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FORMALITY THEOREM FOR HOCHSCHILD (CO)CHAINS OF
THE ALGEBRA OF ENDOMORPHISMS OF A VECTOR BUNDLE

Vasiliy Dolgushev

Abstract. We prove the formality theorem for the differential graded Lie algebra mod-

ule of Hochschild chains for the algebra of endomorphisms of a smooth vector bundle.
We discuss a possible application of this result to a version of the algebraic index theorem

for Poisson manifolds.

1. Introduction

The purpose of this note is to prove that the differential graded Lie algebra (DGLA)
module of Hochschild chains for the algebra of endomorphisms of a smooth vector
bundle over a manifold M can be connected by a chain of quasi-isomorphisms to its
cohomology.

For a trivial vector bundle one can easily prove the desired statement using the
formality theorem [6], [7] for Hochschild chains of the algebra OM of functions on M
and the (co)trace map [14] between the Hochschild complexes of the algebra OM and
the algebra Mat(OM ) of finite size matrices with entries in OM .

However, for a non-trivial vector bundle E both the trace and the cotrace maps
between the Hochschild complexes of the algebra of functions and the algebra of
endomorphisms are defined only locally. Thus, the question of formality of the DGLA
module of Hochschild chains for the algebra of endomorphisms of a vector bundle
requires some work.

In this note we propose Fedosov’s resolution [7] of the sheaf of DGLA modules
(C•(End(E)), C•(End(E))) of Hochschild (co)chains for the sheaf End(E) of endo-
morphisms of a vector bundle E and construct a quasi-isomorphism between this res-
olution and Fedosov’s resolution of the sheaf of DGLA modules (C•(OM ), C•(OM ))
for OM . Combining this construction with the result in [7] (see diagram (5.15) on
page 86) we obtain a proof of the formality theorem for the sheaf of DGLA modules
(C•(End(E)), C•(End(E))) .

Besides the obvious applications of this theorem to the questions of deformation
quantization this result may lead to an interesting version of the algebraic index
theorem for Poisson manifolds. We will devote a separate paper to this version of the
algebraic index theorem. Here we will only outline a rough idea.

There are many versions of the algebraic index theorem for symplectic manifolds
[2], [3], [5], [8] [15]. One of these versions [5] describes a natural map (see eq. (31)
and theorem 4 in [5])

cl : K0(A)→ Htop
DR(M)
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from the K-theory of the deformation quantization algebra A to the top degree De
Rham cohomology of M . This map is obtained by composing the trace density map
[9]

(1) trd : A/[A, A]→ Htop
DR(M)

from the zeroth Hochschild homology HH0(A) = A/[A, A] of A to the top degree
De Rham cohomology of M with the lowest component of the Chern character (see
example 8.3.6 in [14])

(2) ch0,0 : K0(A)→ A/[A, A]

from the K-theory of A to the zeroth Hochschild homology of A .
In the case of a general Poisson (not symplectic) manifold M one cannot construct

the trace density map (1). Instead we have the map

(3) µ : A/[A, A]→ HP0(M)

from zeroth Hochschild homology of A to the zeroth Poisson homology [4], [13] of
M . This map is constructed with the help1 of the formality theorem for Hochschild
chains [7], [16] of OM .

Composing (3) with (2) we get the map

(4) ind : K0(A)→ HP0(M)

from the K-theory of A to the zeroth Poisson homology of M .
Following the arguments of the proof of theorem 6.1.3 in [8] one can show that

the image ind(Q) of a K-theory element Q ∈ K0(A) depends only on the principal
part of Q. The desired algebraic index theorem should give an explicit form of this
dependence and we expect that the formality theorem for Hochschild chains of End(E)
will help us to solve this problem.

We would like to mention paper [11] by B. Keller. In this paper it is shown that
the graded Lie algebra structure on Hochschild cohomology of an associative algebra
is invariant with respect to the derived Morita equivalence. This result suggests a
question of whether the Hochschild cochain complexes of the derived Morita equivalent
associative algebras are quasi-isomorphic as DGLAs, and furthermore, as homotopy
Gerstenhaber algebras.

