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GENERIC EXPANDING MAPS WITHOUT ABSOLUTELY
CONTINUOUS INVARIANT σ-FINITE MEASURE

Artur Avila and Jairo Bochi*

Abstract. We show that a C1-generic expanding map of the circle has no absolutely

continuous invariant σ-finite measure.

1. Introduction

If f is a measurable transformation of a Lebesgue measure space (X,A, λ) to itself,
that does not preserve the measure λ, one can study the invariant measures of f and
compare them to λ. An especially interesting case is when f is non-singular with
respect to λ (in the sense that λ(A) = 0 iff λ(f−1(A)) = 0), but nevertheless there
exist no σ-finite invariant measure which is absolutely continuous with respect to λ.
Such maps f are called of type III (with respect to the measure). Their existence
was conjectured by Halmos [4] and established by Ornstein [12]. Other examples were
given later; let us cite a few (when not specified, the relevant measure is Riemannian):

• certain piecewise linear homeomorphisms of the circle, by Herman [7];
• certain C∞-diffeomorphisms of the circle, by Katznelson [9];
• a C∞ non-invertible map of the 2-torus, by Hawkins and Silva [6];
• the full shift on 2 symbols, with respect to some product measure, by Hamachi

[5].
• a C1 expanding map of the circle (constructed using Hamachi’s example),

by Bruin and Hawkins [2].

Recall that C1+α expanding maps have absolutely continuous invariant probability
measures, so the regularity of the example of Bruin and Hawkins is essentially sharp.

The question of whether the absence of aciσ (absolutely continuous invariant σ-
finite measure) is actually a generic (in the usual topological sense) phenomenon for
C1 expanding maps of the circle seems to have been first posed by Quas [13]. Later
investigations [3] indicated that the known methods failed to decide the question either
way. It was also known that C1-generic maps do behave “pathologically” in some
respects (they have no absolutely continuous invariant probability measure [13]), but
not in others (they are ergodic and conservative with respect to Lebesgue measure [13],
and they possess a unique physical measure [3]).

In this paper we show that the type III property is indeed C1-generic for expanding
maps of the circle.

We also mention that the non-existence of finite invariant measures that are ab-
solutely continuous with respect to Riemannian measure was shown to be a generic
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property among (expanding or not) C1 maps of compact manifolds of any dimension
– see [1].

Of course, it is natural to ask whether the result of the present paper is still true
for expanding maps on higher dimension. It is not clear whether our methods can be
extended.

Concerning non-necessarily expanding maps of a compact manifold, there are C1-
open sets of transformations that do have some absolutely continuous σ-finite invariant
measure (maps with a sink, for instance). In this regard, we ask whether a C1-generic
map has no absolutely continuous σ-finite invariant measure which is conservative
(all w.r.t. Riemannian measure). We will show that this is true at least for one-
dimensional maps, see corollary 1.

Let us now give the precise statements.
Let T1 = R/Z be the circle. Let E1 be the set of all C1 maps f : T1 → T1 which

are expanding, i.e.,

(1) ∃c > 0, ∃λ > 1 s.t. |(fn)′(x)| > cλn ∀x ∈ T1, ∀n ∈ N .

We endow the set E1 with the C1 topology. Let m denote the Lebesgue measure
on T1 normalized so that m(T1) = 1. We say that a σ-finite measure on T1 is an
aciσ for a map f : T1 → T1 if it is absolutely continuous with respect to m and it is
f -invariant. Our main result is:

Theorem 1. There exists a residual set R ⊂ E1 such that if f ∈ R then f has no
aciσ.

Corollary 1. Let X be either the circle T1 or the compact interval [0, 1]. There
exists a residual set R′ of the space of C1(X, X) such that if f ∈ R′ then f has no
conservative aciσ.

