ2 |∇g|2

+
∫

M

φ2g2 |∇f |2
(
ϕ−2(ϕ′)2 +

m− 2
m

ϕ−1ϕ′′
)

+ (
m− 2
m

+ 1)
∫

M

g2∇ logϕ · ∇φ2,

where we used that

−2
∫

M

φ2gϕ−1∇ϕ · ∇g = −
∫

M

φ2∇ logϕ · ∇g2

=
∫

M

g2φ2∆ logϕ+
∫

M

g2∇ logϕ · ∇φ2.
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Just as in Theorem 1 the above computations are used to obtain the cross-term:

m

2
· 2
∫

M

φg∇φ · ∇g =
∫

M

ρg2φ2 −
∫

M

φ2 |∇g|2

+
m

2

∫
M

φ2g2 |∇f |2
(
ϕ−2(ϕ′)2 +

m− 2
m

ϕ−1ϕ′′
)

+(m− 1)
∫

M

g2∇ logϕ · ∇φ2

and using the weighted Poincaré inequality we get:

m

2

∫
M

φ2g2 |∇f |2
(
−m− 2

m
ϕ−1ϕ′′ − ϕ−2(ϕ′)2

)
≤ −(m− 2)

∫
M

φg∇φ · ∇g

+
∫

M

|∇φ|2 g2 + (m− 1)
∫

M

g2∇ logϕ · ∇φ2.(4)

Let us now consider

ϕ (f) = 1− 1
f + 3

.

It is clear that 2
3 < ϕ < 1, and by direct calculus one can see that

−m− 2
m

ϕ−1ϕ′′ − ϕ−2(ϕ′)2 = ϕ−2(f + 3)−4

(
2
m− 2
m

(f + 2)− 1
)

>
1
3
ϕ−2(f + 3)−4.

This shows that if the right hand side of (4) vanishes as φ→ 1 then g has to be zero,
i.e. f is pluriharmonic. However, the same argument as in Theorem 1 will imply that
f must be in fact constant, which is a contradiction.

To prove the claim that the right hand side of (4) vanishes as φ → 1 we follow
[L-W]. Let us work first on the end E :

−
∫

E

φg∇φ · ∇g =
1
4

∫
L(2T,3T )∩E

g2∆φ2 +
1
2

∫
l(2T )∩E

g2φυ

≤ 1
2
T−2

∫
L(2T,3T )∩E

g2 |∇f |2 +
1
2
T−1

∫
l(2T )∩E

g2 |∇f |

≤ 1
2
T−2

∫
L(2T,3T )∩E

h2 |∇f |2 +
1
2
T−1

∫
l(2T )∩E

h2 |∇f | ,

We claim that there is a sequence of T ′s for which both these terms converge to zero
as T →∞.
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Denote D = {x ∈ E |dρ (x, L (2T, 3T ) ∩ E) ≤ 1} . Note that if fij denotes the real
Hessian of f then using Lemma 5.1 of [L-W4] we have

T−2

∫
L(2T,3T )∩E

h2 |∇f |2 ≤ T−2

(∫
L(2T,3T )∩E

|∇f |4
) 1

2
(∫

L(2T,3T )∩E

h4

) 1
2

≤ c1T
−2(sup

D

√
ρ)

(∫
L(2T,3T )∩E

f2 |∇f |2
) 1

2

×

×

(∫
L(2T,3T )∩E

∣∣fαβ̄

∣∣2) 1
2

≤ c2T
− 1

2 (sup
D

√
ρ)

(∫
L(2T,3T )∩E

|fij |2
) 1

2

.

We now invoke the Bochner formula

∆ |∇f |2 + 2m−2ρ |∇f |2 ≥ 2 |fij |2 ,

which we integrate with a cut-off η2 :

2
∫

M

η2 |fij |2 ≤
∫

M

η2∆ |∇f |2 + 2m−2

∫
M

ρη2 |∇f |2 .

