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INTERMEDIATE JACOBIANS AND ADE HITCHIN SYSTEMS

D. E. Diaconescu, R. Donagi, and T. Pantev

Abstract. Let Σ be a smooth projective complex curve and g a simple Lie algebra of
type ADE with associated adjoint group G. For a fixed pair (Σ, g), we construct a family

of quasi-projective Calabi-Yau threefolds parameterized by the base of the Hitchin inte-

grable system associated to (Σ, g). Our main result establishes an isomorphism between
the Calabi-Yau integrable system, whose fibers are the intermediate Jacobians of this

family of Calabi-Yau threefolds, and the Hitchin system for G, whose fibers are Prym

varieties of the corresponding spectral covers. This construction provides a geometric
framework for Dijkgraaf-Vafa transitions of type ADE. In particular, it predicts an inter-

esting connection between adjoint ADE Hitchin systems and quantization of holomorphic

branes on Calabi-Yau manifolds.

1. Introduction

Large N duality has been a central element in many recent developments in topo-
logical string theory. A-model large N duality has led to exact results in the Gromov-
Witten theory of quasi-projective Calabi-Yau threefolds equipped with a torus action
[2, 5, 6, 1, 16, 15, 7]. B-model large N duality [8, 9] predicts a very interesting
relation between matrix models, algebraic geometry and integrable systems, whose
mathematical structure has not been understood so far. A first step in this direction
has been taken in [4], where it was recognized that B-model large N duality is inti-
mately connected to Hitchin integrable systems on projective curves. More precisely,
the results of [4] relate the A1 Hitching system on a smooth projective curve Σ of
arbitrary genus to the large N limit of a holomorphic brane system. A key element
in [4] is the construction of a family X → L of quasi-projective Calabi-Yau threefolds
so that the associated intermediate Jacobian fibration J3(X/L) is isogenous to the
Prym fibration of the A1 Hitchin system on Σ. Here L ' H0(Σ,K⊗2

Σ ) is the base of
the A1 Hitchin system.

The purpose of the present paper is to generalize this construction to ADE Hitchin
systems on Σ. For a fixed simple Lie algebra g of type ADE, we construct in section 2 a
family X → L of quasi-projective Calabi-Yau threefolds parameterized by the base L
of the corresponding ADE Hitchin system. In section 3 (Lemma 3.1) we show that the
cohomology intermediate Jacobian J3(X) of a smooth generic threefold in the family
X → L is an Abelian variety. Using the results of [12], it follows that the associated
intermediate Jacobian fibration J3(X/L) is an algebraic integrable system. For future
reference, we will refer to such integrable systems as Calabi-Yau integrable systems.

Our main result (Theorem 3.2, section 3) states that the intermediate Jacobian
fibration J3(X/L) is isomorphic to the Prym fibration of the ADE Hitchin system for
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the adjoint group G associated to the Lie algebra g. Moreover, this is an isomorphism
of integrable systems.

By analogy with the case of A1 Hitchin systems considered in [4], this result suggests
that an arbitrary ADE Hitchin system is related to the large N limit of a holomorphic
brane system. This question will be investigated elsewhere.

There are several possible generalizations of our results inspired by situations often
encountered in physics. As explained in [4, Section 3.1], the geometric set-up consid-
ered in this paper is related by linearization to the deformation theory of projective
Calabi-Yau threefolds with curves of singularities. The case considered in this paper
corresponds to Calabi-Yau threefolds with a curve Σ of split ADE singularities. There
are two natural generalizations of this set-up. Namely, one can consider curves of
ADE singularities with nontrivial monodromy and one can also allow the singularity
type to jump at special points on Σ. In the first case, we expect a relation between
Calabi-Yau integrable systems and Hitchin systems of type BCFG. In the second case,
we expect a similar relation between Calabi-Yau integrable systems and meromorphic
Hitchin systems on Σ. Both situations are of physical interest and will be studied in
future work.

