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STRONGLY SINGULAR INTEGRAL OPERATORS ASSOCIATED
TO DIFFERENT QUASI-NORMS ON THE HEISENBERG GROUP

Norberto Laghi and Neil Lyall

Abstract. In this article we study the behavior of strongly singular integrals associated

to three different, albeit equivalent, quasi-norms on Heisenberg groups; these quasi-

norms give rise to phase functions whose mixed Hessians may or may not drop rank
along suitable varieties. In the particular case of the Koranyi norm we improve on the

arguments in [7] and obtain sharp L2 estimates for the associated operators.

1. Introduction

The Heisenberg group Hn
a is a non-commutative nilpotent Lie group, with under-

lying manifold R2n+1 equipped the group law

(1) (x, t) · (y, s) = (x + y, s + t− 2a xtJy)

where a is a nonzero real number and J denotes the standard symplectic matrix on
R2n, namely

J =
(

0 In

−In 0

)
with inverses given by (x, t)−1 = −(x, t). The nonisotropic dilations

(2) (x, t) 7→ (δx, δ2t).

are automorphisms of Hn
a and as such the homogeneous dimension of this group is

2n + 2.
We will consider here, for different quasi-norms ρ(x, t) on Hn

a , the class of model
(group) convolution operators formally given by

Tf(x, t) = f ∗Kα,β(x, t)

where Kα,β is a strongly singular distributional kernel on Hn
a that agrees, for (x, t) 6=

(0, 0), with the function

Kα,β(x, t) = ρ(x, t)−2n−2−α
eiρ(x,t)−β

χ(ρ(x, t)),

where β > 0 and χ is smooth and compactly supported in a small neighborhood of
the origin.

Operators of this type were first studied, using Fourier transform techniques, in the
Euclidean setting of Rd with ρ(x) = |x| by Hirschman [4] in the case d = 1 and then
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in higher dimensions by Wainger [10], C. Fefferman [2], and C. Fefferman and Stein
[3]. For some generalizations and an oscillatory integral approach to these classical
results, see Lyall [6]. The analogous questions on the Heisenberg group were first
investigated by the second author in [7].

1.1. Statement of main results. There are various natural choices of quasi-norm
on Hn

a , for example one can take

ρ0(x, t) = max{|x1|, . . . , |x2n|, |t|1/2},
however this choice is not smooth away from the origin. We shall instead consider
the following three equivalent quasi-norms which clearly are smooth away from the
origin;

(i) ρ1(x, t) = (|x|4 + t2)1/4

(ii) ρ2 defined by ρ2(x, t) = 1 ⇐⇒ |x|2 + t2 = 1 and extended by homogeneity

(iii) ρ3(x, t) = (x4
1 + · · ·+ x4

2n + t2)1/4 .
The case when ρ(x, t) = ρ1(x, t), the so called Koranyi norm on the Heisenberg

group, was initially studied by the second author in [7] using the group Fourier trans-
form.

Theorem (Lyall [7]). Let ρ(x, t) = ρ1(x, t) and a 6= 0.
(i) If α ≤ nβ, then T extends to a bounded operator from L2(Hn

a) to itself.
(ii) If T extends to a bounded operator from L2(Hn

a) to itself, then α ≤ (n + 1
2 )β.

The proof of this result relied upon the radial nature of the Koranyi norm and
uniform asymptotic expansions for Laguerre functions due to Erdélyi [1] along with
some careful analysis.

In this article we optimally sharpen the previously obtained estimates and in ad-
dition address the question of the behavior of different quasi-norms for the first time.
We do not employ the Fourier transform in our arguments and as such our methods
are not restricted to the class of translation-invariant operators.

We fix the constant

Cβ =
β + 2

2

(
2β + 5 +

√
(2β + 5)2 − 9

)
and note that Cβ ≥ 9 for all β > 0. Our first main result is then the following.

Theorem 1. If ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, then T extends to a bounded
operator from L2(Hn

a) to itself if and only if α ≤ (n + 1
2 )β.

The analogous result for ρ(x, t) = ρ2(x, t), the nonisotropic Minkowski functional
associated to the (Euclidean) unit ball, is the following.

Theorem 2. If ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1, then T extends to a bounded
operator from L2(Hn

a) to itself whenever α ≤ (n + 1
2 )β.

We note that the Koranyi norm ρ1(x, t) is indeed an actual norm on Hn
a for all

0 < a2 ≤ 1, as is the nonisotropic Minkowski functional ρ2(x, t) for sufficiently small
|a|.

