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DIMENSION AND HITTING TIME IN RAPIDLY MIXING
SYSTEMS

Stefano Galatolo

Abstract. We prove that if a system has superpolynomial (faster than any power law)

decay of correlations then the time τr(x, x0) needed for a typical point x to enter for

the first time a ball B(x0, r) centered in x0, with small radius r scales as the local
dimension at x0, i.e.

lim
r→0

log τr(x, x0)

− log r
= dµ(x0).

This result is obtained by proving a kind of dynamical Borel-Cantelli lemma wich

holds also in systems having polinomial decay of correlations.

1. Introduction

Let us consider an ergodic system (X,T, µ) and two typical points x, x0. The orbit
of x will come as near as we want to x0 entering (sooner or later) in each positive
measure neighborhood of x0. If S ⊂ X is such a neighborhood, there is n ∈ N such
that Tn(x) ∈ S. Hitting time (also called waiting time, or shrinking target) problems
consider the time

τS(x) = min{n ≥ 1 : Tn(x) ∈ S}
needed for the orbit of x to enter in S for the first time. As the measure µ(S) is
smaller and smaller, τS(x) is bigger and bigger. In systems whose behavior is chaotic
enough it can be expected that since (by ergodicity) the orbit of x must visit S with
(asymptotic) frequency µ(S), when S is small, for most x

(1) τS(x) ∼ 1
µ(S)

.1

In general systems it is not always like this, even for nice sets, such as balls. There
are ergodic systems where the waiting time is generically larger than 1

µ(S) . In some
sense the behavior of such systems converges ”slowly” to the ergodic one.

A way to express this kind of problem in more precise terms is to consider a se-
quence of balls B(x0, rk) centered in x0 and consider the scaling behavior of the
hitting time in such balls, considering as an indicator for the hitting time R(x, x0) =
lim

k→∞

log(τB(xo,rk)(x))

− log(rk) (hence τB(xo,rk)(x) ∼ r
−R(x,x0)
k in the sense of scaling behavior

equivalence). On the other hand we can consider the scaling behavior of the measure
of the balls: dµ(x0) = lim

k→∞
log µ(B(x0,rk))

log(rk) (as above this give µ(B(x0, rk)) ∼ r
dµ(x0)
k )
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1Here ”∼” stands for some kind of (more or less strict) equivalence in the asymptotic behavior

of the two quantities.
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this is called the local dimension of µ at x0. It is not difficult to prove that in gen-
eral systems R(x, x0) ≥ dµ(x0) (for precise statements see theorem 2) and there are
systems (rotations by irrational angles which are well approximable, see [KS] e.g.)
where lim sup

k→∞

log(µ(B(x0,rk)))
log(rk) > dµ(x0). Conversely, in many systems with more or less

chaotic behavior we have the analog of equation 1 that is

(2) R(x, x0) = dµ(x0)

for µ−almost each x. This relation was proved for example for Axiom A systems (and
in a weaker form for typical Interval Exchange Transformations, see [G2]), typical
rotations on the circle ([KS]), systems having exponential distribution of return times
([G], theorem 6) or systems having a strong mixing assumption (called uniform mix-
ing) which is verified in a class of complex dynamical systems (inner functions, see
[FMP]).

Hitting time problems are related to many other features of chaotic dynamics:
entropy ([Sh]), quantitative recurrence and the distribution of return times (see e.g.
[G], [LHV]), the so called dynamical Borel-Cantelli property (see Definition 5, and
references [GK] or [FMP]), asymptotics of Birkhoff sums of functions having infinite
average (see [G2]), orbit complexity ([BGI]). Borel-Cantelli properties have also re-
lations with rate of mixing and speed of approximations of points (see e.g. [T], [K],
[FMP]).

As is well known, in a mixing system we have µ(A∩T−n(B)) → µ(A)µ(B) for each
measurable sets A,B. The speed of convergence of the above limit can be arbitrarily
slow (depending on T but also on the shape of the sets A,B). In many systems
however the speed of convergence can be estimated for sets having some regularity.

Let us remark that considering 1A(x) =
{

1 if x ∈ A
0 if x /∈ A the mixing condition becomes∫

1B ◦ Tn1Adµ →
∫

1Adµ
∫

1Bdµ. If we consider observables φ, ψ : X → R, in many
systems (most of them having some form of hyperbolicity) it can be proved that

|
∫
φ ◦ Tnψdµ−

∫
φdµ

∫
ψdµ| ≤ ||φ|| ||ψ||Φ(n)

where || ∗ || is some Hoelder norm, and Φ(n) → 0 is a function whose decay rate
is estimated. For example, considering axiom A systems with equilibrium states we
have a similar result and Φ(n) decays exponentially fast. Similar results have been
obtained for a large class of more or less hyperbolic systems. The set of references
for this kind of results is huge, we cite the books [B], [V] and [L], a survey of recent
results on nonuniformly expanding systems. Recently fast decay of correlation has
also been proved in a large class of systems having strange attractors with dimension
close to 1 (Rank 1 systems, see [WY], [WY2]). This class, contains for example the
Henon map for some interesting set of parameters.