2. Moduli spaces

In this section we describe the relevant moduli spaces of non-compact Calabi-Yau
manifolds, as well as the corresponding universal families. To set things up we fix the
following data:

• a finite subgroup Γ ⊂ SL(2, C), corresponding via the McKay correspondence
to a simple Lie algebra g of type ADE. Write t ⊂ g for a Cartan subalgebra
in g.

• a fixed integer g ≥ 2.
• a smooth curve Σ of genus g.
• a Γ-equivariant rank two holomorphic vector bundle V on Σ
• an isomorphism detV ∼= KΣ.

Remark 2.1. The existence of a Γ-equivariant structure can impose a constraint on
V [20]:

Type A1:: If Γ ↔ A1, then V is unconstrained.
Type An>1:: If Γ ↔ An>1, then we must have V = L ⊕ (KΣ ⊗ L−1) for some

line bundle L on Σ. In fact, V will be polystable if and only if deg L = g− 1.
Type D or E:: If Γ ↔ Dn>2 or Γ ↔ E6,7,8, then we must have V = α ⊕ α for

some line bundle α on Σ with α⊗2 = KΣ

These restrictions follow immediately by noticing that Γ-equivariance reduces the
structure group of V to the centralizer of Γ inside GL(2, C). In the three cases above
this centralizer is GL(2, C), C× × C× and C×.

To this data we can associate the Calabi-Yau threefold

X0 := tot(V )/Γ

which fibers over Σ with fibers ALE spaces of type Γ. This X0 is the central fiber of
a family X → L of non-compact Calabi-Yau threefolds that is constructed as follows.
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Let W denote the Weyl group of g acting on the Cartan algebra t. Consider the
spaces

M̃ = H0(Σ,KΣ ⊗ t)

M = H0(Σ,KΣ ⊗ t)/W

L = H0(Σ, (KΣ ⊗ t)/W ).

Remark 2.2. Notice that by construction M and L are affine algebraic varieties
equipped with a natural C×-action coming from the dilation action on the vector
bundle KΣ ⊗ t. In fact L is isomorphic to a complex vector space of dimension
(g−1) dim(g) with an appropriately defined C×-action. Indeed, the fiber bundle (KΣ⊗
t)/W can be identified with the associated bundle K×

Σ ×C× (t/W ). By Chevalley’s
theorem [3] a choice of a basis of W -invariant homogeneous polynomials on t identifies
the cone t/W with a vector space of dimension rk(g) on which C× acts with weights
given by the degrees of the polynomials in this basis. Thus (KΣ⊗ t)/W can be viewed
as a vector bundle of rank rk(g) on Σ and so L is the vector space of global sections
of this vector bundle. Finally from the definition it is clear that the natural map
M → L is a closed immersion. This realizes M as a closed subcone in L.

Consider the rk(g) + 1 dimensional manifolds

U := tot((KΣ ⊗ t)/W ) u //Σ ,

Ũ := tot(KΣ ⊗ t) ũ //Σ ,

and let π : Ũ → U be the natural projection. We will make frequent use of the
following important proposition, due to Balázs Szendröi [19, 20]:

Proposition 2.3. (a): There exists a family of surfaces q : Q → U , uniquely
characterized by the properties
• Q|(zero section of U → Σ)

∼= X0

• Q|(fiber of U → Σ)
∼=

(
the miniversal unfolding of C2/Γ

)
(b): There exists a family q̂ : Q̂ → Ũ of smooth surfaces, together with a map

Q̂
ε //

��=
==

= π∗Q

}}{{
{{

{

Ũ

which is a simultaneous resolution of all fibers of π∗Q → Ũ .
(c): For every section l : Σ → U of u, the fiber product

Xl := Q×q, U ,l Σ

is a quasi-projective Gorenstein threefold with a trivial canonical class.