Proof. Hyperbolic maps form an open and dense subset H of C1(X, X) by [8]. (See
also [10] for the recent extension to higher regularity.) The map that associates to
f ∈ H its non-wandering set Ω(f) is upper semi-continuous in the Hausdorff topology.
Moreover, if f ∈ H∩C2(X, X) then m(Ω(f)) = 0 unless X = T1 and f is expanding,
see [11]. It follows that generically, either m(Ω(f)) = 0 or f ∈ E1. In the first case, f
cannot have a conservative aciσ (since any conservative measure must be supported
on the non-wandering set). In the second case, generically there is no aciσ at all, by
theorem 1. �

2. Some preliminaries

A reduction. Let E1
0 be the subset of E1 consisting of maps f satisfying f(0) = 0

and such that (1) holds with c = 1. We will actually prove:

Theorem 2. There exists a residual set R0 ⊂ E1
0 such that if f ∈ R0 then f has no

aciσ.

Let us show that theorem 2 implies theorem 1. Let f ∈ E1, and let pf be a fixed
point of f . Then for f̃ in a small open neighborhood U of f in E1, there exists a
unique fixed point pf̃ of f̃ near pf , moreover this fixed point depends continuously
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on f̃ . Let n ≥ 1 be such that |(fn)′(x)| > 1 for every x ∈ T1. Define

h(x) =
n−1∑
k=0

|(fk)′(x)| so that
∫

T1
h(x)dx =

|df |n − 1
|df | − 1

,

where df is the degree of f . Let Hf̃ be the orientation preserving C1 diffeomorphism

of T1 such that Hf̃ (pf̃ ) = 0 and H ′
f̃
(x) = |df |−1

|df |n−1h(x). Then Hf̃ depends continuously

on f̃ ∈ E1. Define a map g = Hf ◦ f ◦H−1
f . For any x ∈ T1, writing y = H−1

f (x), we
have

|g′(x)| = h(f(y)) · |f ′(y)|
h(y)

=
h(y) + |(fn)′(y)| − 1

h(y)
> 1.

Hence g ∈ E1
0 . Shrinking U to a smaller open neighborhood of f if necessary, we see

that g̃ = Hf̃ ◦f̃ ◦H
−1

f̃
belongs to E1

0 for every f̃ ∈ U . Consider the mapping Π : f̃ 7→ g̃;

it is clearly continuous. It is also open: for any ĝ ∈ E1
0 close to g, H−1

f ◦ ĝ ◦Hf ∈ E1 is
close to f and is mapped by Π to ĝ. The preimage of R0 under Π is thus a residual
subset of U , which contains only maps which have no aciσ.

Lispchitz maps. Let E lip
0 be the set of Lipschitz local homeomorphisms f : T1 → T1,

such that f(0) = 0 and
λf = ess inf

x∈T1
|f ′(x)| > 1.

We consider E lip
0 endowed with the topology induced from the Lipschitz metric:

dlip(f, g) = ess sup
x∈T1

|f ′(x)− g′(x)|.

We also let
Λf = ess sup

x∈T1
|f ′(x)|.

The distortion of the restriction of some iterate of f to some interval is

Dist(fn|J) =
ess supx∈J |(fn)′(x)|
ess infx∈J |(fn)′(x)|

.

Clearly, if fn|J is 1-1 onto I then for every measurable X ⊂ J of positive measure,

1
Dist(fn|J)

≤ m(fn(X))/m(I)
m(X)/m(J)

≤ Dist(fn|J).

Recurrence properties. We say that f ∈ E lip
0 is ergodic with respect to m if every

measurable set X such that f−1(X) = X satisfies m(X) = 0 or m(X) = 1. We say
that f ∈ E lip

0 is conservative with respect to m if every measurable set X such that
X ∩

⋃∞
k=1 f−k(X) = ∅ satisfies m(X) = 0.

It is easy to see that f ∈ E lip
0 is ergodic and conservative with respect to m if and

only if for every measurable set X which is forward invariant (that is, f(X) ⊂ X) we
have m(X) = 0 or m(X) = 1.

If f ∈ E lip
0 and X ⊂ T1 is a measurable set, then we denote Xf the set of points in

X that return to X by forward iteration by f . It is easy to see that if f is conservative
then m(Xf ) = m(X).

We denote by fX : Xf → X the first return map.
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Lemma 1. If µ is any f-invariant σ-finite measure then µ(f−1
X Y ) ≤ µ(Y ) for all

measurable Y ⊂ X.