A negative result for the quasi-norm ρ3(x, t) that relates to the proofs of Theorems
1 and 2 (the direct relationship is with Proposition 7) is discussed in Section 5.
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2. Reductions and remarks

2.1. Reduction to dyadic estimates. The necessary condition in Theorem 1 fol-
lows from the arguments in [7]. To establish sufficiency in both Theorems 1 and 2
matters reduce to considering the dyadic operators

Tj(x, t) = f ∗Kj(x, t),

where

Kj(x, t) = ϑ(2jρ(x, t))Kα,β(x, t),

with ϑ ∈ C∞0 (R) supported in [ 12 , 2] is chosen such that
∑∞

j=0 ϑ(2jr) = 1 for all
0 ≤ r ≤ 1.

As in [7] everything reduces to establishing the following key dyadic estimates.

Theorem 3. If α ≤ (n + 1
2 )β and either

(i) ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, or
(ii) ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1,

then the dyadic operators Tj are bounded uniformly on L2(Hn
a), more precisely

(3)
∫
Hn

a

|Tjf(x, t)|2 dx dt ≤ C2j(2α−(2n+1)β)

∫
Hn

a

|f(x, t)|2 dx dt.

Theorems 1 and 2 then follow from an application of Cotlar’s lemma (and a stan-
dard limiting argument) since the operators Tj are, in the following sense, almost
orthogonal.

Proposition 4. If α ≤ (n + 1
2 )β, then

‖T ∗j Tj′‖L2(Hn
a )→L2(Hn

a ) + ‖TjT
∗
j′‖L2(Hn

a )→L2(Hn
a ) ≤ C2−(n+ 1

2 )β|j−j′|.

This follows exactly as in [7] once we have made the observation that if ρ(x, t) is
any quasi-norm on Hn

a satisfying the estimate c−1 ≤ ρ(δx, δ2t) ≤ c for some c ≥ 1
and δ > 0, then there exists a constant c0 > 1 so that either

c−1
0 ≤ ∂

∂xj
ρ(x, t) ≤ c0

for some j = 1, . . . , 2n, or

c−1
0 δ ≤ ∂

∂t
ρ(x, t) ≤ c0δ.

Since from this it follows that∣∣∇(y,s)[ρ(y, s)−β − ρ((x, t) · (y, s))−β ]
∣∣ ≥ C > 0,

whenever ρ((x, t) · (y, s)) � ρ(y, s). For more details see [7].
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2.2. Remarks on Lp → Lq estimates. For p ≤ q, the Lp → Lq operator norms of
Tj are equal to that of the rescaled operator T̃j given by

T̃jf(x, t) = 2jh(1/p−1/q)2jαSjf(x, t)

where h = 2n + 2 denotes the homogeneous dimension of Hn
a and

Sjf(x, t) =
∫
Hn

a

K̃j

(
(y, s)−1 · (x, t)

)
f(y, s) dy ds

with
K̃j(x, t) = ϑ(ρ(x, t))ρ(x, t)−h−αei2jβρ(x,t)−β

.

In particular establishing Theorem 3 is equivalent to showing that the L2 operator
norm of Sj is O(2−jdβ/2), where d = 2n + 1 denotes the topological dimension of
Hn

a , standard interpolation techniques then give that the Lp operator norm of Sj is
O(2−jdβ/22jdβ|1/p−1/2|). If p ≤ 2 this is also a bound for the Lp → Lp′ , Lp → L2, and
Lp′ → L2 operator norms and can, for this range of p, be written more succinctly as
O(2−jdβ/p′).

From the corresponding results for the dyadic operator Tj , which of course follow
immediately from those for Sj , we obtain the following.

Theorem 5. If 1 < p < ∞ and either
(i) ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, or
(ii) ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1,

then T extends to a bounded operator from Lp(Hn
a) to itself whenever∣∣∣∣1p − 1

2

∣∣∣∣ <
dβ − 2α

2dβ
.

The estimates above match those obtained by Wainger [10] for the corresponding
operators in Rd. However, unlike the situation in the Euclidean setting which was
settled in [2] and [3], the behavior of the operator T on the Heisenberg group near L1

and the endpoint results in Lp for p 6= 2 remain open problems.
We chose to use the notation h and d for the homogeneous and topological dimen-

sions of Hn
a in the arguments alluded to above as these also apply in the setting of

homogeneous groups; of course establishing the analogue of Theorem 3 in this more
general group settings remains an open problem.