In this paper we prove (theorem 4) that if the system has a decay of correlations
(definition 3) faster than any power law, then for each x0 ∈ X such that dµ(x0) exists,
eq. 2 holds for almost each x. Hence for this kind of systems the typical hitting time
scaling rate is given by the local dimension at x0.

As a corollary of the proof (corollary 9) we obtain that in systems with fast enough
decay of correlations (including some case of polynomial decay) a large class of de-
creasing sequences of sets have the strong Borel-Cantelli property (see definition 5).
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About this, we remark that in [T] and [FMP] other Borel-Cantelli results are obtained
supposing different assumptions on the system’s mixing behavior (in most cases it is
supposed to have some kind of uniform bound on the speed of mixing).

We end by remarking that since eq. 2 is proved for each x0 (having local dimension)
the hitting time can be used to numerically estimate local dimension at nontypical
points. For an example of numerical use of hitting times for this kind of question see
[CG].

2. Dimension and waiting time

In the following we will consider a discrete time dynamical system (X,T ) where X
is a separable metric space equipped with a Borel finite measure µ and T : X → X is
a measurable map.

Let us consider the first entrance time of the orbit of x in the ball B(x0, r) with
center x and radius r

τ r(x, x0) = min({n ∈ N, n > 0, Tn(x) ∈ B(x0, r)}) .

By considering the power law behavior of τ r(x, x0) as r → 0 let us define the hitting
time indicators as

R(x, x0) =limsup
r→0

log(τ r(x, x0))
− log(r)

, R(x, x0) =liminf
r→0

log(τ r(x, x0))
− log(r)

.

If for some r, τ r(x, x0) is not defined then R(x, x0) and R(x, x0) are set to be equal
to infinity. The indicators R(x) and R(x) of quantitative recurrence defined in [BS]
are obtained as a special case, R(x) = R(x, x), R(x) = R(x, x).

We recall some basic properties of R(x, x0) which follow from the definition:

Proposition 1. R(x, x0) satisfies the following properties

• R(x, x0) = R(T (x), x0), R(x, x0) = R(T (x), x0).
• If T is α−Hoelder, then R(x, x0) ≥ αR(x, T (x0)), R(x, x0) ≥ αR(x, T (x0)).

Before proceeding and stating connections between hitting time and local dimen-
sion, let us recall more precisely some results about dimension. If X is a met-
ric space and µ is a measure on X the local dimension of µ at x is defined as
dµ(x) =lim

r→0

log(µ(B(x,r)))
log(r) (when the limit exists). Conversely, the upper local di-

mension at x ∈ X is defined as dµ(x) =limsup
r→0

log(µ(B(x,r)))
log(r) and the lower local

dimension dµ(x) is defined in an analogous way by replacing limsup with liminf . If
dµ(x) = dµ(x) = d almost everywhere the system is called exact dimensional. In this
case many notions of dimension of a measure will coincide. In particular d is equal to
the dimension of the measure: d = inf{dimH Z : µ(Z) = 1}. This happens in a large
class of systems. For example in systems having nonzero Lyapunov exponents almost
everywhere (see for example the book [P]).

In general systems the quantitative recurrence indicator gives only a lower bound
on the dimension. The hitting time indicator instead gives an upper bound to the
local dimension of the measure at the point y. This is summarized in the following
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Theorem 2. ([BGI],[G],[BS], [Bo]) If (X,T, µ) is a dynamical system over a separable
metric space, with an invariant measure µ. For each x0

(3) R(x, x0) ≥ dµ(x0) , R(x, x0) ≥ dµ(x0)

holds for µ almost each x. Moreover, if X is a closed subset of Rn, then for almost
each x ∈ X

(4) R(x, x) ≤ dµ(x) , R(x, x) ≤ dµ(x) .

We remark that eq. 3 implies that if α < dµ(x0) then

lim inf
n→∞

n
1
α d(Tn(x), x0) = ∞.

In systems with superpolynomial decay of correlations the above inequalities become
equalities. For eq. 4 this is proved in [S]. We are going to consider eq. 3. Let us
recall more precisely what is superpolynomial decay of correlations.