Proof. This is proven in [19, Propositions 2.5, 2.7 and 2.9] in a more general context
by a cutting and regluing argument. The idea is to build the family Q̂ from copies
of the Brieskorn-Grothendieck versal deformation of C2/Γ via the cocycle defining
the vector bundle V . In our simpler setup, one can also give a global argument by
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using the C× invariant Slodowy slice [18] through a subregular nilpotent element. We
will not give the details here since this global construction is not essential for our
considerations. �

We can now construct our family X → L. Define X as the pullback

X := ev∗LQ,

where evL : L × Σ → U is the natural evaluation map. The map X → L is the
composition X → L× Σ → L.

Similarly we can construct a family X̃ → M̃ , where M̃ = H0(Σ, Ũ) as the pullback

X̃ := ev∗fM Q̂,

where evfM : M̃ × Σ → Ũ is the natural evaluation map. The projection X̃ → M̃ is
the composition X̃ → M̃ × Σ → M̃ .

3. The main theorem

Note that the space L which was defined as moduli of noncompact Calabi-Yau
manifolds has also an alternative description as moduli of g cameral covers of Σ [10].
Indeed, the reader will recognize L = H0(Σ,U) as the base of the Hitchin system

h : Higgs(Σ, G) → L

of topologically trivial G-Higgs bundles on Σ, where G is any complex Lie group with
Lie algebra g. The case relevant to us is when G = Gad is the adjoint form of g. In
fact we can construct the universal g-cameral cover over L as the pullback

Σ̃ := ev∗LŨ .

The Hitchin fibration h is known [13, 11] to be a torsor over the relative Prym fibration
PrymG(Σ̃/Σ) → L for the cameral covers.

Consider the discriminant locus ∆ ⊂ L. By this we mean the locus of all ` ∈ L =
H0(Σ,U) which fail to be transversal to the branch divisor of the cover Ũ → U .
Outside of ∆ both fibrations X → L and Σ̃ → L are smooth. Fix ` ∈ L outside of
the discriminant. We get a smooth Calabi-Yau π : X → Σ and a smooth cameral
cover p : Σ̃ → Σ corresponding to `. This geometry gives rise to two natural complex
abelian Lie groups: the cohomology intermediate Jacobian J3(X) of X, and the Prym
variety PrymG(Σ̃,Σ) of the cover p : Σ̃ → Σ.

These groups have the following explicit description. Let ΛG be the group of
cocharacters of the maximal torus T G ⊂ G of G. Since G is adjoint, ΛG is naturally
the weight lattice of the Langlands dual Lie algebra Lg, which is identified with g
since our Lie algebra is simply laced. The case of our theorem when G = SO(3) was
proven in [4]. From now on we will therefore assume that G is not of type A1. In this
case, the Prym is

(1) PrymG(Σ̃,Σ) = H1

(
Σ,

(
p∗(ΛG ⊗O×eΣ )

)W
)

.
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More generally [11], the Prym associated with a G cameral cover, for any reductive
G, is Prym(Σ̃,Σ) = H1(Σ, TG), where TG is a sheaf of commutative groups on Σ
defined as

TG(U) :=
{

t ∈ Γ(p−1(U),ΛG ⊗O×eΣ )W

∣∣∣∣for every root α of g we
have α(t)|Dα = 1

}
.

In this formula we identify ΛG⊗C× with T G and we view a root α as a homomorphism
α : T G → C×. The divisor Dα ⊂ Σ̃ is the fixed divisor for the reflection sα ∈ W
corresponding to α. However, it was shown in [11, Theorem 6.5] that

TG =
(
p∗(ΛG ⊗O×eΣ )

)W

as long as the coroots of the group G are all primitive. As noted in the introduction
of [11], this holds for all adjoint groups of type ADE except for our excluded case of
SO(3). Therefore we have the identity (1).

The intermediate Jacobians of X are Hodge theoretic invariants of the complex
structure of X. For general non-compact threefolds, they are generalized tori (=
quotients of a vector space by a discrete abelian subgroup) defined in terms of the
mixed Hodge structure on the cohomology or the homology of X. However in our case,
the third cohomology of X carries a pure Hodge structure as shown in the following
lemma, so the intermediate Jacobians will be abelian varieties.