Proof. We can assume µ(Y ) < ∞. For n ≥ 1, let

Zn = f−1(Xc) ∩ · · · ∩ f−(n−1)(Xc) ∩ f−n(Y ), Yn = X ∩ Zn.

Then
⊔∞

n=1 Yn = f−1
X (Y ). Since Zn+1 = f−1(Xc ∩ Zn), we have

µ(Yn) = µ(X ∩ Zn) = µ(Zn)− µ(Xc ∩ Zn) = µ(Zn)− µ(Zn+1).

Therefore
∑∞

n=1 µ(Yn) ≤ µ(Z1) = µ(f−1(Y )) = µ(Y ). �

Markov partitions. Let f ∈ E lip
0 . The points in f−n(0) divide the circle into |df |n

open intervals, which are called Markov intervals of order n. The image of a Markov
interval of order n is a Markov interval of order n − 1. If I is a Markov interval of
order n then fn|I is a 1-1 map onto (0, 1).

If I is a Markov interval and fI is the first return map to I, then there exist disjoint
(Markov) intervals Ij ⊂ I such that fI |Ij is an homeomorphism onto I for each j.
If f is conservative with respect to Lebesgue measure then the intervals Ij cover I
m-mod 0.

Piecewise linear approximations. Let us say that a map f ∈ E lip
0 belongs to Epl

0

if there exists n ≥ 1 such that for every Markov interval I of order n, f |I is linear.

Lemma 2. The set Epl
0 is dense in E1

0 in the Lipschitz metric.

Proof. Given f ∈ E1
0 and n ≥ 2, we define a map fn : T1 → T1 as follows: For each

Markov interval I of order n for f , let fn map I onto f(I) linearly, and so that fn

equals f in the boundary of I. Clearly, fn ∈ Epl
0 . We claim that fn → f in the

Lipschitz metric.
Notice that the lengths of Markov intervals I of order n go uniformly to 0 as

n → ∞: in fact, m(I) ≤ λ−n
f . Since f is C1, for every δ > 0 we can choose n0 such

that in each Markov interval I of order n ≥ n0, supx,y∈I |f ′(x) − f ′(y)| ≤ δ. Then
dlip(f, fn) ≤ δ. �

Lemma 3. Every f ∈ Epl
0 is ergodic and conservative with respect to Lebesgue mea-

sure.

Proof. Given f ∈ Epl
0 , let n be such f is linear on Markov intervals of order n. Let X

be a forward invariant set of positive Lebesgue measure. Notice that if I is a Markov
interval of order N ≥ n, then fN−n|I is linear onto some Markov interval of order n,
and fN |I is onto (0, 1) with distortion bounded by Λn

f /λn
f . By the Lebesgue Density

Points theorem, for almost every x ∈ X, limN→∞ m(IN ∩X)/m(IN ) = 1, where IN

is the Markov interval of order N containing x. Applying fN and using the bound
on the distortion, we see that m(fN (X ∩ IN )) → 1 as N →∞. So m(X) = 1 and the
result follows. �
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3. Plan of proof

Definition 1. Let I be an interval and φ : I → I non-singular (w.r.t. the Lebesgue
measure) map. Then φ is called distorted if there exists a measurable set A ⊂ I such

that
m(A)
m(I)

> .4, and
d(φ∗mI)

dmI
> 2 on A (where mI is Lebesgue measure on I).

Recall that
d(φ∗mI)

dmI
(y) =

∑
x∈f−1(y)

1
|φ′(x)|

.

Definition 2. If δ > 0 and f ∈ E lip
0 then f is called δ-good if there exists a family

I of Markov intervals (possibly of different orders), all of length at most δ, such that
m

(⋃
I∈I I

)
> 1− δ and for every I ∈ I, the first return map fI : I → I is distorted.
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Recall that
d(φ∗mI)

dmI

(y) =
∑

x∈f−1(y)

1

|φ′(x)|
.