A very short time after this paper was submitted, preprint [1] appeared on the
web. In paper [1] the authors generalize the DGLA part of theorem 1 to the case of
Azumaya algebras.

The paper is organized as follows. In the second section we fix notation and recall
some results and constructions we are using here. In section 3 we formulate the
main result of this paper (see theorem 1) and give a proof. In the concluding section
we propose an interesting generalization of lemma 1 which is used in the proof of
theorem 1. We suspect that this generalization may shed some light on an unknown
index formula for the map (4) .

1See corollary 2 on page 92 in [7].
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2. Preliminaries

In this section we fix notation and recall some results we are going to use in this
note.

For an associative algebra B we denote by Mat(B) the algebra of finite size matrices
over B . C•(B) is the normalized Hochschild chain complex of B with coefficients in
B

(5) C•(B) = C•(B,B)

and C•(B) is the normalized Hochschild cochain complex of B with coefficients in B
and with shifted grading

(6) C•(B) = C•+1(B,B) .

The Hochschild coboundary operator is denoted by ∂ and the Hochschild boundary
operator is denoted by b .

It is well known that the Hochschild cochain complex (6) carries the structure of a
differential graded Lie algebra (DGLA). The corresponding Lie bracket (see eq. (3.2)
on page 45 in [7]) was originally introduced by M. Gerstenhaber in [10]. We will
denote this bracket by [, ]G .

The Hochschild chain complex (5) carries the structure of a differential graded Lie
algebra module over the DGLA C•(B) . We will denote the action (see eq. (3.5) on
page 46 in [7]) of cochains on chains by R .

The trace map tr [14] is the map from the Hochschild chain complex C•(Mat(B))
of the algebra Mat(B) to the Hochschild chain complex C•(B) of the algebra B . This
map is defined by the formula

(7) tr(M0 ⊗M1 ⊗ · · · ⊗Mk) =
∑

i0,...,ik

(M0)i0i1 ⊗ (M1)i1i2 ⊗ · · · ⊗ (Mk)iki0 ,

where M0, . . . ,Mk are matrices in Mat(B) and (Ma)ij are the corresponding entries.
Dually, the cotrace map [14]

cotr : C•(B)→ C•(Mat(B))

is defined by the formula

(8) (cotr(P )(M0,M1, . . . ,Mk))ij =
∑

i1,...,ik

P ((M0)ii1 , (M1)i1i2 , . . . , (Mk)ikj) ,

where P ∈ Ck(B) and M0, . . . ,Mk are, as above, matrices in Mat(B) .
“DGLA” always means a differential graded Lie algebra. The arrow �→ denotes an

L∞-morphism of sheaves of DGLAs, the arrow ��→ denotes a morphism of sheaves
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of L∞-modules, and the notation
L

↓mod

M
means thatM is a sheaf of DGLA modules over the sheaf of DGLAs L . The symbol
◦ always stands for the composition of morphisms.

Throughout this note M is a smooth real manifold of dimension d . E is a smooth
real vector bundle over M and End(E) denotes the sheaf of endomorphisms of E .
We denote by Γ(M,G) the vector space of sections of the sheaf G and by Ω•(G) the
sheaf of exterior forms with values in G . We omit the symbol ∧ referring to a local
basis of exterior forms, as if one thought of dxi’s as anti-commuting variables.

T •poly is the sheaf of polyvector fields with shifted grading

T •poly = ∧•+1
OM

TM , T−1
poly = OM

and A• is the sheaf of exterior forms.
T •poly is a sheaf of graded Lie algebras with respect the so-called Schouten-Nijenhuis

bracket [, ]SN (see eq. (3.20) on page 50 in [7]) andA• is the sheaf of graded Lie algebra
modules over T •poly with respect to Lie derivative (see eq. (3.21) on page 51 in [7]).
We will regard T •poly (resp. A•) as the sheaf of DGLAs (resp. the sheaf of DGLA
modules) with vanishing differential.