Lemma 3.1. Suppose that X is a smooth non-compact Calabi-Yau threefold corre-
sponding to ` ∈ L−∆. Then the mixed Hodge structure on H3(X, Z) is pure of weight
3 and of Hodge type (1, 2) + (2, 1).

Proof. To demonstrate the purity of the Hodge structure on H3(X, Z) we look at the
map π : X → Σ onto the compact Riemann surface Σ. Let crit(π) ⊂ Σ be the finite set
of critical values of π. Set Σo := Σ− crit(π), Xo := π−1(Σo), and let j : Σo ↪→ Σ and
πo : Xo → Σo denote the natural inclusion and projection maps. By the definition of
X, explained in the previous section, the fibers of πo are complex surfaces isomorphic
to smooth fibers of the universal unfolding of the singularity C2/Γ. In particular,
the second homology of every fiber of πo is isomorphic to the root lattice of the Lie
algebra g. By duality the second cohomology of every fiber of πo is isomorphic to the
weight lattice of g. Moreover, since all these fibers are deformation equivalent to the
minimal resolution ε : Ĉ2/Γ → C2/Γ of C2/Γ, it follows that every fiber of πo is a
deformation retract of the exceptional locus of ε and so is homotopy equivalent to a
configuration of 2-spheres whose dual graph is the Dynkin diagram of g. This implies
that for every t ∈ Σo for the corresponding fiber Qt := (πo)−1(t) we have

H0(Qt, Z) = Z, H2(Qt, Z) = ΛG,

and the rest of the cohomology of Qt vanishes. A similar argument shows that
the third cohomology group H3(Qt, Z) also vanishes for singular fibers Qt, with
t ∈ crit(π). Indeed, since the section ` ∈ H0(Σ,U) is transversal to the branch
divisor of the cover Ũ → U, the singular fibers of π : X → Σ have a single node.
Therefore they are isomorphic to Ĉ2/Γ with a (−2) curve contracted. In particular
the singular fibers have the homotopy type of a tree of rational curves, and their third
cohomology vanishes.
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Therefore, by the Leray spectral sequence applied to the map π : X → Σ we get
that

H3(X, C) = H1(Σ, R2π∗C) = H1(Σ, j∗R
2πo
∗C).

Next observe that the (a priori mixed) Hodge structure on the second cohomology
of each Qt, t ∈ Σo is pure and of type (1, 1), and so R2πo

∗C is a variation of pure
Hodge structures of Tate type and weight two. Indeed, it is obvious that the Hodge
structure on the second cohomology of Ĉ2/Γ is pure and of type (1, 1), since the second
homology of Ĉ2/Γ is spanned by the exceptional curves. The fact that Qt are all
deformations of the quasi-projective surface Ĉ2/Γ and the Gauss-Manin flatness of the
weight filtration imply then that H2(Qt, C) is pure and of type (1, 1). More explicitly,
by considering the versal deformation of the pair consisting of the minimal resolution
of P2/Γ and the divisor at infinity we can argue that each Qt is a rational surface
which admits a normal crossing compactification to a projective rational surface Qt

with a tree Dt = Qt − Qt of rational curves at infinity. Now writing the relative
cohomology sequence for (Qt, Qt) of the pair and using the Gysin map we see that
H2(Qt, C) is of Tate type.