Integrating by parts and using that |fij | ≥ |∇ |∇f || it results that the following
inequality holds:

(5)
∫

M

η2 |fij |2 ≤
∫

M

|∇η|2 |∇f |2 + 2m−2

∫
M

ρη2 |∇f |2 .

Choosing

η =


0

T−1 (f − T )
1

T−1 (4T − f)

on
on
on
on

L (0, T ) ∪ L (4T,∞) ∪ F
L (T, 2T ) ∩ E
L (2T, 3T ) ∩ E
L (3T, 4T ) ∩ E,

one can see that from (5) it follows
∫

L(2T,3T )∩E
|fij |2 ≤ c3T. From here we deduce

that

lim
T→∞

T−2

∫
L(2T,3T )∩E

h2 |∇f |2 = 0,

and applying the mean value theorem it results that there exists a sequence Ti →∞
such that

lim
i→∞

T−1
i

∫
l(2Ti)∩E

h2 |∇f | = 0.

Hence, if from now on we work with φ defined by this sequence of Ti, we have
−
∫

E
φg∇φ · ∇g → 0. The rest of the proof for E is to notice that∫

M

g2∇ logϕ · ∇φ2 = −2T−1

∫
L(2T,3T )∩E

ϕh2 |∇f |2 (f + 3)−2
φ ≤ 0.

This shows that the right hand side of (4) vanishes on E as φ→ 1.
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On the nonparabolic end F we want to take φ = χψ, as in Theorem 1. We have,
by computations similar to those on the parabolic end, that

−2
∫

M

φg∇φ · ∇g ≤ 1
2

∫
L(δε,ε)∩F

g2
(
ψ2∆χ2 +∇χ2 · ∇ψ2

)
−1

2

∫
l(ε)∩F

g2ψ2(χ2)υ

+
∫

Fρ(R)\Fρ(R−1)

χ2ψ |∇ψ|
∣∣∇g2

∣∣
≤

∫
L(δε,ε)∩F

g2ψ2χ∆χ+ 2
∫

L(δε,ε)∩F

g2ψ2 |∇χ|2

+
∫

L(δε,ε)∩F

g2χ2 |∇ψ|2 +
∫

Fρ(R)\Fρ(R−1)

χ2 |∇ψ|
∣∣∇g2

∣∣ ,
where we have used that

−1
2

∫
l(ε)∩F

g2ψ2(χ2)υ = −(log δ)−1

∫
l(ε)∩F

g2ψ2f−1 |∇f | ≤ 0.

Let us denote Ω = {x ∈ F | dρ(x, Fρ(R) ∩ L(δε, ε)) ≤ 1}. We deal with the |∇ψ|
terms first. The Schwarz inequality implies:∫

Fρ(R)\Fρ(R−1)

χ2 |∇ψ|
∣∣∇h2

∣∣ ≤

(∫
Fρ(R)\Fρ(R−1)

χ2ρ

) 1
2

×

×

(∫
Fρ(R)\Fρ(R−1)

χ2
∣∣∇h2

∣∣2) 1
2

,

where now we need to use once more the Bochner formula

∆h2 +
4
m
ρh2 ≥ 4

m
|∇h|2

to see that ∫
Fρ(R)\Fρ(R−1)

∣∣∇h2
∣∣2 ≤ c5 exp (−2R) .

On the other hand,∫
Fρ(R)\Fρ(R−1)

χ2 |∇ψ|
∣∣∇g2

∣∣ ≤
∫

L(δε,ε)∩F

χ2 |∇ψ|
∣∣∇h2

∣∣ϕ2

+
∫

Fρ(R)\Fρ(R−1)

χ2 |∇ψ|
∣∣∇ϕ2

∣∣h2

≤ c6 (δε)−1 exp (−2R)

+
∫

Fρ(R)\Fρ(R−1)

√
ρ |∇f | |fij |

≤ c7 (δε)−1 exp (−2R) .
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by some estimates on |fij |2that follow from (5), this time with η a cut-off depending
on the ρ−distance function. Consequently, if we first let R→∞ and then δ, ε→ 0 it
follows that ∫

L(δε,ε)∩F

g2χ2 |∇ψ|2 +
∫

Fρ(R)\Fρ(R−1)

χ2 |∇ψ|
∣∣∇g2

∣∣→ 0.

