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CIRCLE AND TORUS ACTIONS ON EQUAL SYMPLECTIC

BLOW-UPS OF CP2

Yael Karshon and Liat Kessler

Abstract. A manifold obtained by k simultaneous symplectic blow-ups of CP2 of equal
sizes ǫ (where the size of CP1 ⊂ CP2 is one) admits an effective two dimensional torus
action if k ≤ 3 and admits an effective circle action if ǫ < 1/(k− 1). We show that these
bounds are sharp if ǫ = 1/n where n is a natural number. Our proof combines “soft”
equivariant techniques with “hard” holomorphic techniques.

1. Toric actions and circle actions in dimension four

Hamiltonian torus actions. Let a torus T ∼= (S1)k act effectively on a compact
connected symplectic manifold (M, ω) of dimension 2n by symplectic transformations.
The action is Hamiltonian if there exists a moment map, that is, a map

Φ: M → t
∗ ∼= R

k

such that

dΦj = −ι(ξj)ω

for all j = 1, . . . , k, where ξ1, . . . , ξk are the vector fields that generate the torus action.
The triple (M, ω, Φ) is then called a Hamiltonian T -manifold. If H1(M) = 0 then
every symplectic torus action is Hamiltonian. By the convexity theorem [At, GS1],
the image of the moment map,

∆ := Φ(M),

is a convex polytope. By the equivariant Darboux-Weinstein theorem [W], every
T -fixed point has a neighborhood U which is equivariantly symplectomorphic to a
neighborhood of the origin in Cn with T acting linearly. The components Φξ = 〈Φ, ξ〉,
ξ ∈ t, of the moment map are perfect Morse-Bott functions; see [GS1].

The Delzant theorem. If dimT = 1
2 dimM , the triple (M, ω, Φ) is a symplectic

toric manifold, and the T -action is called toric. The polytope ∆ determines (M, ω, Φ)
up to an equivariant symplectomorphism preserving Φ. (This is the Delzant theorem
[De]; also see [LT].) The inverse image under Φ of a vertex of ∆ is a fixed point for
the T -action, and the image of a T -fixed point is a vertex of ∆.

A necessary condition for ∆ to occur as the moment map image of a symplectic
toric manifold is that it be a Delzant polytope, meaning that the edges emanating
from each vertex are generated by vectors v1, . . . , vn that span the lattice Zn.
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Delzant’s construction. Given a Delzant polytope ∆, Delzant constructs a sym-
plectic toric manifold (M∆, ω∆, Φ∆) whose moment map image is ∆. This manifold
is a symplectic quotient of CN , where N is the number of facets of ∆, with respect to
a subgroup K of (S1)N . The toric T -action is through an isomorphism of T with the
quotient (S1)N/K. The polytope ∆ is then realized as the intersection of the positive
orthant RN

+ with an affine plane. See [De], [Au], or [G].

Toric actions on CP2. An important special case of the Delzant construction is
the construction of CP

2 as the quotient of the sphere
{
|z1|

2 + |z2|
2 + |z3|

2 = 2
}
⊂ C

3

by the diagonal S1-action, resulting in the Fubini-Study symplectic form ωFS on
CP2. Our normalization is so that 1

2π

∫
CP1 ωFS = 1. Whenever we refer to CP2

as a symplectic manifold, we assume that the symplectic form is ωFS.

The standard toric action on CP2 is (a, b) · [z0 : z1 : z2] = [z0 : az1 : bz2]. The
moment map image is the triangle

(1.1) {(x1, x2) ∈ R
2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.

By the Delzant theorem, every toric action on CP2 is obtained from a symplecto-
morphism of CP2 with a symplectic toric manifold M∆ that is associated to a Delzant
polygon ∆. The second Betti number dimH2(M∆) is equal to the number of edges of
∆ minus two; this follows from Morse theory for components of the moment map. So
∆ must be a triangle. Up to rescaling, every Delzant triangle can be obtained from a
standard one, (1.1), by a transformation x 7→ Ax+ b where A ∈ GL(2, Z) and b ∈ R2.
It follows that

Lemma 1.1. Every toric T -action on a compact connected symplectic four-manifold

(M, ω) with dimH2(M) = 1 and volume(M) = volume(CP
2) is equivariantly sym-

plectomorphic to the standard action on CP2 through an isomorphism of the torus T
with (S1)2.

Hamiltonian S1 actions on compact symplectic four-manifolds. Let the circle
group T = S1 act on a four dimensional compact connected symplectic manifold
(M, ω) with moment map Φ: M → t

∗ ∼= R. A connected component of the fixed
point set is either an isolated fixed point p ∈ M or a closed symplectic surface F ⊂ M
on which Φ is constant. Every interior fixed point (that is, a fixed point at which
Φ is neither maximal nor minimal) is isolated. Let Zk ⊂ S1 be the cyclic subgroup
of order k. A connected component of the fixed point set of Zk that is not fixed by
any larger subgroup is a symplectic 2-sphere C ⊂ M on which S1 acts by rotations
of “speed k”; we call it a Zk-sphere. A Zk-sphere contains two fixed points, p and q,
which are isolated fixed points in M . We have 1

k
|Φ(p) − Φ(q)| = 1

2π

∫
C

ω.