Definition 3. Let φ, ψ : X → R be Lipschitz observables on X. A system (X,T, µ)
is said to have superpolynomial decay of correlations if

|
∫
φ ◦ Tnψdµ−

∫
φdµ

∫
ψdµ| ≤ ||φ|| ||ψ||Φ(n)

with Φ having superpolynolmial decay, i.e. limnαΦ(n) = 0, ∀α > 0. Here || || is the
Lipschitz norm2.

With this definition we can state the main result of the paper:

Theorem 4. If (X,T, µ) has superpolynomial decay of correlations and dµ(x0) exists
then

(5) R(x, x0) = R(x, x0) = dµ(x0)

for µ-almost each x.

We remark that eq. 5 easily implies that if α > dµ(x0) then

lim inf
n→∞

n
1
α d(Tn(x), x0) = 0.

Before proving theorem 4 we need some lemmas. A sequence of sets Sn ⊂ X is said
to be strongly Borel-Cantelli if in some sense the preimages T−nSn cover the space
uniformly:

Definition 5. Let 1S be the indicator function of the set S. The sequence of subsets
Sn ⊂ X is said to be a Strongly Borel-Cantelli sequence (SBC) if

∑
n µ(Sn) = ∞ and

for µ−a.e. x ∈ X we have as N →∞∑N
n=1 1T−nSn

(x)∑N
n=1 µ(Sn)

→ 1, µ− a.e.

2The case where the Holder norms are considered follows from the case of Lipschitz norm.
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We remark that posing Zk(x) =
∑k

0 1T−iSi
(x) the above condition is equivalent to

Zk

E(Zk)
→ 1, µ− a.e.

The following technical lemma estimates the speed of mixing of balls in systems having
some given decay of correlations.

Lemma 6. Let B(x0, rk) be a sequence of balls with decreasing radius centered in x0,
let Ak = T−k(B(x0, rk)) and let us write A−1 = X. If (X,T, µ) is a system satisfying
definition 3 then when k > j > 0

(6) µ(Ak ∩Aj) ≤ µ(Ak−1)µ(Aj−1) +
Φ(k − j)

(rk−1 − rk)(rj−1 − rj)
.

Proof. Let φk be a Lipschitz function such that φk(x) = 1 for all x ∈ B(x0, rk),
φk(x) = 0 if x /∈ B(x0, rk−1) and ||φk|| ≤ 1

rk−1−rk
(such functions can be easily

constructed as φk(x) = h(d(x0, x)) where h is a suitable piecewise linear Lipschitz
function R →[0, 1]). Let k > j > 0. Since µ is preserved

µ(Ak ∩Aj) = µ(T−k+j(B(x0, rk)) ∩B(x0, rj)) ≤
∫
φk ◦ T k−jφjdµ ≤

≤
∫
φkdµ

∫
φjdµ+ ||φk||

∣∣∣∣φj

∣∣∣∣ Φ(k − j) ≤ µ(Ak−1)µ(Aj−1) + ||φk||
∣∣∣∣φj

∣∣∣∣ Φ(k − j)

which gives the statement. �

In the following we will prove that if a decreasing sequence of sets Sk are rapidly
mixed like in eq. 6, then T−k(Sk) covers X in a uniform way, i.e. the Sk form a SBC
sequence. The idea of the proof of this is somewhat similar to the proof of the strong
law of large numbers using the Paley-Zygmund inequality, and to the proof of theorem
1 in [FMP]. The idea is to estimate E((Zn)2) (this will be done by using something
similar to eq. 6) and find an upper bound which ensures that the distribution of
the possible values of Zn is not too far from the average E(Zn). After this, choosing
suitable subsequences we prove also pointwise convergence, so that Zk

E(Zk) → 1, µ−a.e.

Lemma 7. Let Sk be a decreasing sequence of measurable sets such that

lim inf
k→∞

log(
∑k

0 µ(Sk))
log(k)

= z > 0.

Let Ak = T−k(Sk) and let us suppose that the system is such that when k > j

(7) µ(Ak ∩Aj) ≤ µ(Ak−1)µ(Aj−1) + kc1jc2Φ(k − j)

with Φ having superpolynomial decay and c1, c2 ≥ 0. Then posing Zk(x) =
∑k

0 1Ai
(x)

we have Zk

E(Zk) → 1 in the L2 norm and almost everywhere.

Proof. Let us estimate E((Zn)2). We have that

E((Zn)2) =
n∑

k=1

µ(Ak) + 2
∑

k,j≤n,k>j

µ(Ak ∩Aj).
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Now let 0 < α < z
2 and let us estimate the second summand on the right side by

dividing it into two parts in the following way∑
k,j≤n,k>j

µ(Ak ∩Aj) ≤
∑

k,j≤n,k>j,k<j+nα

µ(Ak ∩Aj) +
∑

k,j≤n,k≥j+nα

µ(Ak ∩Aj).

