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ALGEBRAIC CYCLES AND MOTIVIC GENERIC ITERATED
INTEGRALS

Hidekazu Furusho and Amir Jafari

Abstract. Following [GGL1], we will give a combinatorial framework for motivic study
of iterated integrals on the affine line. We will show that under a certain genericity

condition these combinatorial objects yield to elements in the motivic Hopf algebra

constructed in [BK]. It will be shown that the Hodge realization of these elements
coincides with the Hodge structure induced from the fundamental torsor of path of

punctured affine line.

1. Introduction

Using cubical algebraic cycles, Bloch and Křiž [BK] constructed a category of mixed
Tate motives over any field F (MTM(F ) for short). They also constructed its Hodge
realization and étale realization functor. Under the K(π,1)-conjecture (cf. §2), the
desired formula

(1.1) ExtiMTM(F )(Q(0),Q(n)) ∼= grγ
i K2n−i(F )Q

holds in this category. Here RHS is a graded quotient of the algebraic K-theory for
F with respect to γ-filtration. Our final aim is to construct a motivic fundamental
group of the affine line minus finite set in MTM(F ), which is equivalent to construct
motivic iterated integrals. Our main results in this paper is a construction of motivic
iterated integrals in generic positions.

In contrast there is another category of mixed Tate motives constructed for a
field with characteristic 0 satisfying the Beilinson-Soulé vanishing conjecture, that
is, grγ

r K2r−p(F )Q = 0 for p 6 0 with (r, p) 6= (0, 0). This category is a heart of
t-structure given in [L1] of the sub-triangulated category generated by Tate motives
inside the triangulated category of mixed motives over F constructed by Voevodsky
[V] and Levine [L3]. This category admits Hodge and étale realization [L3, H] and
satisfies the desired formula above. Deligne and Goncharov [DG] constructed a mo-
tivic fundamental group of the affine line minus finite set in this category. This gives
motivic iterated integrals in this category. As far as we know, the interrelationship
between this category and that of Bloch-Křiž’s mixed Tate motives are not known
well although they are conjecturally equivalent. Deligne-Goncharov’s construction of
motivic fundamental group minus finite sets does not imply the existence of motivic
iterated integrals in the category MTM(F ) of Bloch-Křiž’s mixed Tate motives.
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For s0, . . . , sn+1 ∈ C and a topological path γ(t) (0 6 t 6 1) with γ(0) = s0 and
γ(1) = sn+1. and γ(t) ∩ {si} = ∅, the iterated integral is defined to be

Itγ
∫ sn+1

s0

dt

t− s1
◦ · · · ◦ dt

t− sn
:=

∫
06t16···6tn61

dγ(t1)
γ(t1)− s1

∧ · · · ∧ dγ(tn)
γ(tn)− sn

.

For elements s0, . . . , sn+1 ∈ A1
F , we want to construct a motivic analogue of the

above iterated integral which will be an element of the motivic Hopf algebra χF (n)
(definition 2.1) and we denote it by I(s0; s1, . . . , sn; sn+1). The special case with
s0 = 0, s1 = 1, s2 = · · · = sn = 0, sn+1 = z which (up to a sign) represents
Lin(z) :=

∑∞
k=1 zk/kn, was constructed in [BK]. Unfortunately in order to have an

admissible cycle we have to assume the following genericity condition;

Definition 1.1. The sequence s0, . . . , sn+1 is generic if either s0 = sn+1 holds or the
non-zero terms do not repeat.

This generic condition is more enlarged than the condition given in [GGL2], where
it is assumed that all si’s are non-zero and distinct. With allowing zero to repeat
we recover the expression given in [BK] for the polylogarithm, and moreover we get
expressions for (several variable) multiple polylogarithm Lin1,...,nm(z1, . . . , zm) for
the values zi such that zi . . . zj 6= 1 for 1 6 i 6 j 6 n. In fact the method will
work for certain sequences which are not generic, examples of such sequences are
(0; s1, . . . , sn; a) where at most two of si’s are equal to 1 and the rest are zero. This
will imply the existence of a motive giving double zeta value ζ(n, m) with n+m: even
for a number field F (§8).

Our construction of motivic iterated integrals in generic position is based on the
combinatorial framework of trees. We will consider a sum of trivalent trees with
prescribed decorations and define motivic iterated integrals to be its corresponding
cycle in Definition 4.4.

Theorem 1.2. If F is a subfield of C, the Hodge realization of the motivic iterated
integral (−1)nI(s0; s1, . . . , sn; sn+1) agrees with the framed mixed Hodge Tate structure
corresponding to the above iterated integral.

We will prove that motivic iterated integrals satisfy the usual properties of the
iterated integrals, namely:

Theorem 1.3. Under the above genericity assumption for a, b, si the elements
I(a; s1, . . . , sn; b) satisfy the following properties:
(1)Triviality: I(a; b) = 1 and I(a; s1, . . . , sn; a) = 0.
(2) Shuffle relation:

I(a; s1, . . . , sn; b) · I(a; sn+1, . . . , sn+m; b) =
∑

σ∈Sh(n,m)

I(a; sσ(1), . . . , sσ(n+m); b).

Here Sh(n, m) is the set of bijections τ : {1, . . . , n + m} → {1, . . . , n + m} satisfying
τ(1) < · · · < τ(n), τ(n + 1) < · · · τ(n + m).
(3)Path composition:

I(a; s1, . . . , sn; b) =
n∑

k=0

I(a; s1, . . . , sk, c) · I(c; sk+1, . . . , sn; b).
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(4) Antipode relation: I(a; s1, . . . , sn; b) = (−1)nI(b; sn, . . . , s1; a).
(5) Coproduct formula:

∆I(a; s1, . . . , sn; b) =
∑

I(a; si1 , si2 , . . . , sik
; b)⊗

k∏
j=0

I(sij
; sij+1, . . . , sij+1−1; sij+1)

where the sum is over all indices 0 = i0 < i1 < · · · < ik < ik+1 = n + 1 and s0 := a
and sn+1 := b and k = 0, 1, . . . .

The content of the paper is as follows. §2 contains a review of definition of cubical
cycle complex and the motivic Hopf algebra χF of [BK]. The definition of bar complex
is recalled where we use a different sign convention from [BK]. §3 gives a combinatorial
differential graded algebra (DGA) built out of rooted decorated trees. The main idea
is due to Goncharov [G1]. A morphism from the generic part of this DGA to the
cubical cycle DGA is given. This extends the definition given in [GGL1]. In §4
for a given tuple (a0; a1, . . . , an; an+1) in a finite subset S of A1(F ), we give our
proposed definition for motivic iterated integral I(a). It is built out of a specific cycle
ρ(a) defined using 3-valent trees. (The relation between 3-valent trees and iterated
integrals were first studied by Goncharov in [G1] and [G3]). The crucial property
is a formula for the differential of this cycle. Theorem 1.3 is proven in §5, using
the definitions of the previous section. §6 and 7 involve the important calculation of
Hodge realization for the motivic iterated integrals when the ground field is embedded
inside C. This calculation justifies the name motivic iterated integral for the elements
I(a) constructed in §4. In §8 we give some complementary remarks for the non-generic
case.