We denote by xi local coordinates on M and by yi fiber coordinates in the tangent
bundle TM . Having these coordinates yi we can introduce another local basis of
exterior forms {dyi}. We will use both bases {dxi} and {dyi}. In particular, the
notation Ω•(G) is reserved for the sheaf of dy-exterior forms with values in the sheaf
G while A• denotes the sheaf of dx-exterior forms.
SM is the formally completed symmetric algebra of the cotangent bundle T ∗(M) .

Sections of the sheaf SM can be viewed as formal power series in tangent coordinates
yi . We regard SM as the sheaf of algebras over OM . In particular, C•(SM) is the
sheaf of normalized Hochschild cochains of SM over OM . Namely, the sections of
Ck(SM) over an open subset U ⊂ M are OM -linear polydifferential operators with
respect to tangent coordinates yi

P : Γ(U,SM)⊗ (k+1) → Γ(U,SM)

satisfying the normalization condition

P (. . . , f, . . . ) = 0 , ∀ f ∈ OM (U) .

Similarly, C•(SM) is the sheaf of normalized Hochschild chains2 of SM over OM . As
in [7] the tensor product in

Ck(SM) = SM⊗̂OM
(SM/OM )⊗̂OM

. . . ⊗̂OM
(SM/OM )︸ ︷︷ ︸

k+1

is completed in the adic topology in fiber coordinates yi on the tangent bundle TM .
The cohomology of the complex of sheaves C•(SM) is the sheaf T •poly of fiberwise

polyvector fields (see page 60 in [7]). The cohomology of the complex of sheaves

2In [7] the sheaf C•(SM) is denoted by D•
poly and the sheaf C•(SM) is denoted by Cpoly

• .
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C•(SM) is the sheaf E of fiberwise differential forms (see page 62 in [7]). These are
dx-forms with values in SM .

In [7] (see theorem 4 on page 68) it is shown that the sheaf of algebras Ω•(SM)
can be equipped with a differential of the following form

(9) D = ∇− δ + A ,

where

(10) ∇ = dyi ∂

∂xi
− dyiΓk

ij(x)yj ∂

∂yk
,

is a torsion free connection with Christoffel symbols Γk
ij(x),

(11) δ = dyi ∂

∂yi
,

and

A =
∞∑

p=2

dykAj
ki1...ip

(x)yi1 . . . yip
∂

∂yj
∈ Ω1(M, T 0

poly) .

We refer to (9) as the Fedosov differential.
Notice that δ in (11) is also a differential on Ω•(SM) and (9) can be viewed as

deformation of δ via the connection ∇ .
Let us recall from [7] the following operator on3 Ω•(SM)

(12) δ−1(a) =


yk

~∂

∂(dyk)

1∫
0

a(x, ty, tdy)
dt

t
, if a ∈ Ω>0(U,SM) ,

0, otherwise ,

which is used to prove the acyclicity of δ and D in positive dimension.
According to proposition 10 on page 64 in [7] the sheaves T •poly, C•(SM), E•, and

C•(SM) are equipped with the canonical action of the sheaf of Lie algebras T 0
poly and

this action is compatible with the corresponding (DG) algebraic structures. Using
this action in chapter 4 of [7] we extend the Fedosov differential (9) to a differential
on the sheaves Ω•(T •poly), Ω•(E•), Ω•(C•(SM)), and Ω•(C•(SM)) of DGLAs (resp.
DGLA modules).