To (M, ω, Φ) we associate the following labeled graph. To an isolated fixed point p
we associate a vertex 〈p〉, labeled by the real number Φ(p). To a Zk-sphere containing
two fixed points p and q we associate an edge connecting the vertices 〈p〉 and 〈q〉 and
labeled by the integer k. To a two dimensional component F of the fixed point set
we associate a “fat” vertex 〈F 〉 labeled by two real numbers and one integer: the
moment map label Φ(F ), the area label 1

2π

∫
F

ω, and the genus of the surface F . The
graph determines (M, ω, Φ) up to an equivariant symplectomorphism that preserves
moment maps [Ka1].
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Circle actions on CP2. Let (M, ω) be a compact symplectic four-manifold. If
dimH2(M ; R) ≤ 3 and dimH1(M ; R) = 0, then every Hamiltonian circle action on
(M, ω) extends to a toric action. This is proved in [Ka2, Theorem 1] using techniques
of [Ka1]. In particular,

Lemma 1.2. Every Hamiltonian S1-action on a compact connected symplectic four-

manifold (M, ω) with dim H2(M) = 1 and volume(M) = volume(CP2) is equivariantly

symplectomorphic to an S1-action on CP2 obtained by composing a homomorphism

S1 → (S1)2 with the standard toric action on CP2.

2. Symplectic blow-ups

Blow-up of Cn. Consider Cn ∼= R2n with its standard symplectic form
∑

dxi ∧ dyi.
The standard symplectic blow-up of C

n of size r2/2 is obtained by removing the
open ball B2n(r) of radius r centered at the origin and collapsing its boundary along
the Hopf fibration ∂B2n(r) → CPn−1. The resulting space is naturally a smooth
symplectic manifold. This can be shown through symplectic cutting [L] or by an
explicit formula on the complex blow-up [GS3]. For more details see [MS1, Section
7.1]. The submanifold CPn−1 is called the exceptional divisor.

Blow-ups of a symplectic manifold. A blow-up of a 2n-dimensional symplectic
manifold (M, ω) is a new symplectic manifold that is constructed in the following
way. Let Ω ⊂ C

n be an open ball centered at the origin of radius greater than r,
and let i : Ω → M be a symplectomorphism onto an open subset of M . The standard
blow-up in Ω of size r2/2 transports to M through i.

Let (M̃, ω̃) denote the resulting manifold. Then

(2.1) dimH2(M̃) = dimH2(M) + 1,

and

(2.2)
1

(2π)n

∫

M̃

ω̃n =
1

(2π)n

∫

M

ωn −
ǫn

n!

where ǫ = r2/2 is the size of the blow-up.
Similarly, k simultaneous blow-ups are obtained from embeddings i1 : Ω1 → M ,

. . . , ik : Ωk → M whose images are disjoint.

Notions of size. The size, or normalized symplectic area, of a two dimensional sym-
plectic manifold (C, ω) is 1

2π

∫
C

ω. Our normalization convention for the Fubini-Study

form ωFS is that the size of CP1 ⊂ CPn, 1
2π

∫
CP1 ωFS, is equal to one. We also define

the size of a ball of radius r in Cn to be r2/2. These notions are compatible with
the notion of the size of a symplectic blow-up; in a symplectic blow-up of size ǫ, the
resulting exceptional divisor is symplectomorphic to (CP

n−1, ǫωFS).

Constraints on blow-ups. The volume of a symplectic manifold gives constraints
on the sizes of its symplectic blow-ups: the volume of an embedded ball cannot
exceed the volume of the manifold. Sharper constraints are proved using holomorphic
techniques. For instance, suppose that we can perform two blow-ups of CP2 of sizes ǫ1
and ǫ2. By the volume constraint, ǫ21+ǫ22 < 1. By holomorphic constraints, ǫ1+ǫ2 < 1;
see [Gr].
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Gromov and McDuff-Polterovich give sharp constraints for the existence of k ≤ 8
simultaneous blow-ups of CP2 of equal sizes ǫ. There exist such blow-ups if and only
if ǫ satisfies the following conditions. If k = 2, 3, 4: ǫ < 1

2 . If k = 5, 6: ǫ < 2
5 . If

k = 7: ǫ < 3
8 . If k = 8: ǫ < 6

17 . See [MP]. According to Biran, for k ≥ 9, there exist
k symplectic blow-ups of equal sizes ǫ if and only if ǫ satisfies the volume constraint,
ǫ < 1√

k
; see [Bi].

It is always possible to perform blow-ups of sufficiently small sizes, because, by the
Darboux theorem, there always exist Darboux charts, and these contain balls.

Uniqueness of blow-ups of CP2. A manifold obtained from CP2 by a sequence
of symplectic blow-ups is determined up to symplectomorphism by the sizes of the
blow-ups; see [McD]. We will not use this in proving our theorem.

3. Equivariant symplectic blow-ups

Equivariant symplectic blow-ups. The standard action of the unitary group U(n)
descends to the standard blow-ups of Cn. Let M be a 2n-dimensional symplectic man-
ifold with an action of a compact group G. Let Ω ⊂ Cn be an open ball centered at
the origin of radius greater than r. Let i : Ω → M be a G-equivariant symplectomor-
phism onto an open subset of M , where G acts on Ω through some homomorphism
G → U(n). Then the G-action naturally extends to the symplectic blow-up of M ob-
tained from i. If the action on M is Hamiltonian, its moment map naturally extends
to the blow-up. When G ∼= (S1)n we call this a toric blow-up.