This work is an extension of [GGL1]. We have been informed that Goncharov,
Gangl and Levin completed its subsequent paper [GGL2], a part of which overlap
with a part of ours.

2. Bloch-Křiž’ category of mixed Tate motives

A differential graded algebra (DGA) with Adams grading is a bi-graded Q-vector
space, A = ⊕An(r) where n ∈ Z and r > 0, such that An(r) = 0 for n > 2r and
A(0) = Q, together with a product An(r) ⊗ Am(s) −→ An+m(r + s) that makes A
into a graded commutative algebra with identity (the signs are contributed from the
differential grading and not the Adams grading), and a differential d : An(r) −→
An+1(r) that satisfies the Leibniz rule.

We now recall the bar construction. For our future need we develop the theory
in a more general setting. Let A be a DGA with Adams grading and let M be a
right DG module over A with a compatible Adams grading. Let A+ = ⊕r>0A(r).
Define B(M,A) = M ⊗

(⊗•
A+[1]

)
. The elements of B(M,A) are denoted by a bar

notation as m[a1| . . . |ar] which has a degree equal to deg(m)+deg(a1)+. . .deg(ar)−r.
The graded vector space B(M,A) is a differential graded with total Adams grading.
The differential d is given as the sum of two differentials, the external and internal
differentials:

dext(m[a1| . . . |ar]) = dm[a1| . . . |ar] +
r∑

i=1

Jm[Ja1| . . . |Jai−1|dai|ai+1| . . . |ar],
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and

dint(m[a1| . . . |ar]) = Jm · a1[a2| . . . |ar] +
r−1∑
i=1

Jm · [Ja1| . . . |Jai−1|Jai · ai+1| . . . |ar],

where the operation J is given by J(a) = (−1)deg(a)−1a on the homogeneous elements.
Note that deg(a)− 1 is the degree if a in the shifted complex A[1]. If M is the trivial
DGA, we have a coproduct (where the empty tensor is 1 by convention)

∆([a1| . . . |ar]) =
r∑

s=0

[a1| . . . |as]⊗ [as+1| . . . |ar].

Up to this point all the constructions work for a DGA which is not necessarily com-
mutative. The product is defined only when both M and A are commutative DGA’s
by the shuffle

m[a1| . . . |ar] ·m′[ar+1| . . . |ar+s] :=
∑

sgna(σ)m ·m′[aσ(1)| . . . |aσ(r+s)]

where σ runs over the (r, s)-shuffles (an (r, s)-shuffle is a permutation σ on 1, . . . , r+s
such that σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s)) and the sign is
obtained by giving ai’s weights deg(ai) − 1. These data make B(A) := B(k,A) into
a commutative differential Hopf algebra with an Adams grading. Taking H0 with
respect to the differential gives a commutative graded Hopf algebra H0B(A).

Following [BK], we now introduce the cubical cycle complex. Let F be a field
and denote �F := P1

F \{1}. Then the permutation group on n letters the symmetric
group Sn acts on �n

F and also we have an action of (Z/2)n given by ε · (x1, . . . , xn) =
(xε1

1 , . . . , xεn
n ) where ε ∈ {1,−1}n. Therefor we have an action of Gn := (Z/2)n o Sn

on �n
F . Let Altn ∈ Q[Gn] be the element |Gn|−1 ∑

g∈Gn
sgn(g)g where for g =

(ε, σ) ∈ Gn, sign is defined by (
∏

i εi)sgn(σ). We also define a face of �n
F as a subset

defined by setting certain coordinates equal zero or infinity. We are now prepared to
define the DGA with an Adams grading N = NF :

Nn(r) := Alt2r−nZ(�2r−n
F , r).

Notice that although r > 0, n can be negative. Here Z(�n
F , r) denotes the Q-span

of the admissible codimension r subvarieties (i.e. closed and integral subschemes
that intersect all the faces of codimension > 1 properly, i.e. in codimension r ) of
�n

F . The product structure is given by Z1 · Z2 := Alt(Z1 × Z2). The differential
d : Nn(r) −→ Nn+1(r) is given by d =

∑2r−n
i=1 (−1)i−1(∂i

0 − ∂i
∞) where for c = 0,∞,

∂i
c is obtained by the pull-back of the cycles under the inclusions �2r−n−1

F ↪→ �2r−n
F

given by letting the ith coordinate equal to c. Using the results of [B1],[B2] and [L2]
it is shown in [BK] that:

(2.1) Hn(N (r)) ∼= CHr(F, 2r − n)⊗Q ∼= grγ
r K2r−n(F )Q.

Here CHr(F, n) denotes the Bloch’s higher Chow group of Spec(F ).

Definition 2.1. ([BK]) The category MTM(F ) of mixed Tate motives over F is the
category of finite dimensional graded comodules over the motivic Hopf algebra, the
graded commutative Hopf algebra χF := H0B(NF ). More explicitly a mixed Tate
motive over F is a graded finite dimensional Q-vector space M with a linear map
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ν : M −→ M⊗χF such that it respects the grading and (id⊗∆)(ν(a)) = (ν⊗id)(ν(a))
and (id⊗ ε)(ν(a)) = a where ∆ and ε are the coproduct and the counit of χF .

The K(π, 1)-conjecture says that the complexNF should be quasi-isomorphic to the
complex of its Sullivan 1-minimal model. This is stronger than the Beilinson-Soulé’s
vanishing conjecture saying that the complex should be cohomologically connected.
Under the K(π,1)-conjecture, we have

(2.2) ExtiMTM(F )(Q(0),Q(n)) ∼= Hi(NF (n))

(see [BK] and also [KM]). Here Q(n) is a copy of Q sitting in degree −n. The
equalities of (2.1) and (2.2) give the desired formula (1.1). As far as we know the
validity of Beilinson-Soulé’s vanishing conjecture is known for number fields, function
fields of the curve with genus 0 defined over number field and their inductive limits
whereas the K(π,1)-conjecture is open for all fields.

3. Trees and cycles

The graph complex was introduced in the seminal work of Kontsevich in [K]. The
differential given here first appeared in [G1]. This section is a complement to [GGL1].

Let S be a set. We define the DGA TS (with an Adams grading) of rooted S-
decorated planar trees. A rooted S-decorated planar tree is a connected finite graph
with no loops, such that each edge has exactly two vertex and no vertex has degree 2.
Each vertex of degree one is decorated by an element of the given set S and one such
vertex is distinguished as a root. Decorated vertices which are not a root are called the
ends. External edges which are not with a root are called leaves. Furthermore such
a tree has a given embedding into the plane. The embedding into the plane defines a
canonical ordering on the edges which is obtained by going counter clockwise starting
with the root edge. The root defines a direction on each edge which is the direction
away from the root.

Definition 3.1. (Tree algebra TS). The free graded commutative algebra generated
by the rooted S-decorated planar trees, where each tree has weight equal to its number
of edges, is denoted by TS . There is a bi-grading where a rooted tree in T n

S (r) has r
ends and 2r − n edges.