The first sum can be estimated as follows:∑
k,j≤n,k>j,k<j+nα

µ(Ak ∩Aj) ≤ nαE(Zn).

In the second one we use equation 7 and we obtain

(8)
∑

k,j≤n,k≥j+nα

µ(Ak ∩Aj) ≤
∑

k,j≤n,k≥j+nα

µ(Ak−1)µ(Aj−1) + nc1+c2Φ(nα) ≤

≤ 1
2
(E(Zn))2 + n2+c1+c2Φ(nα).

Hence ∑
k,j≤n,k>j

µ(Ak ∩Aj) ≤ nαE(Zn) +
1
2
(E(Zn))2 + n2+c1+c2Φ(nα)

and
E((Zn)2) ≤ (2nα + 1)E(Zn) + (E(Zn))2 + 2n2+c1+c2Φ(nα).

Now, let us remark that

E((Zn − E(Zn))2) = E((Zn)2)− (E(Zn))2

hence

(9) E((Zn − E(Zn))2) ≤ (2nα + 1)E(Zn) + 2n2+c1+c2Φ(nα).

Now we want to compare Zn with its average E(Zn). For this we consider

Yn =
Zn

E(Zn)
− 1 =

Zn − E(Zn)
E(Zn)

.

When Yn = 0, Zn = E(Zn). By the above results

(10) E((Yn)2) ≤ (2nα + 1)E(Zn) + 2n2+c1+c2Φ(nα)
(E(Zn))2

,

since α < z
2 and 2n2+c1+c2Φ(nα) → 0, then lim

n→∞
E((Yn)2) = 0. This proves that

Zn

E(Zn) → 1 in L2.
By this it is easy to see that there is a subsequence of Yn that converges a.e. to

0, but we want to prove that the whole sequence converges to 0 a.e. We begin by
considering

(11) nk = inf{n : E(Zn) ≥ k2}
and show that Ynk

→ 0 a.e. We remark that since Φ has a superpolynomial decay

(12)
∑

n

n2+c1+c2
Φ(nα)

(E(Zn))2
<∞.

Consider a small ε > 0, by definition of z and by the fact that µ(Ai) < 1 we have that
if k is big enough (k + 1)2 ≥ E(Znk

) ≥ (nk)z−ε. Hence nk ≤ (k + 1)
2

z−ε ≤ (2k)
2

z−ε
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and so (2nα
k +1)E(Znk

)

(E(Znk
))2 = 2nα

k +1
E(Znk

) ≤
2(2k)

2α
z−ε +1
k2 . Since α < z

2 , we can suppose ε to be so
small that 2α < z − ε and hence

(13)
2α
z − ε

− 2 < −1.

This implies that
∑
E((Ynk

)2) < ∞, which in turn implies that Ynk
→ 0 a.e. and

Znk

E(Znk
) → 1 almost everywhere.

Now, if nk ≤ n ≤ nk+1

Zn

E(Zn)
≤

Znk+1

E(Znk
)

=
Znk+1

E(Znk+1)
E(Znk+1)
E(Znk

)
≤

Znk+1

E(Znk+1)
(k + 2)2

k2

and

Zn

E(Zn)
≥ Znk

E(Znk+1)
=

Znk

E(Znk
)
E(Znk

)
E(Znk+1)

≥ Znk

E(Znk
)

k2

(k + 2)2
.

then we have lim
n→∞

Zn

E(Zn) = 1, µ−almost everywhere. �

Remark 8. We remark that in the above proof, the key point to ensure that∑
E((Ynk

)2) < ∞ (and then have a.e. convergence) are equations 12 and 13 this
implies that if Φ has not superpolinomial decay, but a polinomial decay fast enough
that

∑
n n

2+c1+c2 Φ(nα)
(E(Zn))2 < ∞ for some α < z

2 then lim
n→∞

Zn

E(Zn) = 1, µ−almost

everywhere. Then the lemma also holds for some system such that Φ has (rapid
enough) polinomial decay.

Now we use the above result to conclude the equality between the hitting time
indicator and dimension. The second part of the proof is similar to the proof of
Theorem 2.4 in [GK].