If G is Abelian then, after possibly composing the inclusion map i : Ω → M on
the right by an element of U(n), we may assume that G acts on C

n by rotations of
the coordinates. Specifically, if the action is toric, we may assume that G acts on Cn

through an isomorphism with (S1)n, and if G = S1, we may assume that its action
on Cn is

λ · (z1, . . . , zn) = (λm1z1, . . . , λ
mnzn)

where m1, . . . , mn are integers. These integers are called the isotropy weights at p;
they are determined, up to permutation, by the S1-action and the symplectic form.

Size and rational length. The size, or rational length, of an interval AB of rational

slope in Rn is the largest positive number λ such that the vector 1
λ

−−→
AB is in the lattice

Z
n. This is compatible with the previous notions of “size” (normalized symplectic

area); in a symplectic toric manifold (M∆, ω∆, Φ∆) with moment map image ∆, the
preimage of an edge of ∆ is a 2-sphere in M∆ whose normalized symplectic area is
equal to the rational length of the edge.

Toric blow-ups in dimension 4. The moment map image of the standard sym-
plectic blow-up of C2 of size ǫ is shown in Figure 1. It is obtained from the moment
map image R

2
+ of C

2 by “chopping off” a triangle whose sides have size ǫ.
A toric blow-up of size ǫ of a symplectic toric manifold amounts to “chopping off

a corner of size ǫ” of its moment map image ∆. This can be done if and only if there
exist two adjacent edges in ∆ whose sizes are both strictly greater than ǫ.

Example. Figure 2 shows the moment map images of toric blow-ups of CP2 of sizes
ǫ1, ǫ2, ǫ3. By the “uniqueness of blow-ups” of CP2, the resulting manifolds are (non-
equivariantly) symplectomorphic.
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|z1|2+|z2|2≥r2

ǫ

|z2|2/2

ǫ

ǫ

|z1|2/2

Figure 1. Blow-up of C2 of size ǫ =
r2

2

ǫ1

ǫ2ǫ3

ǫ1

ǫ2

ǫ3

Figure 2. Toric blow-ups of sizes ǫ1, ǫ2, ǫ3 of CP
2

Equal toric blow-ups of CP2.

Lemma 3.1. (CP
2, ωFS) admits a toric blow-up of size ǫ > 0 if and only if ǫ < 1.

(CP2, ωFS) admits two or three toric blow-ups of size ǫ > 0 if and only if ǫ < 1
2 .

(CP2, ωFS) does not admit four or more toric blow-ups of equal sizes.

Proof. By Lemma 1.1, the moment map image of CP2 is a triangle in which all edges
have size 1. So a toric blow-up of size ǫ > 0 can be performed if and only if ǫ < 1.

After one such blow-up, the moment map image has edges of sizes 1− ǫ, ǫ, 1− ǫ, 1
(ordered cyclically), as shown in Figure 3. If ǫ ≥ 1

2 , no two adjacent edges have size

greater than ǫ, so one cannot perform a second toric blow-up of size ǫ. If ǫ < 1
2 , one

can perform toric blow-ups of size ǫ at one or both of the two endpoints of the edge
of size 1. The resulting moment map images are shown in Figure 4.

After three toric blow-ups of size ǫ, one out of every two adjacent edges of the
moment map image has size ǫ; see Figure 4. So it is impossible to perform another
toric blow-up of size ǫ. �

Remark 3.2. Let (M, ω) be a symplectic manifold that is obtained from (CP2, ωFS) by
k simultaneous blow-ups of sizes ǫ1, . . . , ǫk. If k = 1, then the size of the blow-up must
be smaller than 1. If k ≥ 2, then, by Gromov, ǫi + ǫj < 1 for all i 6= j. Now suppose
that k ≤ 3. By an argument similar to the proof of Lemma 3.1, (CP2, ωFS) admits toric
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ǫ

1−ǫ

1

1−ǫ

Figure 3. One toric blow-up of size ǫ of CP2

ǫ

1−ǫ
ǫ

1−2ǫ

1−ǫ

ǫ 1−2ǫ

ǫ

1−2ǫ

1−2ǫ

ǫ

Figure 4. Two or three toric blow-ups of size ǫ of CP
2

blow-ups of the sizes ǫ1, . . . , ǫk. By “uniqueness of blow-ups”, the resulting manifold
is symplectomorphic to (M, ω). Thus, any symplectic manifold that is obtained from
(CP2, ωFS) by k ≤ 3 blow-ups admits a toric (and hence circle) action.

S1-equivariant blow-ups in dimension 4. In section 1 we defined the labeled
graph corresponding to a Hamiltonian S1-manifold (M, ω, Φ). We will now describe
how an equivariant symplectic blow-up affects the graph. To reduce the number of
cases that we will need to consider, we will work with extended graphs, obtained from
the graph of a Hamiltonian S1-manifold by adding edges that are labeled by the
integer 1 and that correspond to gradient spheres on which the action is free. (A
gradient sphere is a sphere that is invariant under the circle action and under the
gradient flow of the moment map with respect to a compatible Riemannian metric.
For a generic compatible metric, a gradient sphere can connect an interior fixed point
to a minimum or maximum of the moment map, but it cannot connect two interior
fixed points; see [Ka1, section 3.2].)