3. Homogeneous groups and a proposition of Hörmander

The Heisenberg group is of course one of the simplest examples of a
(non-commutative) homogeneous group. Recall that a homogeneous group consists
of Rd equipped with a Lie group structure, together with a family of dilations

x = (x1, . . . , xd) 7→ δ ◦ x = (δa1x1, . . . , δ
adxd),

with a1, . . . , ad strictly positive, that are group automorphisms, for all δ > 0.
To each homogeneous group on Rd, we can associate its Lie algebra, consisting of

left-invariant vector fields on Rd, with basis {Xj}1≤j≤d where each Xj is the left-
invariant vector field that agrees with ∂/∂xj at the origin.

Key to establishing Theorem 3 is the following, presumably well known, general-
ization of a proposition of Hörmander [5], see also [9], Chapter IX.
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Proposition 6. Let Ψ be a smooth function of compact support in x and y, and Φ
be real-valued and smooth on the support of Ψ. If we assume that

(4) det
(
XjYkΦ(x, y)

)
6= 0,

on the support of Ψ, then for λ > 0 we have

(5)
∥∥∥∫

Rd

Ψ(x, y)eiλΦ(x,y)f(y)dy
∥∥∥

L2(Rd)
≤ Cλ−

d
2 ‖f‖L2(Rd).

Proposition 6 can in fact be extended to families of smooth vector fields X1, . . . , Xd

forming a basis at every point of Rd; however, we choose to state it in this restricted
generality (which is already more than we need) as this admits a proof which is simply
the natural modification of Hörmander’s original argument.

Proof. By using a partition of unity we may assume that the amplitude Ψ has suitably
small compact support in both x and y. Denoting the operator on the left hand side
of inequality (5) by Tλ it is then easy to see that

T ∗λTλf(y) =
∫
Rd

Kλ(x, z)f(z) dz

where
Kλ(x, z) =

∫
Rd

eiλ[Φ(x,y)−Φ(z,y)]Ψ(x, y)Ψ(z, y) dy.

It therefore suffices to establish the kernel estimate

(6) |Kλ(x, z)| ≤ C(1 + λ|z−1 · x|)−N ,

since from this it would follow that∫
|Kλ(x, z)| dz ≈ |{z : |z−1 · x| ≤ λ−1}| = Cλ−d

and similarly for
∫
|Kλ(x, z)| dx, and therefore by Schur’s test that

‖T ∗λTλf‖L2(Rd) ≤ Cλ−d‖f‖L2(Rd).

The kernel Kλ(x, z) is of course always bounded, hence in order to establish (6)
we need only consider the case when |z−1 · x| ≥ λ−1. Now

YkΦ(x, y)− YkΦ(z, y) =
∫ 1

0

d

dt
YkΦ(z · t(z−1 · x), y) dt

=
d∑

j=1

(z−1 · x)j

∫ 1

0

XjYkΦ(z · t(z−1 · x), y) dt

=
d∑

j=1

(z−1 · x)jXjYkΦ(x, y) + O(|z−1 · x|2).

So if we let

A = A(x, y) = XjYkΦ(x, y) and u = u(x, y, z) = A−1 z−1 · x
|z−1 · x|

and define
∆(x, y, z) = (u1Y1 + · · ·+ udYd)[Φ(x, y)− Φ(z, y)]
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it follows that
∆(x, y, z) = |z−1 · x|+ O(|z−1 · x|2).

Therefore for |z−1 · x| small enough, it is here that we use our initial suitably small
support assumption, we have

|∆(x, y, z)| ≥ 1
2 |z

−1 · x|,

and if we now set

D =
1

iλ∆(x, y, z)
(u1Y1 + · · ·+ udYd),

it follows that ∣∣∣∣∫
Rd

eiλ[Φ(x,y)−Φ(z,y)]Ψ(x, y)Ψ(z, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

DN
(
eiλ[Φ(x,y)−Φ(z,y)]

)
Ψ(x, y)Ψ(z, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

eiλ[Φ(x,y)−Φ(z,y)](Dt)N
(
Ψ(x, y)Ψ(z, y)

)
dy

∣∣∣∣
≤ CN (1 + λ|z−1 · x|)−N ,

for all N ≥ 0. �

4. Proof of Theorem 3

Since the operator norms of Tj are equal to that of the rescaled operator T̃j given
by