Proof. (of Thm. 4) Let us prove R(x, x0) ≤ dµ(x0) for almost each x. We recall
that this implies R(x, x0) ≤ dµ(x0) and the opposite inequalities come from theorem
2. Let us consider 0 < β < 1

dµ(x0)
and a sequence rk = k−β (we remark that if

the result is proved for such a subsequence, hence it holds for all subsequences, see
lemma 4.2 in [GKP]). Then for each small ε < β−1−dµ(x0), eventually µ(B(x0, rk)) ≥
(rk)dµ(x0)+ε = k−β(dµ(x0)+ε) and if k is big enough

∑k
0 µ(B(x0, ri)) ≥ Ck1−β(dµ(x0)+ε),

since ε is arbitrary we have

lim inf
k→∞

log(
∑k

0 µ(B(x0, ri)))
log(k)

≥ 1− βdµ(x0) > 0.

Moreover, rk−1 − rk ∼ k−β−1. Hence we can apply Lemma 6 and 7 to the sequence
B(x0, rk) and obtain that for such a sequence lim

n→∞
Zn

E(Zn) = 1, µ−almost everywhere.

Let us consider ε′ > 0 and β as above, near to 1
dµ(x0)

, such that β(dµ(x0)+ ε′) > 1.
Moreover let us consider ε > 0 so small that β(dµ(x0) + ε) < 1 and β(dµ(x0) +
ε′)− 1−β(dµ(x0)−ε)

1−β(dµ(x0)+ε) > 0. Let us consider x such that R(x, x0) > dµ(x0) + ε′, then for

infinitely many n, τn−β (x, x0) > nβ(dµ(x0)+ε′). Then

x /∈ ∪
0≤i≤nβ(dµ(x0)+ε′)T−i(B(x0, n

−β))
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and in particular

x /∈ ∪
n≤i≤nβ(dµ(x0)+ε′)T−i(B(x0, n

−β)) ⊃ ∪
n≤i≤nβ(dµ(x0)+ε′)T−i(B(x0, i

−β)),

which implies that there is a sequence ni such that Zni
(x) = Z

n
β(dµ(x0)+ε′)
i

(x) for each

i. Now let us consider E(Zni
) and E(Z

n
β(dµ(x0)+ε′)
i

). Since the local dimension at x0

is dµ(x0), when i is big enough

i−β(dµ(x0)+ε) < µ(B(x0, i
−β)) < i−β(dµ(x0)−ε)

then there are constants k1 and k2 such that when n is big enough k1n
1−β(dµ(x0)+ε) <

E(Zn) < k2n
1−β(dµ(x0)−ε). From this we have that if i is big enough

E(Zni
)

E(Z
n

β(dµ(x0)+ε′)
i

)
≤ k2n

1−β(dµ(x0)−ε)
i

k1n
β(dµ(x0)+ε′)(1−β(dµ(x0)+ε))
i

=

=
k2

k1
n

(1−β(dµ(x0)−ε))−β(dµ(x0)+ε′)(1−β(dµ(x0)+ε))
i .

By the assumptions on ε, (1− β(dµ(x0)− ε))− β(dµ(x0) + ε′)(1− β(dµ(x0) + ε)) =
(1− β(dµ(x0) + ε))( 1−β(dµ(x0)−ε)

1−β(dµ(x0)+ε) − β(dµ(x0) + ε′)) < 0, hence

lim
i→∞

E(Zni
)

E(Z
n

β(dµ(x0)+ε′)
i

)
= 0.

Since ni was chosen such that Zni(x) = Z
n

β(dµ(x0)+ε′)
i

(x) this implies that

Zni
(x)

E(Zni
)

E(Z
n

β(dµ(x0)+ε′)
i

)

Z
n

β(dµ(x0)+ε′)
i

(x) =
E(Z

n
β(dµ(x0)+ε′)
i

)

E(Zni
) → ∞ as i increases. Then is not possible

that lim
n→∞

Zn(x)
E(Zn(x)) = 1. This, implies that R(x, x0) > dµ(x0) + ε′ on a zero measure

set. Finally, since ε′ can be chosen to be arbitrarily small we have the statement. �

We end by remarking that the above lemmas 6, 7 and remark 8 give the following
consequence, which in the author opinion is interesting by itself (by lemma 7, the
proof is obtained as in the first part of the proof of thm. 4):

Corollary 9. If the system has decay of correlation given by the function Φ (see
definition 3) and B(x0, ri) is a sequence of decreasing balls such that

i) lim inf
k→∞

log(
Pk

0 µ(B(x0,ri)))

log(k) = z > 0,

ii) lim inf
n→∞

log(rn−1−rn)
log(n) = c ∈ R

iii)
∑

n n
2−2c+ε Φ(nα)

(
Pk

0 µ(B(x0,ri)))2
<∞ for some α < z

2 and ε > 0

then B(x0, ri) has the SBC property.
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