For a rooted S decorated planar tree T , with a given edge e, the contracted tree
T/e ∈ TS is defined as follows: If e is an internal edge then T/e is obtained by
contracting the edge e, keeping the root and decoration and embedding in the plane
as before. If e is an external edge (i.e. an edge with a decorated vertex) then T/e is
obtained in several stages. First remove e and its two vertices. Denote the connected
components by T1, . . . , Tk (in the order dictated by the embedding), add a vertex to
the open edges of these trees and decorate it by the decoration of the vertex of e. For
the trees that do not have a root, make this newly added vertex their root. T/e is
the product of rooted S decorated trees ε(e)T1 · · ·Tk. Here ε(e) is ±1 according to
the orientation as we now explain. Each planar tree has a canonical ordering on its
edges given by going counter clockwise on the edges starting from the root. The sign
ε(e) is defined from comparing the ordering defined by T1 · · ·Tk and by T with the
edge e removed. If these two ordering differ by an odd permutation the sign is minus
and otherwise it is plus. Two examples are given in Figure 1.
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a

b c d b c d

a a

b c d

a

b c

a

d

Figure 1. Two examples of contraction of edges

Definition 3.2. (Differential). For a rooted S decorated planar tree T in TS the
differential is given by dT =

∑e(T )
i=1 (−1)i−1(T/ei). Here the ordering is given by the

embedding by going counter clockwise starting from the root and e(T ) is the number
of edges of T . This will be extended by Leibniz rule to all of TS .

The differential satisfies d2 = 0, from which it follows that TS becomes a commu-
tative DGA.

Definition 3.3. Let S and S′ be two sets. The DGA of double decorated rooted
trees TS,S′ is the free graded algebra generated by rooted S-decorated planar trees
together with a decoration of edges with values in S′. We require three conditions:

(1) The two decoration of the leaves (one is of its edge and the other is of its
external vertex) are distinct (we do not make this assumption for the root).

(2) For any edge decorated with s′ and final vertex v, either v is a decorated vertex
or there is an edge starting from v with the same edge decoration.

(3) Any path between two labeled vertex with the same label s, passes through the
vertex of an edge decorated with s.
It is easy to check that the previous differential defines a differential structure on this
algebra if we make the following modification: we do not collapse leaves whose vertex
decoration is same as the edge decoration of their mother edge (its adjacent edge).
Notice that the collapse of such an edge will produce a tree that does not satisfy the
condition (1) above, nevertheless it does not produce any problem since this produces
another tree with a root vertex decorated by same label as the root edge and the cycle
associated to such a tree will be zero in the following definition. An example is given
in Figure 2.

a

b c

a a

c

a

b

b

cb

c

c d
c d c d

Figure 2. An example of differential of a double decorated tree

Bearing in mind the integral
∫ c

a
dt

t−b , for an oriented edge e with origin vertex
labeled by a and the final vertex labeled by b (they can be elements of F or variables)
and the edge labeled by c define the function f(e) = a−b

c−b . We will define the following
map which generalizes a construction of Gangl, Goncharov and Levin in [GGL1]:



MOTIVIC ITERATED INTEGRALS 929

Definition 3.4. (Forest cycling map). Let S be a non-empty subset of A1(F ).
Decorate the internal vertices of elements of TS,S′ by independent variables. Give
each edge the direction that points away from the root. The forest cycling map
associates an element T of T n

S (r) the following cycle of codimension r inside �2r−n
F :

ρ(T ) = Alt2r−n(f(e1), . . . , f(e2r−n)). Here e1, . . . , e2r−n are the edges of T with the
ordering induced from its embedding.

Let us explain this in more details. Let I be the set of internal vertices. Then
(f(e1), . . . , f(e2r−n)) is a rational function from φ : (P1)I 99K (P1)2r−n and ρ(T ) is
defined by the alternation of the following cycle: φ∗

(
(P1)I

)
∩�2r−n

F . This is a cycle of
dimension equal to the number of internal vertices and hence the codimension equal
to the number of end vertices.

Proposition 3.5. The map ρ : TS,S′ −→ N is a well-defined morphism of DGA’s.

Proof. The compatibility with product: ρ(T1T2) = ρ(T1)ρ(T2) is clear since T1

and T2 have different variables for their internal vertices. Therefore to show that
ρ(T ) is admissible and dρ(T ) = ρ(dT ), we can assume that T is connected. To show
that ρ(T ) is admissible, first notice that this cycle does not intersect with the faces
obtained by letting some coordinate take the value ∞. If the function associated to
the edge e from a to b with label c is equal to ∞ then we are in one of the following
two cases. Either b is a variable and b = c, in which case the edge e′ starting from
b with label c, gives the value 1 which is not in �F (such an edge exists because of
condition (2) above), or a is a variable and a = ∞ , in which case the edge e′ ending at
a gives the value 1. Now if we restrict the cycle ρ(T ) to the face with ith-coordinate
(corresponding to the edge ei from a to b) equals zero, this means that we have to let
a = b. Therefore we get ρ(T/ei). By induction on the number of edges we see that
ρ(T ) is admissible and as a side we have proved that dρ(T ) = ρ(dT ). Notice that for
the induction to work we need to assume validity of the condition (3) in Definition
3.3, this is because a single edge with labels a and a gives the cycle {0}− {∞} which
is not admissible. �

Remark 3.6. The map ρ factors through a quotient of TS,S′ which we denote by
T̃S,S′ . Two decorated trees T1 and T2 in TS,S′ which can be transformed to each other
by an automorphism of trees respecting the labels have the relation T1 = εT2 where
ε = 1 if the automorphism is an even permutation of the edges and ε = −1 otherwise.

4. Iterated Integrals and trees

Let S be a non-empty subset of A1(F ). For ai ∈ S, for i = 0, . . . , n + 1 define
t̃(a0; a1, . . . , an) ∈ T 1

S (n) as the linear sum of all rooted planar 3-valent trees with n
leaves decorated by a1, . . . , an (in this order) and its root decorated by a0. We define

t(a0; a1, . . . , an; an+1) := t̃(a0; a1, . . . , an)− t̃(an+1; a1, . . . , an).

In this definition t(a; b) = 0 by our convention.

Proposition 4.1. The differential of t(a0; a1, . . . , an; an+1) is given by

−
∑

06i<j6n

t(a0; a1, . . . , ai, aj+1, . . . ; an+1)t(ai; ai+1, . . . , aj ; aj+1)

where the first term is obtained by removing ai+1 up to aj.
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Proof. The contraction of internal edges will cancel each other (cf. Figure 3).

A A

B C D B C D

Figure 3. The contraction of the thick edge will give the same graph
but with opposite signs

A

B C

D

a a a ai j j+1i+1...

......

A

B C

D

a a a ai j j+1i+1...

....