Finally, for any local system L of complex vector spaces on Σo with finite mon-
odromy group W we know that H1(Σ, j∗L) is the W -invariant subspace of H1(Σ̂, j∗L̂),
where Σ̂ is the W -cover of Σ determined by the monodromy, and L̂ is the trivial local
system on Σ̂o which is the pullback of L. Now H1(Σ̂, j∗L̂) is the cohomology (with
constant coefficients) of a smooth compact curve, so it carries a pure Hodge structure
of weight 1 and of Hodge type (0, 1) + (1, 0), so the same applies to its W -invariant
subspace H1(Σ, j∗L). In our case, this is (up to a Tate twist, i.e. shifting of all types
by (1,1)) the same as H3(X, C). The lemma is proven �

Since X is non-compact we will have to take extra care in distinguishing the inter-
mediate Jacobians associated with the Hodge structures on H3(X, Z) and H3(X, Z).
We will denote these tori by J3(X) and J3(X) respectively. Explicitly

J3(X) = H3(X, C)/(F 2H3(X, C) + H3(X, Z)),(2)

J3(X) = H3(X, C)/(F−1H3(X, C) + H3(X, Z)),(3)

= H3(X, C)/(F 2H3(X, C) + H3(X, Z)),(4)

where in the formula (4) the inclusion H3(X, Z)/(torsion) ↪→ H3(X, C) is given by
the intersection pairing map on three dimensional cycles in X. More precisely, by
the universal coefficients theorem we can identify H3(X, Z)/(torsion) with the dual
lattice H3(X, Z)∨ := HomZ(H3(X, Z), Z). Combining this identification with the
intersection pairing on the third homology of X we get a well defined map

i : H3(X, Z) // H3(X, Z)/(torsion)

a � // 〈a, •〉

which is injective on the free part of H3(X, Z). Combining i with the natural inclusion
H3(X, Z)/(torsion) ⊂ H3(X, C) we obtain the map appearing in (4). Furthermore
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since i is injective modulo torsion, it follows that the induced surjective map on
intermediate Jacobians

(5) J3(X) → J3(X)

is a finite isogeny of tori. Note that had X been compact, the unimodularity of the
Poincare pairing would have implied that (5) is an isomorphism and so we would not
have had to worry about the distinction between J3(X) and J3(X).

By the previous lemma it follows that if we twist the Hodge structure on H3(X, C)
by a Tate Hodge structure of weight (−2) we will get a pure effective Hodge structure
of weight 1. In particular J3(X) and J3(X) are both abelian varieties which are dual
to each other. The lemma also implies that

J3(X) = H3(X, Z)⊗Z S1

J3(X) = H3(X, Z)⊗Z S1

as real tori. Furthermore the isogeny (5) can be identified explicitly as

J3(X) // J3(X)

H3(X, Z)⊗Z S1
i⊗id

// H3(X, Z)⊗Z S1

Our main result is

Theorem 3.2. Suppose G is the adjoint Lie group with Lie algebra g. Away from
the discriminant, the relative Prym fibration PrymG(Σ̃/Σ) → L is isomorphic to the
cohomology intermediate Jacobian fibration J3(X/L) → L for the family X → L.
This isomorphism identifies the symplectic structure on Hitchin’s space PrymG(Σ̃/Σ)
with the Poisson structure on J3(X/L) coming from the Yukawa cubic on L [12].

Proof. First we show that the relative Prym fibration is isomorphic to the cohomology
intermediate Jacobian fibration as families of polarized abelian varieties.

We divide the proof of this fact into three steps:

Step 1. J3(X) = H3(X, S1) ∼= H1(Σ, (p∗ΛG)W ⊗ S1). Indeed, if π : X → Σ is
the natural map, then we have R1π∗S

1 = 1 and R3π∗S
1 = 1. This follows from the

explicit description of the homotopy type of a smooth fiber Qt of π given in the proof
of Lemma 3.1. By the Leray spectral sequence we get H3(X, S1) = H1(Σ, R2π∗S

1).
Furthermore

R2π∗S
1 ∼= (R2π∗Z)⊗ S1 ∼= (p∗ΛG)W ⊗ S1.

The first isomorphism follows from the universal coefficients spectral sequence [14]
and the divisibility of S1. The identification R2π∗Z ∼= (p∗ΛG)W over Σ follows from
the corresponding identification over U which is classical.