Using acyclicity of the Fedosov differential (9) in positive dimension one constructs
in [7] embeddings of the sheaves of DGLA modules4

(13)

T •poly
λT−→ (Ω•(Tpoly), D, [, ]SN )

↓Lmod ↓Lmod

A• λA−→ (Ω•(E), D),

3The arrow over ∂ in (12) means that we use the left derivative with respect to the anti-commuting

variable dyk.
4See eq. (5.1) on page 81 in [7].
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(14)

(Ω•(C•(SM)), D + ∂, [, ]G) λD←− C•(OM )

↓Rmod ↓Rmod

(Ω•(C•(SM)), D + b) λC←− C•(OM ),

and shows that these are quasi-isomorphisms of the corresponding complexes of
sheaves.

Furthermore, using Kontsevich’s and Shoikhet’s formality theorems for Rd [12],
[16] in [7] one constructs the following diagram

(15)

(Ω•(Tpoly), D, [, ]SN )
K
�→ (Ω•(C•(SM)), D + ∂, [, ]G)

↓Lmod ↓Rmod

(Ω•(E), D)
S

←≺≺ (Ω•(C•(SM)), D + b)

where K is an L∞ quasi-isomorphism of sheaves of DGLAs and S is a quasi-
isomorphism of sheaves of L∞-modules over the sheaf of DGLAs (Ω•(Tpoly), D, [, ]SN ) ,
and the L∞-module on Ω•(C•(SM)) is obtained by composing the quasi-isomorphism
K with the DGLA modules structure R (see eq. (3.5) on p. 46 in [7] for the definition
of R) .

Diagrams (13), (14) and (15) show that the sheaf C•(OM ) of DGLA modules
of Hochschild chains of OM is quasi-isomorphic to the sheaf of graded Lie algebra
modules A• of its cohomology.

Remark 1. As in [7] we use adapted versions of Hochschild (co)chains for the sheaves
OM and End(E) of functions and of endomorphisms of a vector bundle E, respectively.
Thus, C•(OM ) is a sheaf of polydifferential operators (see page 48 in [7]) satisfying
the corresponding normalization condition. C•(End(E)) is the sheaf of (normalized)
polydifferential operators acting on End(E) with coefficients in End(E) . Furthermore,
C•(OM ) is the sheaf of (normalized) polyjets

Ck(OM ) = HomOM
(Ck−1(OM ),OM ) ,

and
Ck(End(E)) = HomEnd(E)(Ck−1(End(E)),End(E)) .

We have to warn the reader that the space of global sections of the sheaf C•(OM )
(resp. C•(End(E))) is not isomorphic to the space of Hochschild cochains of the
algebra OM (M) of functions (resp. the algebra Γ(M,End(E)) of endomorphisms of
E). Similar expectation is wrong for Hochschild chains. Instead we have the following
inclusions:

Γ(M,C•(OM )) ⊂ C•(OM (M)) , Γ(M,C•(End(E))) ⊂ C•(Γ(M,End(E))) ,

C•(OM (M)) ⊂ Γ(M,C•(OM )) , C•(Γ(M,End(E))) ⊂ Γ(M,C•(End(E))) .

Remark 2. Unlike in [7] we use only normalized Hochschild (co)chains. It is not
hard to check that the results we need from [7], [12], and [16] also hold when this
normalization condition is imposed.
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3. The formality theorem

Let E be a smooth real vector bundle over the smooth real manifold M and let
End(E) denote the sheaf of endomorphisms of E . We regard End(E) as a sheaf of
algebras over R.

Here is the main result of this note:

Theorem 1. The sheaf of DGLA modules C•(End(E)) over the sheaf of DGLAs
C•(End(E)) is formal.

Proof. Let us introduce the following auxiliary sheaf of algebras

(16) ES = End(E)⊗OM
SM .

Regarding ES as a sheaf of algebras over OM we also consider the following adapted
versions of (normalized) Hochschild (co)chains. Thus, Ck(ES) is the sheaf whose
sections over an open subset U ⊂M are OM -polylinear maps

P : Γ(U,ES)⊗ k+1 → Γ(U,ES) ,

which are differential in fiber coordinates yi and satisfy the normalization condition:

P (. . . , f, . . . ) = 0 , ∀ f ∈ OM (U) .