Figure 4. Grouping the trees

The term −t(a0; . . . , ai, aj+1, . . . ; an+1)t(ai; ai+1, . . . , aj+1) in the differential is ob-
tained by grouping the trees in Figure 4 by contracting the edges corresponding to
the labels ai and aj+1. �

Definition 4.2. (Admissible decomposition). An admissible decomposition of
(a0; a1, . . . , an; an+1) is an ordered decomposition D = P1 ∪ · · · ∪ Pk of the regular
polygon with vertices (with clockwise order) a0, . . . , an+1 into subpolygons Pi by
diagonals which do not intersect each other. The ordering should satisfy the following
admissibility condition. If for i < j, Pi and Pj have a common edge and their union has
vertices ai1 , . . . , aim in clockwise ordering starting with the vertex with the smallest
index, then the edge ai1aim

should belong to Pi. For a subpolygon P with vertices
ai1 , . . . , aim

ordered as above we let t(P ) := t(ai1 ; . . . ; aim
), and for a decomposition

D = P1 ∪ · · · ∪ Pk we let t(D) := [t(P1)| . . . |t(Pk)] ∈ B(T )0, where T means TS .

Corollary 4.3. The element T (a0; . . . ; an+1) :=
∑

D t(D) ∈ B(T )0 (where the sum
is over all the admissible decomposition of a as above) has differential zero so defines
an element in H0B(T ) denoted again by T (a).

Proof. The differential of t(D) for an admissible decomposition D = P1 ∪ · · · ∪Pk

has two part, the external differential
k∑

i=1

[t(P1)| . . . |dt(Pi)|t(Pi+1)| . . . |t(Pk)]
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and the internal differential
k−1∑
i=1

[t(P1)| . . . |t(Pi)t(Pi+1)| . . . |t(Pk)]

but according to proposition 4.1: dt(Pi) = −
∑

j t(Pij)t(P ′
ij) where the sum is taken

over all possible division of the polygon Pi into two sub-polygons Pij and P ′
ij by a

diagonal. This shows that the internal differentials for admissible decompositions of
order k will be canceled each other or by the external differentials of decompositions
of order k − 1. Therefore the differential of the sum over all possible decompositions
vanishes. �

Let T ′
S be the sub-DGA of TS generated by admissible trees, i.e. those trees that

the non-zero labels do not repeat. There is a map of DGA’s dec : T ′
S −→ TS,{0,1}

given by decorating the leaves with zero label by 1 and the rest of edges by 0.

Definition 4.4. For generic sequence (a0; a1, . . . , an; an+1), i.e. a sequence with
non repeating non-zero terms, define the motivic analogue of the iterated integral
(−1)n

∫ an+1

a0

dt
t−a1

◦ · · · ◦ dt
t−an

by ρ(dec(T (a0; a1, . . . , an; an+1))). This is an element

of χF (n) = H0B(N )(n) and will be denoted by I(a0; . . . ; an+1). Here ρ : T̃S,{0,1} −→
N (for T̃S,{0,1} see Remark 3.6) and it induces a morphism ρ : H0B(T̃S,{0,1}) −→
H0B(N ).

In §7, it will be shown that the Hodge realization of this element agrees with the
framed mixed Hodge Tate structure of the above iterated integral.

5. Proof of the Theorem 1.3

In this section we will prove theorem 1.3 from the introduction. It shows that
I(a0; . . . ; an+1) deserves to be called motivic iterated integral. In fact we have con-
structed I(a0; . . . ; an+1) as the image (under the morphism ρ ◦ dec of an element
T (a0; . . . ; an+1) in B(T̃ )0 with zero differential, where T̃ stands for T̃S,{0,1}. We will
prove the identities of theorem 1.3 as identities in B(T̃ )0 with I replaced by T . This
obviously implies the corresponding identities in H0B(N ).

We take I(a; b) = 1 as definition. Since t(a; . . . ; b) = 0 for a = b it follows from the
construction that T (a; . . . ; b) = 0 for a = b. This proves the first part of the theorem.

We now prove the shuffle relation. Let D = P1∪· · ·∪Pk be an admissible decompo-
sition of (a; s1, . . . , sn+m; b). For a permutation σ of s1, . . . , sn+m we denote by σ(D)
the decomposition of (a; sσ(1), . . . , sσ(n+m); b) obtained by permuting the vertices of
the polygons by σ, with the ordering remained as before. Suppose that one of the
polygons Pi of the decomposition D has vertices (in order) si0 , . . . , sil+1 such that
the sequence i1, . . . , il is mixed, i.e. it has both numbers less than or equal to n and
numbers bigger than n. We show that∑

[t(P1)| · · · |t(σ(Pi))| · · · |t(Pk)] = 0

where the sum is taken over all shuffles σ of (i1, . . . , il) for the indices less than or
equal to n and those bigger than n. To prove this for any 3-valent tree with decoration
si1 , . . . , sil

(with this order or an order obtained by a shuffle of them) we define a dual
tree that cancel it. The separating edge of a tree decorated by si1 , . . . , sil

means the
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first edge (using the ordering of the edges) that has the property that one of the
sub-trees that grows out of this edge has decoration by indices less than or equal to
n and the other one has decoration by indices bigger than n. For a tree T with the
separating edge e we define its dual the tree obtained from this tree by switching the
two sub-trees of e, this is obtained by a shuffle on the decorating and clearly cancels
T , in the modified algebra T̃ . Therefore we have to only consider the decompositions
of (a; sσ(1), . . . , sσ(n+m); b) for (n, m)-shuffles σ, that are clean, i.e. each subdivision
polygon with vertices si0 , . . . , sil+1 has the property that all the indices i1, . . . , il are
either bigger than n or less than or equal to n. It is easy to see that the sum of T (D)
over this decompositions is equal to T (a; s1, . . . , sn; b)T (a; sn+1, . . . , sn+m; b). This
finishes the proof of the shuffle relation.

We now prove the path composition formula. For an admissible decomposition
D = P1 ∪ · · · ∪ Pm of (a; s1, . . . , sn; b), let P1 = Pi0 , Pi1 , . . . , Pil

be the sub-polygons
with b as a vertex. Using the trivial identity:

t(sj1 ; . . . , sjp
; b) = t(sj1 ; . . . , sjp

; c) + t(c; . . . , sjp
; b)

we can replace t(Pip
) as the sum of two terms t(P ′

ip
) + t(P ′′

ip
) where P ′

ip
is obtained

by replacing the last vertex b by c in Pip
and similarly P ′′

ip
is obtained by replacing

the first vertex (the one with the smallest index) by c. Therefore we can write t(D)
as

l∑
k=0

[t(P ′
1)| . . . |t(P ′

ik−1
)| . . . |t(P ′′

ik
)|t(Pik+1)| . . . |t(Pm)].

The kth term of this sum when Pik
= (c; si, . . . ; b) belongs to the product

I(a; s1, . . . , si−1; c)I(c; si, . . . ; b).

It is clear that this way we get an identification between the terms in I(a; s1, . . . , sn; b)
and

∑n+1
i=1 I(a; s1, . . . , si−1; c)I(c; si, . . . , sn; b). This finishes the proof of path compo-

sition.
The proof of coproduct formula goes as follows. Recall the coproduct

∆[a1| . . . |an] =
n∑

r=0

[a1| . . . |ar]⊗ [ar+1| . . . |an].

Thus for a decomposition D = P1 ∪ · · · ∪ Pm we have

∆t(D) =
m∑

r=0

[t(P1)| . . . |t(Pr)]⊗ [t(Pr+1)| . . . |t(Pm)].