Step 2. H1(Σ, (p∗ΛG)W ⊗ S1) ∼= H1(Σ, (p∗(ΛG ⊗ S1))W ).
In fact we will show:
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Lemma 3.3. If p : Σ̃ → Σ has simple Galois ramification, then the natural map

ν : (p∗ΛG)W ⊗ S1 → (p∗(ΛG ⊗ S1))W

is an isomorphism.

Proof. Since ν is tautologically an isomorphism away from the branch locus of
p : Σ̃ → Σ, we need only check that ν is an isomorphism of stalks at the branch points
of p.

Suppose b ∈ Σ− Σo is a branch point. We have

((p∗ΛG)W )b
∼= Λρα

G

((p∗(ΛG ⊗ S1))W )b
∼= (ΛG ⊗ S1)ρα .

(6)

where ρα : ΛG → ΛG is the reflection corresponding to a root α. Indeed observe that

p∗ΛG = i∗(po
∗ΛG)

p∗(ΛG ⊗ S1) = i∗(po
∗(ΛG ⊗ S1)),

where

Σ̃

p

��

⊃ Σ̃o

po

��
Σ ⊃ Σo

and po denotes the part of p away from ramification. In particular if x ∈ Σo is a point
near b, we have that

(p∗ΛG)b = (p∗ΛG)monx
x

= (Fun(p−1(x),ΛG))monx

= (Fun(W,ΛG))monx

= Fun(W/sα,ΛG).

Therefore
(p∗ΛG)W

b = Fun(W/sα,ΛG)W = Λρα

G .

An analogous argument gives the second identity in (6).
Thus our lemma is equivalent to showing that the natural map

νb : Λρα

G ⊗ S1 → (ΛG ⊗ S1)ρα

is an isomorphism for one (hence all) roots α.
We will analyze the ADE types separately.
Suppose G is of type An. The short exact sequence

1 → GL(1) → GL(n + 1) → PGL(n + 1) → 1

induces a short exact sequence of cocharacter lattices

0 → ΛGL(1) → ΛGL(n+1) → ΛPGL(n+1) → 0.

Explicitly this is the sequence

0 → Z → Zn+1 → ΛPGL(n+1) → 0,

where the map Z → Zn+1 is given by 1 7→ (1, 1, . . . , 1).
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Choose α = [(0, 0, . . . , 0, 1,−1)]. Then ρα is the transposition

(λ1, . . . , λn, λn+1) → (λ1, . . . , λn+1, λn)

and so [(λ1, . . . , λn, λn+1)] ∈ ΛPGL(n+1) is in Λρα

PGL(n+1) if and only if λn = λn+1.
Similarly x := [(x1, . . . , xn+1)] ∈ ΛPGL(n+1) ⊗ S1 satisfies ρα(x) = x if and only if

(1, . . . , 1, xnx−1
n+1, x

−1
n xn+1) = (x, . . . , x, x, x)

for some x ∈ S1. Since by assumption n > 1 we see that νb is surjective, hence an
isomorphism. Note that in the excluded case n = 1 the map νb has a non-trivial
cokernel Z/2.

If G is of type Dn, n > 2, we use the basic sequence

0 → ΛSO(2n) → ΛPSO(2n) → Z/2 → 0

and the fact that ΛSO(2n) can be identified with the square lattice Zn. After tensoring
with S1 we get

1 → {±1} → ΛSO(2n) ⊗ S1 → ΛPSO(2n) ⊗ S1 → 1

where the map {±1} → ΛSO(2n)⊗S1 = (S1)n sends (−1) to (−1,−1, . . . ,−1). Since
we are assuming that n > 2, this yields the surjectivity of νb. Again in the excluded
case of n = 2 we have coker(νb) = Z/2.