T̃jf(x, t) = 2jα

∫
Hn

a

K̃j

(
(y, s)−1 · (x, t)

)
f(y, s) dy ds

where
K̃j(x, t) = ϑ(ρ(x, t))ρ(x, t)−2n−2−αei2jβρ(x,t)−β

it suffices to establish estimate (3) for the rescaled operators T̃j .
Since the T̃j are local operators, in the sense that the support of T̃jf is always

contained in a fixed dilate of some nonisotropic ball containing the support of f , we
may make the additional assumption that the integral kernels above have compact
support in both (x, t) and (y, s). Estimate (3) for T̃j then follows from Proposition 6
once we have verified the non-degeneracy condition (4) in this setting.

It is well known that

X`
j =

∂

∂xj
+ 2axj+n

∂

∂t
, X`

j+n =
∂

∂xj+n
− 2axj

∂

∂t
j = 1, . . . , n,

and T = ∂
∂t form a real basis for the Lie algebra of left-invariant vector fields on Hn

a ,
while

Xr
j =

∂

∂xj
− 2axj+n

∂

∂t
, Xr

j+n =
∂

∂xj+n
+ 2axj

∂

∂t
j = 1, . . . , n,

and T = ∂
∂t form a real basis for the Lie algebra of right-invariant vector fields.
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For convenience we shall use synonymously X`
2n+1 = Xr

2n+1 = T, and furthermore
denote

X` = (X`
1, . . . , X

`
2n+1) and Xr = (Xr

1 , . . . , Xr
2n+1).

We note that
−[Xr

j ϕ̃](x, t) = [X`
jϕ]

(
(x, t)−1

)
,

where ϕ̃(x) = ϕ
(
(x, t)−1

)
, and hence

X`
jY

`
k

[
ϕ
(
(y, s)−1 · (x, t)

)]
= −[X`

jX
r
kϕ]

(
(y, s)−1 · (x, t)

)
.

The non-degeneracy condition (4) in this setting is therefore equivalent to the follow-
ing.

Proposition 7. Let Φ(x, t) = ρ(x, t)−β with β > 0. If (x, t) 6= (0, 0) and either
(i) ρ(x, t) = ρ1(x, t) with 0 < a2 < Cβ, or
(ii) ρ(x, t) = ρ2(x, t) with a2 ≤ 1,

then
det

(
X`

jX
r
kΦ(x, t)

)
6= 0.

Theorem 3 now follows immediately for b = 1, the proof in general follows from
the observation that Hn

a is isomorphic to Hn
a/b with the explicit isomorphism being

given by
φ(x, t) = (bx, bt).

5. The determinant calculations

The purpose of this section is to prove Proposition 7, however we shall start by
stating and sketching the proof of a related negative result for the quasi-norm ρ3(x, t)
on H1

a. Outlining this argument first will be instructive as it is simpler than, while
still similar to, those for Proposition 7.

Proposition 8. Let n = 1 and Φ(x, t) = ρ3(x, t)−β, then

det
(
X`

jX
r
kΦ(x, t)

)
= 0

along the lines (0, x2, 0) and (x1, 0, 0).

Proof. Let ϕ3(x, t) = ρ3(x, t)4 = x4
1 + x4

2 + t2. It is straightforward to see that the
‘mixed’ Hessian of Φ is given by

X`
jX

r
kΦ(x, t) = −β

4 ϕ
−(β+8)/4
3 {ϕ3X

`
jX

r
kϕ3 − β+4

4 X`
jϕ3X

r
kϕ3}.

For convenience both here and in the proofs of both parts of Proposition 7 we
define

A := X`
jX

r
kϕ3 and B := X`

jϕ3X
r
kϕ3.

Now since rank(B) = 1 it follows that

det(ϕ3A− β+4
4 B)

= ϕ2
3

ϕ3 det(A)− β + 4
4

det

b1

a2

a3

 + det

a1

b2

a3

 + det

a1

a2

b3


 ,
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where aj = (aj1, aj2, aj3) and bj = (bj1, bj2, bj3).
It is easy to verify that

A = 2(C + aD)

where

C =

6x2
1 2t 0

−2t 6x2
2 0

0 0 0

 and D =

−4ax2
2 4ax1x2 2x2

4ax1x2 −4ax2
1 −2x1

−2x2 2x1 1/a

 .