Similarly, Ck(ES) is the sheaf of normalized Hochschild chains of ES over OM for
which the tensor product is completed in the adic topology in fiber coordinates yi on
the tangent bundle TM .

It is clear that the differentials ∂, b as well as the operations [, ]G and R are well
defined on the sheaves C•(ES), C•(ES). Thus, we regard C•(ES) as the sheaf of
DGLA modules over the sheaf of DGLAs C•(ES) .

It is not hard to show that one can extend the Fedosov differential (9) on SM to
a differential on ES in the framework of the following ansatz:

(17) D̃ = D + [γE , ] , γE = ΓE + γ̃E ,

where ΓE is a connection form of E and γ̃E is a section of Ω1(ES) .
More precisely, we first extend the operator δ−1 (12) to Ω•(ES) and then define

γE as a result of iterating the following equation (in degrees in y)

(18) γE = ΓE + δ−1(∇γE + A(γE) +
1
2
[γE , γE ]) .

Then γE satisfies the identity

(19) DγE +
1
2
[γE , γE ] = 0 ,

which immediately implies that D̃2 = 0 .
The differential D̃ (17) naturally extends to the sheaf of DGLAs Ω•(C•(ES)) and

to the sheaf of DGLA modules Ω•(C•(ES)). Namely, on Ω•(C•(ES)) D̃ is defined by
the formula

(20) D̃ = D + [∂γE , ]G ,

and on Ω•(C•(ES)) D̃ is defined by

(21) D̃ = D + R∂γE ,
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where γE is viewed locally as a section of the sheaf Ω1(C−1(ES)) and ∂ denotes the
Hochschild coboundary operator.

Since the sheaf of DGLA modules

(22)

(Ω•(C•(SM)), D + ∂, [, ]G)

↓mod

(Ω•(C•(SM)), D + b)

is connected by a chain of quasi-isomorphisms to its cohomology (13), (14), (15) it suf-
fices to show that (22) is quasi-isomorphic to the sheaf of DGLA modules C•(End(E))
over the sheaf of DGLAs C•(End(E)). It is the sheaf of DGLA modules

(23)

(Ω•(C•(ES)), D̃ + ∂, [, ]G)

↓mod

(Ω•(C•(ES)), D̃ + b)

which allows us to do it.
Indeed, generalizing the construction of the maps λD and λC in (14) we get the

following embeddings of the sheaves of DGLA modules

(24)

(Ω•(C•(ES)), D̃ + ∂, [, ]G)
λE

D←− C•(End(E))

↓Rmod ↓Rmod

(Ω•(C•(ES)), D̃ + b)
λE

C←− C•(End(E)) .

Similarly to propositions 7, 13, 15 in [7] one can easily show that λE
D and λE

C are
quasi-isomorphisms of the corresponding complexes of sheaves.

Thus it remains to connect the sheaf of DGLA modules (23) to (22) by a quasi-
isomorphism. To do this we need the following auxiliary statement which is proved
in a more general form in the concluding section

Lemma 1. Let a, b, c, d be elements of a graded associative algebra with the degrees

deg a = 0 , deg b = deg c = deg d = 1

and let a be nilpotent. If these elements satisfy the following relations

(25)
[d, a] = b− c

2
, [b, a] = c ,

[c, a] = 0 ,

then

(26) d exp(a) = exp(a)(d + b) . 2

Let us pick a trivialization of E over a neighborhood V of a point p ∈M and notice
that on V the initial Fedosov differential (9) on the sheaves Ω•(C•(ES)), Ω•(C•(ES))
is well defined and the connection form γE (18) can be viewed as a section of the
sheaf Ω1(ES)

∣∣∣
V

.
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Furthermore, over V the trace and cotrace maps give the following commutative
diagram of the quasi-isomorphisms of the sheaves of DGLAs and their modules

(27)

(Ω•(C•(SM)), D + ∂, [, ]G) cotr→ (Ω•(C•(ES)), D + ∂, [, ]G)

↓mod ↓mod

(Ω•(C•(SM)), D + b) tr← (Ω•(C•(ES)), D + b) .