Taking the sum over all decompositions such that P1 ∪ · · · ∪ Pr is the polygon
(a; si1 , . . . , sik

, b) for a fixed sequence 0 = i0 < i1 < · · · < ik < ik+1 = n + 1
and varying r we get the term

T (a; si1 , si2 , . . . , sik
; b)⊗

k∏
j=0

T (sij
; sij+1, . . . , sij+1−1; sij+1)

in the coproduct. This finishes the proof of coproduct formula.
To prove the antipode relation note that the mirror dual of a tree with n ends is

equal to that tree time (−1)n−1 in the modified algebra T̃ , so if we switch a and b as
well a sign of (−1)n will appear. This finishes proof of the theorem 1.3. �
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6. Review of the Hodge realization

In this section we review the construction of Bloch-Křiž for associating a framed
MHTS to an element of H0B(N ). In fact for our application it is only enough to
recall §8 of [BK] where they give the Hodge realization for H0B(N ′) for a particular
sub-DGA N ′ of N .

Let ω(n, r) be a collection of real oriented subvarieties of (P1)n of codimension 2r.
Assume that for S1 ∈ ω(n, r) and S2 ∈ ω(m, s), S1 × S2 ∈ ω(n + m, r + s), and for
σ ∈ Gn = (Z/2)n o Sn, σ(S1) ∈ ω(n, r). Moreover assume that the intersection of
an element of ω(n, r) with a hyperplane ti = 0 or ∞ belongs to ω(n− 1, r). Define a
DGA with an Adams grading by:

Dn(r) := Alt lim−→H2r−2n(S ∪ J 2r−n,J 2r−n)

where J n is the union of all the codimension 1 hyper planes of (P1)n obtained by
letting one coordinate equal to 1. The limit is taken over all S ∈ ω(2r − n, r). This
has a natural structure of DGA (cf.[BK] §8).

Definition 6.1. The pair (N ′,D) as above, is called admissible if the following con-
ditions hold:

(1) The Adams graded pieces H0B(N ′)(r) are finite dimensional Q-vector spaces.
(2) All the support subvarieties of the elements of N ′ belong to ω(∗, ∗). Hence

there is a natural morphism of DGA’s: σ : N ′ −→ D given by the fundamental class.
(3) The map λ0 : D −→ C[x] sending an element c ∈ D0(n) to (2πi)n(

∫
c
ω2n) · xn

andDi for i 6= 0 to zero, is a well-defined morphism of DGA’s. Here ωn = (2πi)−n dz1
z1
∧

· · · ∧ dzn

zn
and C[x] is a DGA with trivial differential and concentrated in degree zero

with an Adams grading given by powers of x.
(4) If

∑
i[a

i
1| . . . |ai

ri
] ∈ B(N ′)0 has zero differential,

then the element
∑

i σ(ai
1)[a

i
2| . . . |ai

ri
] ∈ B(D,N ′)1 is in d(B(D,N ′)0).

(5)The map α : H0(D/N ′(r)) −→ H2r

(
(P1\{0,∞})2r ∪N(r) ∪ J 2r,J 2r

)
/Imγ

preserves integration of ω2r. Here N(r) is the union of codimension r algebraic sub-
varieties of �2r

C that intersect all the faces properly and γ is the map:

γ : ⊕HH2r(J 2r,H) −→ H2r

(
(P1\{0,∞})2r ∪N(r) ∪ J 2r,J 2r

)
induced by inclusion, and H runs over hyperplanes with one coordinate equal to one.

Let us quickly recall the notions from mixed Hodge-Tate structures (MHTS’s). A
MHTS H is a finite dimensional 2Z-graded Q-vector space HdR = ⊕nH2n together
with a Q-subspace HB of HdR ⊗ C such that for all m:

Im

HB ∩ (
⊕
n6m

H2n ⊗ C)
Proj−→ H2m ⊗ C

 = (2πi)mH2m.

A morphism f is a graded morphism fdR from HdR to H ′
dR such that fdR ⊗ 1 :

HdR ⊗ C −→ H ′
dR ⊗ C sends HB to H ′

B , this induced map is denoted by fB . The
notion of framed MHTS was introduced by Beilinson, Goncharov, Schechtman and
Varchenko in [BGSV]. This will give a concrete way of thinking about the Hopf
algebra of the coordinate ring of the tannakian Galois group. A framing on a MHTS
H is the choice of a frame vector v ∈ H2r and a coframe vector v̂ ∈ Hom(H2s, Q). Two
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framed MHTS (H, v, v̂) and (H ′, v′, v̂′) such that for an integer n there is a morphism
from n-Tate twisting H(n) −→ H ′ that respects the frames, are called equivalent.
This relation generates an equivalence relation. The equivalence classes of framed
MHTS is denoted by χMHTS . This is graded where [(H, v, v̂)] where v ∈ H2r and
v̂ ∈ Hom(H2s, Q) has degree r−s. It is easily shown that the negative weights vanish.
The product

[(H, v, v̂)] · [(H ′, v′, v̂′)] = [(H ⊗H ′, v ⊗ v′, v̂ ⊗ v̂′)]
and the coproduct

∆ =
⊕
m

∆m : ∆m[(H, v, v̂)] =
∑

i

[(H, v, b̂i)]⊗ [(H, bi, v̂
′)]

make χMHTS into a Hopf algebra. Here bi is a basis for H2m and b̂i is the dual basis
for Hom(H2m, Q). It can be shown that the category of finite dimensional graded
comodules over χMHTS is equivalent to the category of MHTS’s.

Under the conditions explained above on D Bloch and Křiž prove that:

Theorem 6.2 ([BK]). The graded Q-vector space H0B(N ′) = ⊕rH0B(N ′)(r) where
H0B(N ′)(r) means its degree 2r-part, together with the subspace defined by the image
of the map λ defined as composition

H0B(D,N ′)
B(λ0,id)−−−−−→ H0B(C[x],N ′) x=1−→ H0B(N ′)C

is a pro-MHTS. We denote its sub-MHTS on ⊕06r6nH0B(N ′)(r) by H(N ′, n).

The realization map Real′MHTS : H0B(N ′)(n) → χMHTS(n) is given by send-
ing a ∈ H0B(N ′)(n) to the framed MHTS H := H(N ′, n) whose frame is given
by a ∈ H0B(N ′)(n) = H2n and whose coframe is induced from the augmentation
isomorphism H0B(N ′)(0) → Q. It is proven in [BK] that:

Theorem 6.3. The realization map Real′MHTS is morphism of graded Hopf alge-
bras. It is equal to the composition of H0B(N ′) −→ H0B(N ) with the general Hodge
realization RealMHTS : H0B(N ) −→ χMHTS constructed in §7 of [BK].

7. Proof of Theorem 1.2

In this section we assume that F is a subfield of C and S is a finite subset
of F . We will calculate the Hodge realization of I(a) ∈ H0B(N ′), where a =
(a0; a1, . . . , an; an+1) is a generic sequence in S. We will do this parallel to the special
case with a0 = 0, a1 = 1, a2 = · · · = an = 0, an+1 = a ∈ F which is done in [BK].
Here N ′ = Na is the sub-DGA of N generated by the cycles ρ ◦ dec ◦ t(a′) ∈ N 1(n)
for all sub-sequences a′ of a. Notice that by definition N ′ is a minimal DGA, i.e. it
is connected and d(N ′) ⊆ N ′+ · N ′+.