Now we need to check the ∆χ term:∫
L(δε,ε)∩F

g2ψ2χ∆χ = −(− log δ)−1

∫
L(δε,ε)∩F

g2ψ2f−2 |∇f |2 ≤ 0

and the |∇χ|2 term:∫
L(δε,ε)∩F

g2ψ2 |∇χ|2 ≤ (− log δ)−2

∫
L(δε,ε)∩F

h2f−2 |∇f |2

≤ (− log δ)−2

(∫
L(δε,ε)∩F

∣∣fαβ̄

∣∣2 f−1

) 1
2

×

×

(∫
L(δε,ε)∩F

f−3 |∇f |4
) 1

2

.

Using integration by parts one has:

2
∫

M

η2 |fij |2 f−1 ≤
∫

M

η2f−1
(
∆ |∇f |2 + 2m−2ρ |∇f |2

)
≤ 2

∫
M

η2f−2 |∇f |2 |fij |+ 4
∫

M

ηf−1 |∇f | |∇η| |fij |

+2m−2

∫
M

ρη2f−1 |∇f |2

≤ 1
2

∫
M

η2f−1 |fij |2 + 2
∫

M

η2f−3 |∇f |4 +
1
2

∫
M

η2f−1 |fij |2

+8
∫

M

f−1 |∇f |2 |∇η|2 + 2m−2

∫
M

ρη2f−1 |∇f |2 ,

which shows that∫
M

η2 |fij |2 f−1 ≤ 2
∫

M

η2f−3 |∇f |4+8
∫

M

f−1 |∇f |2 |∇η|2+2m−2

∫
M

ρη2f−1 |∇f |2 .

This holds for any compactly supported function η, in particular let us take η = η1 ·ψ,
where

η1 =


0

(log 2)−1
(
log f − log(1

2δε)
)

1
(log 2)−1 (log 2ε− log f)

on
on
on
on

L(0, 1
2δε) ∪ L (2ε,∞) ∪ E

L( 1
2δε, δε) ∩ F

L (δε, ε) ∩ F
L (ε, 2ε) ∩ F,

and ψ is the cut-off defined by the ρ−distance function in the proof of Theorem 1.
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One can prove now that the following estimate holds∫
L(δε,ε)∩F

∣∣fαβ̄

∣∣2 f−1 ≤
∫

L(δε,ε)∩F

|fij |2 f−1 ≤ c8(− log δ),

which implies that ∫
L(δε,ε)∩F

g2ψ2 |∇χ|2 → 0 as δ, ε→ 0.

Thus, on the nonparabolic end F the cross-term −2
∫

M
φg∇φ · ∇g also vanishes as

φ→ 1. Finally, we have∫
F

g2∇ logϕ · ∇φ2 = 2(− log δ)−1

∫
L(δε,ε)∩F

ϕh2f−1 |∇f |2 (f + 3)−2

≤ (− log δ)−1

∫
L(δε,ε)∩F

h2f−1 |∇f |2

≤ (− log δ)−1

(∫
L(δε,ε)∩F

∣∣fαβ̄

∣∣2 f−1

) 1
2
(∫

L(δε,ε)∩F

f−1 |∇f |4
) 1

2

,

which also converges to zero as ε, δ → 0 by the above estimates. It means that
our claim is true, i.e. g = 0. Therefore, one gets that fαβ̄ = 0, that is to say f is
pluriharmonic, contradiction. Indeed, this can be seen using the improved Bochner
formula from Theorem 1 and observing that the bisectional curvature lower bound
that we have assumed in Theorem 2 implies the Ricci curvature lower bound from
Theorem 1. Therefore, M has one end. �
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