Now we notice that (19) implies the identities

(28) [(D + b), RγE ] = R∂γE − 1
2
R[∂γE ,γE ]G ,

(29) [(D + ∂), [γE , ]G] = [∂γE , ]G −
1
2
[[∂γE , γE ]G, ]G ,

(30) [[∂γE , γE ]G, γE ]G = 0 ,

which allow us to apply lemma 1 to the algebras of operations on the sheaves
Ω•(C•(ES) and Ω•(C•(ES) .

Indeed, setting

a = [γE , ]G , b = [∂γE , ]G , c = [[∂γE , γE ]G, ]G , d = D + ∂

and using (29) and (30) we get that the map of complexes of sheaves (over V )

(31) exp(−[γE , ]G) : Ω•(C•(ES), D + ∂)→ (Ω•(C•(ES), D̃ + ∂)

is compatible with the corresponding differentials.
Similarly, setting

a = RγE , b = R∂γE , c = R[∂γE ,γE ]G , d = D + b

and using (28) and (30) we get that the map of complexes of sheaves (over V )

(32) exp(RγE ) : (Ω•(C•(ES), D̃ + b)→ (Ω•(C•(ES), D + b)

is also compatible with the differentials.
Combining these results with (27) we get the following commutative diagram of

maps of sheaves of DGLAs and their modules (over the neighborhood V )

(33)

(Ω•(C•(SM)), D + ∂, [, ]G) cotrtw

→ (Ω•(C•(ES)), D̃ + ∂, [, ]G)

↓mod ↓mod

(Ω•(C•(SM)), D + b) trtw

← (Ω•(C•(ES)), D̃ + b) ,

where

(34) cotrtw = exp(−[γE , ]G) ◦ cotr , trtw = tr ◦ exp(RγE ) .

Under changing the trivialization γE gets replaced by γE +∆, where ∆ is a one-form
in Ω1(ES) which does not involve the tangent coordinates yi . Thus the maps (34)
do not depend on the choice of trivialization because we deal normalized Hochschild
(co)chains.
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Using the descending filtration associated to the exterior degree on the sheaves in
(33) one can easily show that the maps trtw and cotrtw are quasi-isomorphisms of
complexes of sheaves.

The theorem is proved.
�

4. Concluding remarks

In this section we show that lemma 1 admits an interesting generalization that
involves the function

(35) f(x) =
x

ex − 1
from the definition of the Todd class.

This generalization can be formulated as

Proposition 1. Let a, b, d be elements of a graded associative algebra with the degrees

deg a = 0 , deg b = deg d = 1 .

Let a be nilpotent and let α1, α2, . . . , αk, . . . be coefficients of the Taylor power series
for the function

x

ex − 1
= 1 + α1x + α2x

2 + . . .

Then the relation

(36) exp(a)d = (d + b) exp(a)

holds if and only if

(37) [a, d] = b +
∞∑

k=1

αk(ada)k b

Proof. Since a is a nilpotent element all infinite power series in a or in ada are well
defined.

Equation (37) can be rewritten as

(38) [a, d] = f(ada) b ,

where f = f(x) is given in (35) and the operator f(ada) is defined via the Taylor
expansion of f around the point x = 0

f(ada) = Id +
∞∑

k=1

αk(ada)k .

It is clear that (38) holds if and only if

b = g(ada)[a, d] ,

where g(x) =
ex − 1

x
and g(ada) is also defined via the corresponding Taylor expan-

sion.
The latter equation is equivalent to

b = exp(ada) d− d

and this is exactly what we need to prove. �
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Lemma 1 together with its generalization come to us as surprise. We hope that
the relation with the formula for the Todd class can be helpful in deriving a version
of the algebraic index theorem for the map (4).
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