Lemma 7.1. The graded Hopf algebra H0B(N ′) is generated as a DGA by the ele-
ments I(a′) for all sub-sequences of a.

Proof. It follows from Theorem 6.3 in [KM] because N ′ = N ′〈1〉 by our construc-
tion. �

Once and for all choose a path γ with interior in A1(C)−S from the tangential base
point a0 to the tangential base point an+1. For 1 6 i 6 n we define intermediate cycles
ηi(a) inside �2n−i

C with (real) dimension 2n− i. It is defined as follows. Consider the
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sum of all rooted planar forests with i connected components and n leaves, decorated
by a1, . . . , an. Its roots are decorated by variables γ(s1), . . . , γ(si) for 0 6 s1 6 · · · 6
si 6 1. Apply the morphism ρ ◦ dec to this which will give an oriented (real) cycle
(with boundary) of dimension 2n− i inside �2n−i

C . Let Γ be a small disk around zero
in �C with its canonical orientation. We define

τi(a) = (δηi(a)) · Γ · (δΓ)i−1 + (−1)iηi(a) · (δΓ)i

where · denotes the usual alternating product and δ denotes the topological bound-
ary defined for a cycle f(s1, . . . , sn) by (δf)(s1, . . . sn−1) = −f(0, s1, s2, . . . , sn−1) +
f(s1, s1, s2, . . . , sn−1)− · · ·+ (−1)nf(s1, . . . , sn−1, sn−1) + (−1)n+1f(s1, . . . , sn−1, 1).
Finally denote ξγ(a) =

∑n
k=1 τk(a). From now on we will use ρ instead of ρ◦dec◦t for

the ease in typing. Let ω(∗, ∗) be the subvarieties which support the cycles ξ(a′)ρ(a′′)
and ρ(a′) for all subsequences of a′ of a, here a′′ is the complement of a′ inside a. De-
note by D = Da the corresponding DGA obtained from ω(∗, ∗). Hence ξγ(a) ∈ D0(n).

Proposition 7.2. The differential of ξγ(a) is given by the formula

ρ(a)−
∑

06i<j6n

ξγ(a0; . . . , ai, aj+1, . . . ; an+1)ρ(ai; . . . ; aj+1).

As in corollary 4.3 for an admissible decomposition D = P1 ∪ · · · ∪Pk let ξγ(D) :=
ξγ(P1)[ρ(P2)| . . . |ρ(Pk)] ∈ B(D,N ′).

Corollary 7.3. Define Zγ(a) := 1 · [I(a)] +
∑

D ξγ(D) where the sum is over all
admissible decompositions of a. Then d(Zγ(a)) = 0. Therefore Zγ(a) defines an
element of H0B(D,N ′).

Proof. Note that d(1 · [I(a)]) = −
∑

D ρ(P1)[ρ(P2)| . . . |ρ(Pk)] where the sum is
taken over all admissible decompositions D = P1 ∪ · · · ∪ Pk of a. On the other hand
for D as above:

dextξγ(D) =(dξγ(P1))[ρ(P2)| . . . |ρ(Pk)] +
k∑

i=2

ξγ(P1)[ρ(P2)| . . . |dρ(Pi)| . . . |ρ(Pk)]

=ρ(P1)[ρ(P2)| . . . |ρ(Pk)]−
∑

j

ξγ(P1j)ρ(P ′
1j)[ρ(P2)| . . . |ρ(Pk)]

+
k∑

i=2

ξγ(P1)[ρ(P2)| . . . |dρ(Pi)| . . . |ρ(Pk)],

dintξγ(D) =ξγ(P1)ρ(P2)[ρ(P3)| . . . |ρ(Pk)]

+
k−1∑
i=2

ξγ(P1)[ρ(P2)| . . . |ρ(Pi)ρ(Pi+1)| . . . |ρ(Pk)].

Since d(ρ(Pi)) = −
∑

j ρ(Pij)ρ(P ′
ij) for all divisions of Pi into two admissible poly-

gons Pij and P ′
ij . It will be seen that the third term in the external differential for k

will be canceled by the second term of the internal differential for k + 1. The second
term of the external differential for k will be canceled by the first term of the internal
differential for k + 1. Finally the first term will be canceled by the differential of
1 · [I(a)]. �
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Proof of Proposition 7.2. We need the following two lemmas:

Lemma 7.4. The differential of ηk(a) is given by:

δηk+1(a)− (−1)k
∑

06i<j6n

ηk(a0; a1, . . . , ai, aj+1, . . . ; an+1)ρ(ai; . . . ; aj+1).

Lemma 7.5. The differential of δηk(a) is given by:

(−1)k−1
∑

06i<j6n

δηk(a0; . . . , ai, aj+1, . . . ; an+1)ρ(ai; . . . ; aj+1).

Assuming these lemmas, it follows:

dτk(a) =dδηk(a) · Γ · δΓk−1 + (−1)kδηk(a) · δΓk−1 + (−1)kdηk(a) · δΓk

=−
∑

06i<j6n

{
δηk(a0; . . . , ai, aj+1, . . . ; an+1) · Γ · δΓk−1

+ (−1)kηk(a0; . . . , ai, aj+1, . . . ; an+1) · δΓk
}
· ρ(ai; . . . ; aj+1)

+ (−1)kδηk(a) · δΓk−1 + (−1)kδηk+1(a) · δΓk

=−
∑

06i<j6n

τk(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)

+ (−1)kδηk(a) · δΓk−1 + (−1)kδηk+1(a) · δΓk.

Adding for k = 1, . . . , n we will get:

dξγ(a) = −δη1(a)−
∑

06i<j6n

ξγ(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)

but since δη1(a) = −ρ(a) this finishes the proof of proposition 7.2 modulo the two
lemmas. �

Proof of lemma 7.4. To calculate differential of ηk(a) we have to calculate
the differential of the sum over all 3-valent forests with k components decorated by
a1, . . . , an for the ends and γ(s1), . . . , γ(sk) for the roots, where si’s are variables so
that 0 6 s1 6 · · · 6 sk 6 1. To calculate this differential we have to consider the
contraction of the edges. As in the proof of proposition 4.1 the only edges that con-
tribute are external edges. The contraction of the roots after applying the morphism
ρ : T −→ N will give all the terms in δηk+1(a), except the terms corresponding to
s1 = 0, i.e. γ(s1) = a0 and sk = 1, i.e. γ(sk) = an+1. The contraction of the leaves
can be grouped like in the proof of proposition 4.1, and this together with two missing
terms in δηk(a) will give

(−1)k−1
∑

06i<j6n

ηk(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1).

This finishes the proof of lemma 7.4. �
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Proof of lemma 7.5. From lemma 7.4 it follows that

dδηk+1(a) =(−1)kd

 ∑
06i<j6n

ηk(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)


=(−1)k

∑
06i<j6n

{
δηk+1(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)

+ (−1)k+1d′
(
ηk(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)

)}
.