The affect of an equivariant symplectic blow-up is given by Figure 5 in the case of
an interior fixed point and by Figures 6–8 in the case of a fixed point on which the
moment map is minimal; the case where the moment map is maximal is similar. These
figures are taken from [Ka1]. Such a blow-up can be performed on the manifold if
λ > 0 is sufficiently small. The vertices of the resulting graph aquire a natural partial
ordering: for any two vertices v, w with moment map labels Φ(v), Φ(w), we declare
that v < w if and only if Φ(v) < Φ(w), and, additionally, either Φ(v) or Φ(w) is
extremal, or v and w are connected by a chain of edges along which Φ is monotone.

The operation on graphs that is given by Figures 5–8 can be performed for any

positive λ; we call it a λ-blow-up of the graph. If λ is too large, the moment map
labels might be inconsistent with the partial ordering on the vertices, or the area label
of a “fat” vertex might become non-positive. We recall Definition 7.1 of [Ka1]: the
graph is monotone if
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m+nα

α+mλ

α−nλ

m

n
n

m

Figure 5. λ-blow-up at interior fixed point

1

11

α
v , g v−λ , g

α

α+λ

Figure 6. λ-blow-up at non-isolated fixed point on minimum

α α+nλ

α+mλ
m

n n

m

m−n

Figure 7. λ-blow-up at isolated fixed point on minimum with dif-
ferent isotropy weights

(1) its moment map labels are strictly monotone with respect to the partial or-
dering on its vertices, and

(2) its area labels are positive.

Lemma 3.3. A Hamiltonian S1-manifold (M, ω, Φ) admits an S1-equivariant blow-

up of size ǫ > 0 centred at a fixed point p ∈ MS1

if and only if the following conditions

are satisfied.

(1) If p belongs to a Zk-sphere C, then ǫ < 1
2π

∫
C

ω.

(2) If p belongs to a two dimensional component F of the fixed point set MS1

,

then ǫ < 1
2π

∫
F

ω.

(3) If p is not a maximum for the moment map, then ǫ < max
m∈M

Φ(m) − Φ(p). If

p is not a minimum for the moment map, then ǫ < Φ(p) − min
m∈M

Φ(m).
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α+λ v=λ , g=0α

11
11

Figure 8. λ-blow-up at isolated fixed point on minimum with
isotropy weights 1, 1

(4) If p is an isolated fixed point and is a minimum or maximum for the moment

map, and if q is any fixed point other than p, then ǫ < |Φ(p) − Φ(q)|.

Proof. The conditions in the lemma are equivalent to the ǫ-blown-up graph being
monotone; see the discussion between Examples 7.3 and 7.4 of [Ka1]. Proposition 7.2
of [Ka1] asserts

A four dimensional compact Hamiltonian S1-space admits an equi-
variant symplectic blow-up of size ǫ at some fixed point if and only
if the corresponding blown-up graph is monotone.

We sketch why monotonicity is sufficient. By [Ka1, Theorem 7.1], we may assume
that the space is Kähler. The ǫ-blown-up graph determines a cohomology class Ω on
the equivariant complex blow-up. Every complex curve is homologous to a positive
linear combination of invariant complex curves [Ka1, Lemma C.6]; monotonicity im-
plies that the cohomology class Ω is positive on invariant complex curves. This, in
turn, implies that Ω2 is positive on the fundamental class [M ], by [Ka1, Lemma C.4].
Nakai’s criterion implies the existence of a Kähler form in the class Ω. This gives a
symplectic blow-up of size ǫ, because after blowing-down along the exceptional divisor
the graph becomes the same as the initial one. For details, see [Ka1, appendix C and
section 7].

We now show that the conditions are necessary. This argument was omitted
from [Ka1].

Let Ω ⊂ C2 be an open ball of radius > r centered at the origin, where ǫ = r2/2,
and let

i : Ω → M

be a symplectic embedding that is equivariant with respect to a homomorphism S1 →
U(2) and such that i(0) = p. Let m and n be the isotropy weights at p, so we may
assume that the S1-action on C2 is

λ · (z1, z2) = (λmz1, λ
nz2),

and the moment map on C2 is

(3.1) ΦC2(z) = Φ(p) + m
|z1|

2

2
+ n

|z2|
2

2
.

The point (z1, 0), for z1 6= 0, is fixed if and only if m = 0, and it has stabilizer Zk

if and only if k = |m| ≥ 2. A similar statement holds for the point (0, z2). It follows
that if p belongs to a Zk-sphere C or to a two dimensional component F of the fixed

point set MS1

then i−1(C) or i−1(F ) is equal to the intersection of Ω with one of the
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coordinate planes. Because this intersection contains a disk of area πr2 = 2πǫ, the
size of C, or F , must be greater than ǫ. This immediately implies Conditions (1) and
(2).

Condition (3) follows from the fact that the moment map for the S1-action on C
2

satisfies sup
z∈Ω

ΦC2(z) > Φ(p) + ǫ if p is not a maximum for the moment map and

inf
z∈Ω

ΦC2(z) < Φ(p) − ǫ if p is not a minimum for the moment map.