Since rank(D) = 1 it follows that

det(A) = 8 det
(

6x2
1 2t

−2t 6x2
2

)
= 32(9x2

1x
2
2 + t2).

For the first of the remaining three determinants we note that

det

b1

a2

a3

 = 8X`
1ϕ3 det(E + aF ),

where

E =

2x3
1 2x3

2 0
−2t 6x2

2 0
0 0 0

 and F =

−2x2t 2x1t t/a
4ax1x2 −4ax2

1 −2x1

−2x2 2x1 1/a

 .

Using the fact that rank(F ) = 1 we then see that

det

b1

a2

a3

 = 8X`
1ϕ3 det

(
2x3

1 2x3
2

−2t 6x2
2

)
.

In an almost identical manner we can also obtain that

det

a1

b2

a3

 = 8X`
2ϕ3 det

(
6x2

1 2t
2x3

1 2x3
2

)
,

and

det

a1

a2

b3


= 8X`

3ϕ3

{
2ax2 det

(
−2t 6x2

2

2x3
1 2x3

2

)
+ 2ax1 det

(
6x2

1 2t
2x3

1 2x3
2

)
+ t det

(
6x2

1 2t
−2t 6x2

2

)}
,

we leave the details to the reader. Bringing all of this together we get that

det(ϕ3A− β+4
4 B)

= −16ϕ2
3

{
6(β + 1)ϕ3x

2
1x

2
2 + (β + 2)t4 + 3(β + 4)x2

1x
2
2t

2 − 2(x4
1 + x4

2)t
2
}
. �
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5.1. Proof of Proposition 7, part (i). Let ϕ1(x, t) = ρ1(x, t)4 = |x|4 + t2. It is
straightforward to see that the ‘mixed’ Hessian of Φ is given by

X`
jX

r
kΦ(x, t) = −β

4 ϕ
−(β+8)/4
1 {ϕ1X

`
jX

r
kϕ1 − β+4

4 X`
jϕ1X

r
kϕ1}.

We again define A := X`
jX

r
kϕ1 and B := X`

jϕ1X
r
kϕ1. Since rank(B) = 1 it follows

that

det(ϕ1A− β+4
4 B) = ϕ2n

1


ϕ1 det(A)− β + 4

4

2n+1∑
j=1

det



a1

...
bj

...
a2n+1




,

where aj = (aj1, . . . , aj 2n+1) and bj = (bj1, . . . , bj 2n+1).
It is an easy calculation to see that

A = 4
(

C 0
0 0

)
+ 8

(
D 0
0 0

)
+ 4aE and B = 4|x|2

(
F 0

)
+ 4atG

where

C = |x|2I + atJ, D = xxt, E =
(

2a(Jx)(xtJ) Jx
xtJ 1/2a

)
,

F = (X`ϕ1)xt, and G =
(
(X`ϕ1)(xtJ) X`ϕ1/2a

)
with J the standard symplectic matrix on R2n coming from the group structure.

Since both rank(D) = 1 and rank(E) = 1 it follows that

det(A) = 24n+1 det(C + 2D)

= 24n+1

(
|x|4 + a2t2

)n + 1
2

(
|x|4 + a2t2

)n−1
2n∑

j=1

xjX
`
jϕ1


= 24n+1

(
|x|4 + a2t2

)n−1(3|x|4 + a2t2
)
.

Further careful calculations utilizing particular rank one matrices lead to the iden-
tities

2n∑
j=1

det



a1

...
bj

...
a2n+1

 = 24n−1
(
|x|4 + a2t2

)n−1|x|2
2n∑

j=1

(X`
jϕ1)2

= 24n+3|x|4
(
|x|4 + a2t2

)n

and
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det


a1

...
a2n

b2n+1

 = 42n+1aX`
2n+1ϕ1 det

(
C + 2D Jx
|x|2xt t/2a

)

= 42n+1t
(
|x|4 + a2t2

)n−1

 1
2a|x|2

n∑
j=1

(xjX
`
j+nϕ1 − xj+nX`

jϕ1) + t
(
3|x|4 + a2t2

)
= 42n+1t2

(
|x|4 + a2t2

)n−1 (
(3− 2a2)|x|4 + a2t2

)
.