Here d′ is defined as the differential on ρ but its defined by:

d′ηk(a0; . . . ; am+1) :=
∑

06i<j6m

ηk(a0; . . . , ai, aj+1, . . . ; am+1) · ρ(ai; . . . ; aj+1).

Now it follows from anti-commutativity that:∑
06i<j6n

d′
(
ηk(a0; . . . , ai, aj+1, . . . ; an+1) · ρ(ai; . . . ; aj+1)

)
= 0,

so lemma 7.5 is proved. �

Lemma 7.6. Assume a0 6= a1 and an 6= an+1. The image of ξγ(a) ∈ D0(n) under
the map λ0 defined in definition 6.1 is given by the iterated integral:

(−x)n

∫
γ

dt

t− a1
◦ · · · ◦ dt

t− an
.

Furthermore λZγ(a) ∈ H0B(N ′
C) (λ was defined in theorem 6.2) is:

∑ ∫
γ

dt

t− ai1

◦ . . .
dt

t− aik

k∏
j=0

I(aij
; . . . ; aij+1),

where the sum is taken over all indices 0 = i0 < i1 < · · · < ik < ik+1 = n + 1 with
k = 0, 1, 2, . . . .

Proof. For reasons of type, the only term in
∑n

k=1 τk(a) which contributes in
λ0(ξγ(a)) is τn(a) which is τn(a) = (δηn(a)) · Γ · (δΓ)n−1 + (−1)nηn(a) · (δΓ)n. The
first part of this sum gives zero integral for reasons of type. Note that ηn(a) is
Alt(f(s1, a1), . . . , f(sn, an)), where

f(si, ai) =

{
1− γ(si)

ai
if ai 6= 0,

γ(si) if ai = 0.

Therefore ∫
ηn(a)

dz1

z1
∧ · · · ∧ dzn

zn
=

∫
γ

dt

t− a1
◦ · · · ◦ dt

t− an
.

Note that this integral is convergent due to the assumption of the lemma. This shows
that

xn(2πi)−n

∫
τn(a)

dz1

z1
∧ · · · ∧ dz2n

z2n
= (−x)n

∫
γ

dt

t− a1
◦ · · · ◦ dt

t− an
.
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This proves the first part of the lemma. To prove the second part, note that if in the
set of all admissible decompositions one fixes P1 = (a0, ai1 , . . . , aik

, an+1) then∑
D

[ρ(P2)| . . . |ρ(Pk)] =
k∏

j=0

I(aij
; . . . ; aij+1).

This together with the first part of the lemma, letting x = 1 finishes the proof. �

Lemma 7.7. Let a = (a0; a1, . . . ; an+1) be a generic sequence in S such that a0 6= a1

and an 6= an+1. The pair (Na,Da) defined above is admissible in the sense of the
definition 6.1.

Proof. Since N ′ is finitely generated, property (1) is clear. Property (2) follows
from the definition of D. To prove property (4) we can only consider elements I(a′)
according to the lemma 7.1, and for these elements corollary 7.3 implies (4). Properties
(3) and (5) follow from the same techniques as [BK], using a Stokes formula and
the assumption on the convergence of the iterated integral, namely a0 6= a1 and
an 6= an+1. �

The MHTS on the pro-unipotent fundamental torsor Πuni(A1−S; a0, an+1) is given
by

ΠdR(A1 − S; a0, an+1) := Q〈〈Xs〉〉s∈S (weight(Xs) = −2)

ΠB(A− S; a0; an+1) := Im
(
Πuni(A1 − S; a0, an+1)

Φ−→ C〈〈Xs〉〉s∈S

)
.

Here the map Φ is defined by γ 7→
∑(∫

γ
dt

t−s1
◦ · · · ◦ dt

t−sn

)
Xs1 · · ·Xsn and the sum

is taken over n = 0, 1, . . . and si ∈ S.
The Hodge analogue of the iterated integral

∫
γ

dt
t−a1

◦ · · · ◦ dt
t−an

is the framed
MHTS given above for Π := Πuni(A1 − S; a0, an+1), together with frames 1 ∈ Π0

and (Xa1 · · ·Xan
)′ ∈ Hom(Π−2n, Q). Here {(Xs1 · · ·Xsm

)′}si∈S is the dual basis. We
denote this by IH(a0; a1, . . . , an; an+1).

Proof of Theorem1.2. First assume that a0 6= a1 and an 6= an+1. By lemma
7.7 (N ′,D) is admissible, hence we can use the realization map Real′MHTS . Let
(Ja, I(a), ε) := Real′MHTS(I(a)). We define a map Π(n) −→ Ja by

Xb1 · · ·Xbk
7→ (−1)k

∑ k∏
j=0

I(aij ; aij+1, . . . ; aij+1)

where the sum is taken over all indices 0 = i0 < i1 < · · · < ik < ik+1 = n + 1 such
that aij = bj . This obviously extends to a graded linear map from Π(n) −→ Ja which
respects the corresponding frames. We need to show that for a path γ from a0 to
an+1 ∑ ∫

γ

dt

t− ai1

◦ . . .
dt

t− aik

k∏
j=0

I(aij
; . . . ; aij+1),

where the sum is taken over all indices 0 = i0 < i1 < · · · < ik < ik+1 = n + 1 with
k = 0, 1, 2, . . . , belongs to the Betti space of Ja. But this element is the image of
Zγ(a) under the map λ according to the lemma 7.6. This completes the proof of the
equivalence of the two framed MHTS’s.
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We now deal with the divergent iterated integrals. Note that by our construction
I(0; 0; 1) = 0, therefore I(a0; a0; a1) and I(a0; a1; a1) have correct Hodge realization
corresponding to the tangential base ∂

∂t for the canonical coordinate t of A1. Therefore
using the shuffle relation for

I(a0; a0, . . . , a0︸ ︷︷ ︸
p

; an+1) · I(a0; a1, . . . , an; an+1) · I(a0; an+1, . . . , an+1︸ ︷︷ ︸
q

; an+1)

where a0 6= a1 and an 6= an+1, and induction on p + q it follows that the divergent
iterated integral

I(a0; a0, . . . , a0︸ ︷︷ ︸
p

, a1, . . . , an, an+1, . . . , an+1︸ ︷︷ ︸
q

; an+1)

can be written as a linear combination of convergent iterated integrals. Since we
have a same story in the Hodge side, with exact same formulas, it follows that the
Hodge realization of I(a) is the framed MHTS associated to the iterated integral
(−1)n

∫ an+1

a0

dt
t−a1

◦ · · · ◦ dt
t−an

. �
Our results gives the following examples.

Example 7.8. (1) For a,b,c ∈ C in generic position, the tree in the figure 5 gives a
framed mixed Tate motive of the integral

∫ b

a
dt

t−c .

b

c

a

c

Figure 5. The element of H0(B(TS)) corresponding to
∫ b

a
dt

t−c .