Let p be a minimum for the moment map. Then the isotropy weights m and n
are non-negative. Let I be an open interval containing the segment [Φ(p), Φ(p) +
min(mǫ, nǫ)] such that Φ−1

C2 (I) is contained in Ω. Consider the commuting diagram

Φ−1
C2 (I)

i
//

Φ
C2

""EE
EE

EE
EE

E
Φ−1(I)

Φ
||yy

yy
yy

yy
y

I

Because the maps to I are proper, the horizontal map i is proper, so its image is closed
in Φ−1(I). Because the map i is a diffeomorphism with an open set, its image is also
open. Being the moment map pre-image of a convex set, Φ−1(I) is connected. Thus,
i : Φ−1

C2 (I) → Φ−1(I) is an (equivariant) diffeomorphism, and Φ−1(I) does not contain
fixed points other than p. This implies Condition (4) for a minimum. Condition (4)
for a maximum is proved in a similar way. �

If M̃ ′ is obtained from M̃ by an equivariant blow-up, and q is an isolated fixed

point in M̃ different from the point at which the blow-up is centred, then q can also

be considered as a point of M̃ ′. This follows from the fact that the image of an

equivariant open embedding i : Ω → M̃ , when Ω ⊂ Cn is an open ball centered at the
origin, cannot contain an isolated fixed point other than i(0).

Lemma 3.4. Let (M, ω, Φ) be a four dimensional compact Hamiltonian S1-manifold.

Let (M̃, ω̃, Φ̃) be an equivariant blow-up of (M, ω, Φ) of size ǫ > 0 centred at an isolated

fixed point p ∈ MS1

. Let E ⊂ M̃ be the resulting exceptional divisor. Then M̃ does

not admit an equivariant symplectic blow-up of size ǫ that is centred at a fixed point

in E.

Moreover, suppose that q ∈ E is an isolated fixed point. Let M̃ ′ be obtained from

M̃ by a sequence of equivariant symplectic blow-ups at points other than q. Then M̃ ′

does not admit an equivariant symplectic blow-up of size ǫ that is centred at q.

Proof. Let m and n be the isotropy weights at p. Because p is an isolated fixed point,
m and n are non-zero. Because the action is effective, m and n are relatively prime.
The exceptional divisor E is symplectomorphic to (CP1, ǫωFS) with the S1-action
λ · [z, w] = [λmz, λnw].

If k := |m − n| ≥ 2, then E is a Zk-sphere of size ǫ passing through q. Additional
blow-ups transform E into a Zk sphere through q of size ≤ ǫ. The lemma then follows
from part (1) of Lemma 3.3.

If m = n = 1 or m = n = −1, then E ⊂ M̃ is fixed under the S1-action. The
lemma then follows from part (2) of Lemma 3.3.
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Φ=α+1

Φ=α
genus=0
size=1

Φ=α
genus=0
size=1−(k−1)ǫ

Φ=α+ǫ

Φ=α+1−ǫ
genus=0
size=ǫ

1 1

1

1

1

1

1

Figure 9. S1-equivariant blow-ups of CP2

Now suppose that |m − n| = 1. Then m and n must have the same sign, and the
isolated fixed point p is a minimum or maximum for the moment map Φ. Suppose that
it is a minimum; the case of a maximum is similar. Then E connects the minimum of

Φ̃ with an interior fixed point, and the moment map values at these two points differ
by ǫ. First, suppose that q is the interior fixed point on E. Because blowing up does
not decrease the minimal value of the moment map, part (3) of Lemma 3.3 implies

that M̃ ′ does not admit an equivariant blow-up of size ǫ centered at q. Next, suppose

that q is the minimum for Φ̃. Since blowing up at an interior fixed point creates
two interior fixed points, one of which has a smaller moment map value, part (4) of

Lemma 3.3 implies that M̃ ′ does not admit an equivariant blow-up of size ǫ centered
at q. �

Equal S1-equivariant blow-ups of CP2.

Lemma 3.5. For k ≥ 2, (CP2, ωFS) admits an S1-action and k equivariant blow-ups

of size ǫ > 0 if and only if ǫ < 1
k−1 .

Remark 3.6. Any circle action on (CP2, ωFS) extends to a toric action; see [Ka2,
Theorem 1]. Thus, by Lemma 3.1, for any circle action on (CP2, ωFS), there exists
an S1-equivariant blow-up of size ǫ > 0 if and only if ǫ < 1, and, for k = 2 or k = 3,
for any circle action on (CP2, ωFS), there exist k equivariant blow-ups of size ǫ > 0 if
and only if ǫ < 1

2 .

Proof of Lemma 3.5. The left hand side of Figure 9 shows CP
2 with the S1-action

a · [z0, z1, z2] = [z0, z1, az2].

Suppose that (k − 1)ǫ < 1. Then we can perform one blow-up at the isolated fixed
point and (k − 1) blow-ups at points on the fixed surface; see Lemma 3.3. The result
is shown on the right hand side of Figure 9.
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Φ=0

Φ=m

Φ=n

n

n−m

m

Figure 10. S1-action on CP2

From Lemma 3.3 it follows that the condition (k − 1)ǫ < 1 is necessary for there
to exist k equivariant blow-ups of sizes ǫ > 0.