We omit the details, but observe that bringing this all together we obtain

2n+1∑
j=1

det



a1

...
bj

...
a2n+1

 = 42n+1
(
|x|4 + a2t2

)n−1 {
2|x|8 + t2

(
3|x|4 + a2t2

)}
,

and consequently

det(ϕ1A− β+4
4 B) = −(4ϕ1)2n

(
|x|4 + a2t2

)n−1
f1(x, t)

where

f1(x, t) = 2(β + 1)|x|8 +
(
3(β + 2)− 2a2

)
|x|4t2 + (β + 2)a2t4.

By analyzing the discriminant

∆ = 4a4 − 4(β + 2)(2β + 5)a2 + 9(β + 2)2,

we see that our Hessian will be non-degenerate provided

a2 < Cβ =
β + 2

2

(
2β + 5 +

√
(2β + 5)2 − 9

)
.

Remark 9. We conclude by remarking that when a2 ≥ Cβ the Hessian degenerates
along the paraboloids

|x|4 =
2a2 − 3(β + 2)±

√
∆

4(β + 1)
t2.

5.2. Proof of Proposition 7, part (ii). We start by letting ϕ2(x, t) = ρ2(x, t)2

and noting that as a consequence ϕ2 must satisy the identity

(7) ϕ−1
2 |x|2 + ϕ−2

2 t2 = 1.
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Arguing as in the proof of Proposition 7, part (i) (and using the same notation)
we see that ϕ2 satisfies

det(ϕ2A− β+2
2 B) = ϕ2n

2


ϕ2 det(A)− β + 2

2

2n+1∑
j=1

det



a1

...
bj

...
a2n+1




.

It follows from an easy, although somewhat lengthy, calculation that

A2A = 2Aϕ−2
2

(
C 0
0 0

)
+ 2Aϕ−4

2 D,

where
C = ϕ2I + 2atJ,

D =
(
tX`ϕ2 − ϕ2(2aJx, 1)

)(
tXrϕ2 − ϕ2(−2aJx, 1)

)t

,

and

(8) A = ϕ−2
2 |x|2 + 2ϕ−3

2 t2 = ϕ−1
2 + ϕ−3

2 t2.

Since rank(D) = 1 and

A(tX`
2n+1ϕ2 − ϕ2) = −ϕ−1

2 |x|2

it follows that

(9) det(A2A) = 22n+1A2n−1ϕ
−(4n+6)
2 (ϕ2

2 + 4a2t2)n|x|4.
While observing that certain matrices have rank one it is possible to verify that

A4n+2
2n∑

j=1

det



a1

...
bj

...
a2n+1

 = 4nA2n−1ϕ
−(4n+1)
2 (ϕ2

2 + 4a2t2)n−1|x|2
2n∑

j=1

(AX`
jϕ2)2

= 4n+1A2n−1ϕ
−(4n+5)
2 (ϕ2

2 + 4a2t2)n|x|4

and

A4n+2 det


a1

...
a2n

b2n+1

 = 4nA2n+2ϕ−4n
2 X`

2n+1ϕ2X
r
2n+1ϕ2 det(C) +

2n∑
j=1

det



c1

...
dj

...
c2n

b2n+1


.

It then follows from a careful calculation and the identity

A
n∑

j=1

{
xjX

`
j+nϕ2 − xj+nX`

jϕ2

}
= −8a2ϕ−1

2 t|x|2
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that

2n∑
j=1

det



c1

...
dj

...
c2n

b2n+1


= 4n+1A2nϕ

−(4n+4)
2 (ϕ2

2 + 4a2t2)n−1X`
2n+1ϕ2

{
(ϕ2

2 + 4a2t2)− 2Aa2ϕ3
2

}
|x|2t.

Bringing this all together we see that

A4n+2
2n+1∑
j=1

det



a1

...
bj

...
a2n+1


= 4n+1A2nϕ

−(4n+4)
2 (ϕ2

2 + 4a2t2)n−1
{
(ϕ2

2 + 4a2t2)t2 + ϕ3
2|x|2

}
and consequently

A4n+2 det(ϕ2A− β+2
2 B) = −22n+1A2n−1ϕ

−(2n+5)
2 (ϕ2

2 + 4a2t2)n−1f2(x, t)

where

f2(x, t) = Aϕ4
2|x|2 + 4ϕ2

2t
2(1− a2) + 16a2t4 + 4a2ϕ−2

2 t6.