(2) For a,b,c,d ∈ C in generic position, the tree in the figure 6 gives a framed mixed
Tate motive of the integral It

∫ b

a
dt

t−c ◦
dt

t−d .

a b

c d

a a

dc d c d c

a ab b dd

d c d c

c d c d c d c d

c cb b bba a

Figure 6. The tree corresponding to
∫ b

a
dt

t−c ◦
dt

t−d .

Example 7.9. (1) For a ∈ C and k ∈ N the framed mixed Tate motive associated
to the polylogarithm Lik(a) =

∑
n

an

nk is given by the following cycles [BK]: ρk(a) +
[ρk−1(a)|ρ1(1−a)]+[ρk−2(a)|ρ1(1−a)|ρ1(1−a)]+ · · ·+[ρ1(a)|ρ1(1−a)| · · · |ρ1(1−a)]
where ρk(a) is (−1)

k(k−1)
2 Alt

(
x1, · · · , xk−1, 1− x1, 1− x2

x1
, · · · , 1− xk−1

xk−2
, 1− a

xk−1

)
.
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(2) For n, m ∈ N and a, b ∈ C with b 6= 1 and ab 6= 1 the framed mixed Tate
motive associated to the double polylogarithm Lin,m(a, b) =

∑
0<k<l

akbl

knlm is given by
the following cycles:∑

k>0,l>0

(−1)n+k

(
n + m− k − l − 2

n− l − 1

)
ρa,b(l, n + m− l − k − 2, k) + [ρb(n)|ρa(m)]

+ (−1)n

(
n + m− 2

n− 1

) [
Alt{1− ab}

∣∣∣ ρ 1
a
(n + m− 1)− ρb(n + m− 1)

]
+

m−1∑
i=1

(−1)n

(
m + n− i− 2

m− i− 1

)
[ρab(i + 1)|ρ 1

a
(m + n− i− 1)]

+
n−1∑
j=1

(−1)n+j+1

(
m + n− j − 2

n− j − 1

)
[ρab(j + 1)|ρb(m + n− j − 1)].

where ρa,b(n, m, k) =

(−1)m+nAlt
(
1− 1

x1
, 1− x1

x2
, . . . , 1− xk+n

xk+n+1
, 1− abxk+n+1, 1−

xk+1

xk+n+2
,

. . . , 1− xk+n+m

xk+n+m+1
, 1− bxk+n+m+1, xk+n+m+1, xk+n+m, . . . , x̂k+1, . . . , x1

)
,

ρa(n) = (−1)n−1Alt
(
1− 1

x1
, 1− x1

x2
, . . . , 1− xn−2

xn−1
, 1− axn−1, xn−1, . . . , x1

)
.

Because of the condition b 6= 1 and ab 6= 1, it does not give a cycle representing the
double zeta value ζ(n, m) =

∑
0<k<l

1
knlm . However in the following section we will

construct it for n + m: even when F is a number field.

8. Miscellaneous remarks

In the previous sections for any sequence a0, a1, . . . , an, an+1 of elements of F , an
element t(a0; a1, . . . , an; an+1) ∈ T 1

F (n) was constructed. The crucial property was its
differential formula given in Proposition 4.1. From this one can construct an element
T (a0; a1, . . . , an; an+1) ∈ H0B(TF ). The problem of constructing motivic iterated
integrals is that there is no natural morphism from TF −→ N , whereas we have a
morphism: TF,F −→ N . Therefore one needs to have a lifting of t(a0; . . . ; an+1) to
TF,F that has the same differential formula. When no non-zero term repeats, such
a lifting exists. Namely by given zero labels to all edges except the leaves with zero
vertex label which get 1 as their edge label. We were unable to construct a canonical
lifting for the general case. In this section we want to give some partial results that
we obtained in this direction.

Lemma 8.1. There is a natural lifting of t(a0; a1, a2; a3) in TF,F .

Proof. A 3-edge trivalent tree with root decorated by a and the leaves decorated
by b and c, has the following lifting to TF,F : if (a, b, c) is generic then we label the
edges as before. If b = c then by symmetry it is zero. If a = b and b 6= c then we
label the edge with vertex label c by b and the other two edges as usual. Similarly if
a = c and b 6= c, we label the edge with vertex label b by c and the other two edges
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as usual. It is easy to see that it defines an element of TF,F and is compatible with
the differential. Using this we can define the desired lifting of t(a0; a1, a2; a3). �

Lemma 8.2. Let a = (0; a1, . . . , an; 1) be a sequence with at most two ai equal to 1
and the rest equal to zero. There is a lifting of t(a) to TF,{0,1} such that it satisfies
the same differential equation as in proposition 4.1.

Proof. Notice that the terms in the differential are admissible by the assumption
on a. The only type of trees that are not admissible in t(a) are those with root labeled
by 1 and the two edges coming off the root edge, one is a leaf with vertex 1 and the
other is an internal edge. To make this admissible we label this internal edge by 1.
This way the differential of the tree would not be changed and therefore the same
differential equation holds for this lifting. �

Example 8.3. With this admissible lifting we can apply the method of corollary 4.3.
We therefore have an element of H0B(N ). It satisfies the same coproduct formula as
for the double zeta framed motive constructed in [G3], therefore its difference with the
true double zeta motive is in Ext1(Q(0), Q(n)), where n is the weight of the framed
object. In case n is even and we are over a number field F this extension is zero and
we therefore get the true double zeta motive. To do this concisely we define the cycles
ρ(n, m, k). Here n, m, k are non-negative integers. If n + k > 0, they are given by:

ρ(n, m, k) = (−1)m+nAlt(1− 1
x1

, 1− x1

x2
, . . . , 1− xk+n

xk+n+1
, 1− xk+n+1, 1−

xk+1

xk+n+2
,

1− xk+n+2

xk+n+3
, . . . , 1− xk+n+m

xk+n+m+1
, 1− xk+n+m+1, xk+n+m+1, , . . . , x̂k+1, . . . , x2, x1)

and if n = k = 0:

ρ(0,m, 0) = (−1)mAlt
(
1− 1

x0
, 1− x0,

x0 − x1

1− x1
, 1− x1

x2
, . . . , 1− xm−1

xm
,

1− xm, xm, . . . , x1

)
.

Using this notation the cycle associated to ζ(n, m) for n + m an even integer is:∑
k>0,l>0

(−1)m−k−1

(
n + m− k − l − 2

n− l − 1

)
ρ(l, n + m− l − k − 2, k).

To give an element of H0B(N ) representing ζ(n, m) for n + m even we have:

ζ(n, m) =
∑

k>0,l>0

(−1)m−k

(
n + m− k − l − 2

n− l − 1

)
ρ(l, n + m− l − k − 2, k)

+ [ζ(n)|ζ(m)] +
m−1∑
i=1

(−1)m

(
n + m− i− 2

m− i− 1

)
[ζ(i + 1)|ζ(m + n− i− 1)]

−
n−1∑
j=1

(−1)m+j

(
m + n− j − 2

n− j − 1

)
[ζ(j + 1)|ζ(m + n− j − 1)].

where ζ(n) is the following cycle:

(−1)n−1Alt(1− 1
x1

, 1− x1

x2
, . . . , 1− xn−2

xn−1
, 1− xn−1, xn−1, . . . , x1).
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