A similar argument holds if we start from CP2 with the opposite S1-action, a ·
[z0, z1, z2] = [z0, z1, a

−1z2].
Now suppose that we start with CP2 with any other S1-action. By Lemma 1.2, we

may assume that the action has the form λ · [z0, z1, z2] = [λaz0, λ
bz1, λ

cz2] for some
a, b, c ∈ Z. After possibly permuting the homogeneous coordinates and multiplying
them by the same power of λ, we may assume that the action is

(3.2) λ · [z0, z1, z2] = [z0, λ
mz1, λ

nz2]

with 0 ≤ m ≤ n. Because the action is effective, m and n are relatively prime.
We already covered the case that m = 0 and n = 1, and, since [z0, λz1, λz2] =
[λ−1z0, z1, z2], we also covered the case m = n = 1. So we may assume that 1 ≤ m ≤
n−1. This action, with the minimal moment map value Φ = 0, is shown in Figure 10.

By Lemma 3.3, if we perform equivariant blow-ups at two of the three fixed points,
the sum of the sizes of the blow-ups is less than 1. Fix ǫ > 0. By Lemma 3.4, we can
perform equivariant blow-ups of size ǫ only at the original three fixed points. Thus,
if k is the number of blow-ups, then either k = 1 and ǫ < 1, or k ∈ {2, 3} and ǫ < 1

2 .
In all these cases, (k − 1)ǫ < 1.

Figure 11 shows the result of three equivariant blow-ups of size ǫ.
�

Equivariant symplectic blow-down. Let a compact Lie group G act on a four
dimensional symplectic manifold (M, ω). Let C ⊂ M be a smooth, G-invariant,
symplectic 2-sphere, whose homology class satisfies [C] · [C] = −1. By the equivariant
version of Weinstein’s tubular neighborhood theorem [W], a neighborhood of C is
equivariantly symplectomorphic to a neighborhood of the exceptional divisor in a
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n

n−m

m

m

n

n−m

Φ=n−(n−m)ǫ

Φ=n−nǫ

Φ=nǫ

Φ=mǫ

Φ=m−mǫ

Φ=m+(n−m)ǫ

Figure 11. Three S1-equivariant blow-ups of CP2

standard blow-up of C2. We can then equivariantly blow-down M along C. This
yields a symplectic manifold (N, ωN ) with a G-action whose equivariant blow-up is
(M, ω).

4. Circle and torus actions on equal symplectic blow-ups of CP2.

We are now ready to state our main result. Recall that we assume that our circle
or torus actions are always effective.

Theorem 4.1. Let ǫ = 1
n
, where n is a natural number. Let (Mk, ωǫ) be a symplectic

manifold that is obtained from (CP2, ωFS) by k ≥ 4 simultaneous blow-ups of size ǫ.

(1) (Mk, ωǫ) does not admit a two dimensional torus action.

(2) If ǫ ≥ 1
k−1 then (Mk, ωǫ) does not admit a circle action.

Corollary 4.2. For the following values of k and ǫ, it is possible to perform k simul-

taneous symplectic blow-ups of (CP2, ωFS) of equal sizes ǫ, but the resulting manifold

(Mk, ωǫ) does not admit a circle action.

k ǫ

4 1

3

5 1

3
, 1

4

6 1

3
, 1

4
, 1

5

7 1

n
, where 3 ≤ n ≤ 6

8 1

n
, where 3 ≤ n ≤ 7

≥ 9 1

n
, where

√
k < n ≤ k − 1

This follows from the sharpness of the constraints on blow-ups listed in section 2
and from Theorem 4.1.

Remark 4.3. The reason that Theorem 4.1 does not follow directly from Lemmas
3.1 and 3.5 is that a-priori (Mk, ωǫ) might admit an action which does not arise
from an action on CP2 by performing the blow-ups equivariantly. To show that such
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exotic actions do not exist, we apply Gromov’s theory of holomorphic curves. This
application is easiest in the case ǫ = 1

n
.

Remark 4.4. The reason that we require the blow-ups to be simultaneous is that in
this case the exceptional divisors are disjoint symplectically embedded spheres; see
Lemma 6.1. In fact, by “uniqueness of blow-ups”, a manifold obtained by a sequence
of blow-ups is symplectomorphic to one that is obtained by simultaneous blow-ups.

5. Holomorphic spheres

In this section we recall some well-known results from Gromov’s theory of holomor-
phic curves. We restrict our attention to curves of genus zero. Wherever we do not
specify the degree of smoothness, we assume that maps are C∞ smooth and spaces
of maps are equipped with the C∞ topology.

An almost complex structure on a manifold M is an automorphism J : TM → TM
of the tangent bundle such that J2 = −identity. It is compatible with a symplectic
form ω if 〈u, v〉 := ω(u, Jv) is symmetric and positive definite. This implies that for
every embedded submanifold C ⊂ M , if J(TC) = TC then ω|TC is non-degenerate.
On a symplectic manifold there always exists a compatible almost complex structure.
If a symplectic manifold admits an action of a compact Lie group G, there always
exists a compatible almost complex structure that is G-invariant.

Fix a compact symplectic manifold (M, ω). Let J denote the space of almost
complex structures J on M that are compatible with ω. The space J is contractible
[MS1, Prop. 2.50(iii)]; in particular, it is connected. The first Chern class of the
complex vector bundle (TM, J) is independent of the choice of J ∈ J ; we denote it
c1(TM).