Finally if G is of type En, for n = 6, 7, 8, then ΛG can be identified with the
quotient:

0 → Z → H2(dPn, Z) → ΛG → 0,

where dPn is a general del Pezzo surface of degree 9 − n and under the map Z →
H2(dPn, Z), the generator 1 ∈ Z goes to the anti-canonical class 3` −

∑n
i=1 ei. Here

we think of dPn as the blow-up of P2 at n general points. Its cohomology has an
orthogonal basis {`, e1, . . . , en} satisfying `2 = 1 and e2

i = −1. Geometrically, ` is the
pullback of the hyperplane class on P2 and the ei’s are the exceptional curves.

For our root α we take α = e1−e2. Then ρα acts as the Picard-Lefschetz reflection
ρα(x) = x + 〈x, e1 − e2〉 · (e1 − e2). In particular ρα interchanges e1 with e2 and fixes
the rest of the basis. Now the same reasoning as above shows that νb is surjective
and hence an isomorphism.

Step 3. The inclusion S1 ⊂ C× of groups induces a natural inclusion of sheaves

(7) ι : ΛG ⊗ S1 ↪→ ΛG ⊗O×eΣ .

We claim that ι induces an isomorphism of tori

h1(ι) : H1(Σ, (p∗(ΛG ⊗ S1))W ) →̃ H1(Σ, (p∗(ΛG ⊗O×eΣ ))W ).

Indeed, observe that H1(Σ, (p∗(ΛG ⊗ S1))W ) is isogenous to H1(Σ̃,ΛG ⊗ S1)W and
similarly H1(Σ, (p∗(ΛG ⊗ O×eΣ ))W ) is isogenous to H1(Σ̃,ΛG ⊗ O×eΣ )W . Under these
isogenies the map h1(ι) is compatible with the map

H1(Σ̃,ΛG ⊗ S1)W → H1(Σ̃,ΛG ⊗O×eΣ )W

and so h1(ι) is surjective with at most a finite kernel.
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Let C be the cone of the map of sheaves (7). Since the constant sheaf C×eΣ has a
resolution

C×eΣ → O×eΣ → Ω1eΣ,

and since C× = S1×R, it follows that C is quasi-isomorphic to a complex of R-vector
spaces on Σ̃ with cohomology sheaves H0C ∼= ΛG ⊗ Ω1eΣ (considered as a sheaf of
R-vector spaces, and H1C ∼= ΛG ⊗ R. This implies that

cone
[
(p∗(ΛG ⊗ S1))W → (p∗(ΛG ⊗O×eΣ ))W

]
is a complex of sheaves of R-vector spaces on Σ and so its hypercohomology can not
be a torsion group. This implies that h1(ι) is injective and finishes the proof of the
identification of the cameral Pryms with the intermediate Jacobians.

To finish the proof of the theorem, it remains to show that the family X → L of
non-compact Calabi-Yau manifolds gives rise to a Yukawa cubic field on L, which
coincides with the cubic defining the symplectic structure [12] on the Higgs moduli
space. This is equivalent to showing that for a smooth Calabi-Yau X in L, there is a
unique up to scale non-vanishing holomorphic three form Ω on X, which is compatible
with the Seiberg-Witten t-valued one form η on the corresponding cameral cover Σ̃.

First we recall that the cameral cover Σ̃ was defined as the pullback of the cover
Ũ → U via a a map Σ → U . In this picture, the Seiberg-Witten t-valued holomorphic
one form η on Σ̃ becomes simply the pullback of the tautological section of the pullback
of t⊗KΣ to Ũ = tot(t⊗KΣ).

Next observe that as long as V is semistable, the singular Gorenstein Calabi-Yau
X0 = tot(V )/Γ has a unique up to scale non-vanishing holomorphic three form Ω0.
Indeed, the ratio of any two such forms will be a global holomorphic function on
X0, and so will pullback to a global holomorphic function on tot(V ). But every
such function can be written as a convergent series of functions which are polynomial
along the fibers of tot(V ) → Σ. However these polynomial functions can be thought
of as sections in S•V ∨, and since V is semistable of positive degree, it follows that
all such sections are constants. By semicontinuity this implies that for l ∈ L in a
small neighborhood of zero, the Calabi-Yau manifold Xl has a unique up to scale
holomorphic three form Ωl. Since our universal family X → L is preserved by the
natural action of C× on L, this shows that Γ(Xl,Ω3

Xl
) = C for all l in L.