6. Further comparisons

6.1. Nonisotropic R2n+1. When a = 0 (not a Heisenberg type group, but still a ho-
mogeneous group) we of course have X`

j = Xr
j = ∂/∂xj and it is then straightforward

to verify that in this case we have the following:
If ρ(x, t) = ρ1(x, t), then (in the notation of Section 5) we get that

det(ϕ1A− β+4
4 B) = −b (4ϕ1)2n|x|4n

{
2(β + 1)|x|4 + 3(β + 2)t2

}
and in particular the Hessian degenerates along the line (0, t).

While if ρ(x, t) = ρ2(x, t), then

A4n+2 det(ϕ2A− β+2
2 B) = −22n+1A2n−1ϕ−5

2

{
βAϕ3

2 +Aϕ2
2|x|2 + 4t2

}
which is clearly non-degenerate.

Remark 10. Sharp Lp estimates for nonisotropic operators of this type in the plane
R1+1 equipped with the dilation structure δ ◦ (x, t) = (δa1x, δa2t) were obtained by
Shayya [8] using Fourier transform methods. In particular, Shayya showed that if you
take ρ = ρ2 to be the nonisotropic Minkowski functional associated to the unit ball
in R2, then

|K̂α,β(ξ, τ)| ≤ C(1 + max{|ξ|1/(a1+β), |τ |1/(a2+β)})α−β .
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We take this opportunity to point out that in this setting it is rather straightforward
to observe that equivalent norms can give rise to different L2 behavior. To be more
precise, if we instead set ρ = ρ3 where ρ3(x, t) = (x2a2 + t2a1)1/2a1a2 with a2 ≥ a1,
then by applying the method of stationary phase one can see that in order for the
inequality

|K̂α,β(ξ, τ)| ≤ C

to hold it is necessary that α ≤ (a2 + 1)β/2a2.

6.2. Polarized Heisenberg group. The polarized Heisenberg group Hn
a,pol is iso-

morphic to the full Heisenberg group Hn
a and has the multiplication law

(x, t) · (y, s) = (x + y, s + t− 2a xtJpol y)

where again a is a nonzero real number, but now Jpol denotes the matrix on R2n,

Jpol =
(

0 In

0 0

)
.

In particular, if n = 1 and a = −1/2, then this is the m = 3 case of the groups of
m×m upper-triangular matrices with ones along the diagonal; see Stein [9].

When n = 1 the corresponding Lie algebra is generated by the left-invariant vector
fields

X`
1 =

∂

∂x1
, X`

2 =
∂

∂x2
+ 2ax1

∂

∂t
, and X`

3 =
∂

∂t
,

with the right-invariant vector fields being given by

Xr
1 =

∂

∂x1
+ 2ax1

∂

∂t
, Xr

2 =
∂

∂x2
, and Xr

3 =
∂

∂t
.

Proposition 11. Let n = 1 and Φ(x, t) = ρ1(x, t)−β, then for all real a

det
(
X`

jX
r
kΦ(x, t)

)
= 0

along the line (0, t).

In actual fact, using again the notation of the previous section, we have that

det(ϕ1A− β+4
4 B) = −16

{
2(β + 1)|x|8 + 3(β + 2)|x|4t2 − 2(β + 2)aϕ1x1x2t

}
.

We leave the details to the reader.

Proposition 12. Let n = 1 and Φ(x, t) = ρ2(x, t)−β with β > 0, then for (x, t) 6=
(0, 0)

det
(
X`

jX
r
kΦ(x, t)

)
6= 0

provided a2 ≤ 1.

Proof. A calculation similar to those above yields

A6 det(ϕ2A− β+2
2 B)

= −8Aϕ−7
2

{
βAϕ2(ϕ2

2 − ax1x2t) + (2Aϕ3
2 − 2Aϕ2ax1x2t− (x2

1 + x2
2)

2)
}

.
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It is then easy to see that

2Aϕ3
2 − 2Aϕ2ax1x2t− (x2

1 + x2
2)

2 ≥ Aϕ2(ϕ2(x2
1 + x2

2)− 2ax1x2t)

≥ Aϕ2(x2
1 + x2

2)(ϕ2 − |at|),

which is clearly nonnegative if a2 ≤ 1, since it follows from (7) that ϕ2 ≥ |t|. In the
last line above we used the easily verifiable inequality

(10) 2ax1x2t ≤ (x2
1 + x2

2)|at|.
From this inequality it also follows that

ϕ2
2 − 2ax1x2t ≥ 2|x1x2|(ϕ2 − |at|)

and hence, if we again assume that a2 ≤ 1, we see that

ϕ2
2 − ax1x2t ≥ ϕ2

2/2. �
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