Fix J ∈ J . A parametrized J-sphere is a map f : CP1 → M which is J-holomorphic,
that is, which satisfies the Cauchy-Riemann equations df ◦ j = J ◦ df . It is called
simple if it cannot be factored through a branched covering of CP

1. An embedding
is a one-to-one immersion which is a homeomorphism with its image. An embed-

ded J-sphere C ⊂ M is the image of a J-holomorphic embedding f : CP1 → M . In
particular, such a C is an embedded symplectic sphere.

Let A ∈ H2(M ; Z) be a homology class. For J ∈ J , let M(A, J) denote the set of
simple parametrized J-spheres in the class A. Notice that if A · A = −1 then every
parametrized J-sphere in the class A is simple. Consider the universal moduli space

M(A,J ) = {(f, J) | J ∈ J , f ∈ M(A, J)}.

(In the notation of McDuff and Salamon, [MS3, §3.1], this space would be denoted
by M∗(A, Σ;J ) with Σ = CP1.)

Lemma 5.1. Let (M, ω) be a compact symplectic four-manifold. Let A ∈ H2(M ; Z)
be a homology class. Let J ∈ J be an almost complex structure. Suppose that

c1(TM)(A) ≥ 1 and that there exists an immersed J-sphere f0 : CP1 → M in the

class A. Then the image of the projection map π : M(A,J ) → J contains a neigh-

borhood Ω of J in J .

Proof. Let ℓ ≥ 2. Let J ℓ denote the space of almost complex structures on M of
type Cℓ that are compatible with ω, and let M(A,J ℓ) denote the space of pairs
(f, J) where J ∈ J ℓ and where f : CP1 → M is a J-holomorphic map of type Cℓ

in the class A that cannot be factored through a branched covering of CP1. Let
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πℓ : M(A,J ℓ) → J ℓ denote the projection map. Then J ℓ and M(A, Jℓ) are Banach
manifolds and πℓ is differentiable; see [MS3, Proposition 3.2.1]. The assumptions that
c1(TM)(A) ≥ 1 and that f0 is an immersion imply that dπℓ|(f0,J) is onto; see the
regularity criterion in Lemma 3.3.3 of [MS3], and see Remark 3.2.8 of [MS3]. Also, the
kernel of dπℓ|(f0,J) is finite dimensional; see the proof of Theorem 3.1.5 on p. 51–52 of
[MS3]. In particular, the kernel splits, that is, it has a closed complementary subspace
in T(f,J)M(A,J ℓ); see [La, p. 4]. By the implicit function theorem for Banach spaces,

there exist a neighborhood of (f, J) in M(A,J ℓ) in which πℓ is a projection map; in
particular, the image of πℓ contains an open neighborhood Ωℓ of J in J ℓ; see [La,
Chapter I, §5, Cor. 2s]. Since the Cℓ topology on J ⊂ J ℓ is coarser then the C∞

topology, and Ωℓ is open in J ℓ, the intersection Ω := Ωℓ ∩ J is open in J . Let
J ′ ∈ Ω. Since J ′ ∈ Ωℓ, there exists a J ′-holomorphic sphere f : CP1 → M of type Cℓ

in the class A. Since J ′ is smooth, by “elliptic regularity”, f is smooth; see [MS3,
Proposition 3.1.9]. The lemma follows. �

The group PSL(2, C) of Möbius transformations of CP1 naturally acts on M(A,J )
by reparameterizations. We say that A is indecomposable if it cannot be written as a
sum A = A1 + A2 where Ai ∈ H2(M ; Z) and

∫
Ai

ω > 0.

Recall that a continuous map between topological spaces is called proper if and
only if the pre-image of any compact set is compact.

Lemma 5.2. If A is indecomposable then the map

(5.1) M(A,J )/ PSL(2, C) −−−−→ J

that is induced from π is proper.

Proof. By Gromov’s compactness theorem [MS3, Theorem 5.3.1], since A is inde-
composable, if Jn converges in J , then every sequence (fn, Jn) in M(A,J ) has a
convergent sub-sequence. It follows that the map (5.1) is proper. �

Lemma 5.3. Suppose that dimM = 4. Let A ∈ H2(M ; Z) be a homology class which

is represented by an embedded symplectic sphere C. Then

(1) There exists an almost complex structure J0 ∈ J for which C is a J0-sphere.

(2) For any J ∈ J and any parametrized J-sphere f : CP1 → M in the class A,

the map f is an embedding.

Proof. Construct J0 as follows. Let f0 : CP1 → M be a symplectic embedding whose
image is C. Define J0|TC such that f0 is holomorphic. Extend it to a compatible
fiberwise complex structure on the symplectic vector bundle TM |C. Then extend
it to a compatible almost complex structure on M . See [MS1, Section 2.6]. Then
(f0, J0) ∈ M(A,J ).

By the adjunction inequality, for any (f, J) ∈ M(A,J ),

A · A − c1(TM)(A) + 2 ≥ 0,

with equality if and only if f is an embedding; see [MS3, Cor. E.1.7]. Applying this
to (f0, J0), we get that the homology class A satisfies A · A − c1(TM)(A) + 2 = 0.
Applying the adjunction inequality to any other (f, J) ∈ M(A,J ), we get that f is
an embedding. �
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Lemma 5.4. Let (M, ω) be a compact symplectic four-manifold. Let A ∈ H2(M ; Z)
be an indecomposable homology class which is represented by an embedded symplectic

sphere and such that c1(TM)(A) ≥ 1. Then for any almost complex structure J ∈ J
there exists an embedded J-sphere in the class A.