Let now l ∈ L − ∆ and let π : X → Σ and p : Σ̃ → Σ be the corresponding
Calabi-Yau threefold and cameral cover. We have a commutative diagram of spaces

X̂
π̂

&&MMMMMMMMM
ε ��

X ×Σ Σ̃
π̃ //

f ��

Σ̃
p

��
X π

// Σ

where X̂ := Q̂ ×eU Σ̃ is the small resolution of X ×Σ Σ̃, induced from Q̂ → Q. Note
that in this diagram X ×Σ Σ̃ is Gorenstein and all the other spaces are smooth.
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Let Kπ, Kπ̃, Kπ̂ denote the relative canonical classes of the morphisms π, π̃, π̂.
Since the square in the above diagram is a fiber square we have Kπ̃ = f∗Kπ. Since
X ×Σ Σ̃ is Gorenstein and ε : X̂ → X ×Σ Σ̃ is small, we have that K bX = ε∗KX×Σ eΣ
and therefore Kπ̂ = ε∗Kπ̃. This gives an identification

(f ◦ ε)∗KX = Kπ̂ ⊗ (p ◦ π̂)∗KΣ.

Let Ω denote the unique up to scale non-vanishing holomorphic three form on X. Then
Ω is a global nowhere vanishing section of KX and so (f ◦ ε)∗Ω is a non-vanishing
section of Kπ̂ ⊗ (p ◦ π̂)∗KΣ = Ω2

π̂ ⊗ (p ◦ π̂)∗Ω1
Σ. Using the section Ω̂ := (f ◦ ε)∗Ω

we can construct a period map from Σ̃ to the total space of t ⊗ p∗KΣ. Indeed,
fix a base point o ∈ Σ̃ and an identification H2(X̂o, C) ∼= t. Let s ∈ Σ̃ and let
v ∈ (p∗K−1

Σ )s. The contraction of Ω̂| bXs
with π̂∗(v) is a closed two form on X̂s which

can be transported by the Gauss-Manin connection along a path from s to o to give
an element in t = H2(X̂o, C). Since by construction R2π̂∗C is a trivial local system
on Σ̃, this construction is independent of the choice of a path and gives a well defined
map p∗K−1

Σ → t⊗OeΣ of holomorphic vector bundles, or equivalently a holomorphic
section η̂ in t⊗p∗KΣ on Σ̃. Finally, to show that η̂ coincides with the Seiberg-Witten
form, note that the period map η̂ is the composition of the inclusion Σ̃ ↪→ Ũ and
the universal period map η̂ : Ũ → t ⊗ ũ∗KΣ corresponding to the canonical section
Ω̂ ∈ H0(Q̂,Ω2

q̂ ⊗ (ũ ◦ q)∗KΣ). Using the cut-and-paste construction of Q̂ from [19]
one can check that the universal period map η̂ is given by the tautological section.
Indeed, if we choose a local frame of V on an open D ⊂ Σ and if we write ζ for
the corresponding local frame of KΣ

∼= ∧2V , then over the local patch D ⊂ Σ we
have Ũ |D ∼= D × t, Q̂|D ∼= D × Ŷ , where Ŷ → t is the Brieskorn-Grothendieck
simultaneous resolution of the versal deformation family of C/Γ. In these terms we
have Ω̂ = p∗Dζ⊗p∗bY ω, where ω ∈ Ω2bY /t

is the canonical fiberwise symplectic form on Ŷ .
Now the statement follows by the well known fact [17, Section 4] that the period map
t → t given by ω is proportional to the identity, and by the invariance-under-gluing
statement of [19]. �
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