Proof. Let C ⊂ M be an embedded symplectic sphere such that [C] = A. By part 1
of Lemma 5.3, M(A,J ) is non-empty. So the image of π is a non-empty subset of J .

Let (f, J) ∈ M(A,J ). By part 2 of Lemma 5.3, f is an embedding. By Lemma 5.1,
the image of π contains a neighborhood Ω of J in J . Thus, the map π is open. In
particular, the image of π is an open subset of J .

The image of π is equal to the image of the induced map (5.1). Because, by Lemma
5.2, this map is proper, its image is a closed subset of J .

We have shown that the image of π is a subset of J which is nonempty, open, and
closed. Because J is connected, it follows that π is onto. This proves the Lemma. �

6. Proof of the main result

Lemma 6.1. Let ǫ = 1
n

where n is a natural number. Let (Mk, ωǫ) be a symplectic

manifold that is obtained from (CP2, ωFS) by k simultaneous blow-ups of size ǫ. Let

Ei ∈ H2(Mk; Z), for i = 1, . . . , k, be the homology classes of the exceptional divisors.

Let a compact connected Lie group G act on (Mk, ωǫ) symplectically. Then there exist

pairwise disjoint G-invariant embedded symplectic spheres C1, . . . , Ck in Mk whose

homology classes are [Ci] = Ei.

Proof. Let C0
i be the exceptional divisors in (Mk, ωǫ), so that Ei = [C0

i ]. Each C0
i is

an embedded symplectic sphere.
The second homology group H2(Mk; Z) is generated by [CP1] and the Ei’s. For

each A ∈ H2(Mk; Z), the size 1
2π

∫
A

ω is an integer multiple of 1
n
. It follows that any

homology class whose size is equal to 1
n

is indecomposable. In particular, each of the
classes Ei is indecomposable.

Let JG be a G-invariant almost complex structure on Mk that is compatible with
ωǫ. By Lemma 5.4, for each i there exists an embedded JG-sphere Ci ⊂ Mk such that
[Ci] = Ei. We will now show

(1) C1, . . . , Ck are disjoint;
(2) each Ci is G-invariant;
(3) each Ci is symplectic.

For i 6= j, because Ei 6= Ej , the spheres Ci and Cj do not coincide. By positivity
of intersections, and since Ei · Ej = 0, the spheres Ci and Cj are disjoint.

Let a ∈ G. Because G is connected, [aCi] = [Ci] = Ei. By positivity of intersec-
tions and since Ei · Ei = −1, aCi and Ci must coincide.

Because Ci is an embedded JG-sphere and JG is compatible by ωǫ, Ci is symplectic.
�

Remark 6.2. The assertion of Lemma 6.1 is false when 1
2 < ǫ < 1 and k = 1. For a

detailed example see [Ke1, Section 6] or [Ke2].

Proof of Theorem 4.1. Let ǫ = 1
n

where n is a natural number. Let (Mk, ωǫ) be a

symplectic manifold that is obtained from (CP2, ωFS) by k simultaneous blow-ups of
size ǫ.
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Let G ∼= (S1)2 or G ∼= S1 act on (Mk, ωǫ); because Mk is simply connected, the
action is Hamiltonian.

Let Ci be the spheres obtained from Lemma 6.1. Perform equivariant symplectic
blow-downs of (Mk, ωǫ) along the Ci’s. By (2.1) and (2.2), each such a blow-down
decreases the second Betti number by one and increases the symplectic volume by
(2π)2ǫ2/2.

We get a four dimensional symplectic manifold (N, ωN ), with an effective Hamilton-
ian G-action, dimH2(N) = 1 and the volume of N is the same as that of (CP2, ωFS).
By Lemmas 1.1 and 1.2, this manifold is equivariantly symplectomorphic to CP2

with its standard symplectic form. Viewing this process in reverse order, we get that
(Mk, ωǫ) is obtained from (CP

2, ωFS) by k equivariant blow-ups of size ǫ.
The theorem now follows from Lemmas 3.1 and 3.5. �

Remark 6.3. Scott Baldridge [B1] has shown that any four-manifold that admits a
symplectic structure and a circle action with fixed points must be rational or ruled.
Consequently, such a manifold admits a symplectic form that is preserved by a circle
action. Baldridge asked [B2] whether any symplectic form on such a manifold is
preserved by some circle action. Our result shows that the answer is “no”. For
example, the manifold obtained from CP2 by four blow-ups admits circle actions and
admits symplectic forms; by [T], this manifold admits a symplectic form such that
each of the four exceptional divisors has size 1/3; by Theorem 4.1, this symplectic
form is not preserved under any circle action.

Acknowledgement

Most of the work on this project has taken place when the authors were affiliated
with the Hebrew University of Jerusalem.

We are grateful to Paul Biran, Francois Lalonde, Dusa McDuff, Martin Pinson-
nault, Leonid Polterovich, and Dietmar Salamon for valuable discussions. We are
grateful to the referee for thoughtful comments.

References

[At] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982),
no. 1, 1–15.

[Au] M. Audin, The topology of torus actions on symplectic manifolds, Progress in Math. 93,
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