Definition 2. If δ > 0 and f ∈ E lip
0 then f is called δ-good if there exists a family

I of Markov intervals (possibly of different orders), all of length at most δ, such that
m

(
⋃

I∈I I
)

> 1 − δ and for every I ∈ I, the first return map fI : I → I is distorted.

A

Figure 1. A typical graph of a distorted fI . In this example, A is
an interval. There should be infinitely many branches.

We can now state the three key technical results of this paper.

Proposition 1. If f ∈ E1
0 is δ-good for every δ > 0 then f has no aciσ.

The next proposition says the condition of being δ-good is open in two senses.

Proposition 2. Let f ∈ E lip
0 be δ-good for some δ > 0. Then:

(i) There exists β > 0 such that if a map f̃ ∈ E lip
0 satisfies

m
(

{x ∈ T
1; f̃(x) 6= f(x)}

)

< β

then it is δ-good.
(ii) Assuming that f ∈ E1

0 , there exists γ > 0 such that if f̃ ∈ E1
0 satisfies

dlip(f̃ , f) < γ then f̃ is δ-good.

Proposition 3. For any δ > 0, the set of maps that are δ-good is dense in E1
0 with

the Lipschitz metric.

Let us first see how to conclude theorem 2 (and hence, by the reduction, theorem 1)
from the three propositions.

Proof of theorem 2. The set Uδ of f ∈ E1
0 which are δ-good is C1-open, by part (ii)

of proposition 2, and C1-dense, by proposition 3. So R0 =
⋂

δ>0 Uδ is a residual set

of E1
0 , and by proposition 1 it consists of maps which do not have an aciσ. �

We now prove propositions 1 and 2, and leave the harder proof of proposition 3
(where part (i) in proposition 2 is used) for the next section.
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an interval. There should be infinitely many branches.
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We now prove propositions 1 and 2, and leave the harder proof of proposition 3
(where part (i) in proposition 2 is used) for the next section.

Proof of proposition 1. Assume that for all δ > 0, f ∈ E1 is δ-good; let Iδ be the
corresponding family of intervals as in definition 2. Assume f has an aciσ µ, and let
ρ = dµ

dm be its density. Let c > 0 be such that the set Z = {x ∈ T1; c ≤ ρ(x) ≤ 1.1c}
has positive Lebesgue measure. By a density point argument, there exists an interval
I ∈

⋃
δ Iδ such that m(I ∩ Z)/m(I) > .9. Since fI is distorted, there exists A ⊂ I

such that m(A)/m(I) = .4 and d(fI)∗m/dm > 2 on A. Let Y = A ∩ Z. We have

m(Y ) ≥ m(A)−m(I r Z) > .4 m(I)− .1 m(I) = .3 m(I)

and
µ(Y ) ≤ 1.1cm(Y ) ≤ 1.1× .4cm(I) = .44cm(I)

Moreover,

µ
(
f−1

I (Y )
)
≥ cm

(
Z ∩ f−1

I (Y )
)
≥ c

[
m

(
f−1

I (Y )
)
−m(I r Z)

]
> c[2m(Y )− .1 m(I)] ≥ c[2× .3− .1]m(I) = .5cm(I) > µ(Y ).

This contradicts lemma 1. �

Proof of proposition 2. Let I be the family of Markov intervals as in definition 2;
clearly we can assume it is finite, say, I = {Ii; 1 ≤ i ≤ i0}. Let Ai ⊂ Ii be the set
that gets enlarged under (fIi

)−1 according to definition 1. Let Ji,1, Ji,2, . . . be the
connected components of the domain of fIi , and let ni,j be such that fni,j (Ji,j) = Ii.
Then

∞∑
j=1

|((fni,j |Ji,j)−1)′(y)| > 2 for every y ∈ Ai.

Slightly reducing the sets Ai (still keeping m(Ai)/m(Ii) > .4), we can find j0 such
that

j0∑
j=1

|((fni,j |Ji,j)−1)′(y)| > 2 + ε for every y ∈ Ai, for every i = 1, . . . , i0,

where ε is some fixed positive number. Also let N = max{ni,j ; 1 ≤ i ≤ i0, 1 ≤ j ≤
j0}.

If f̃ is another map in E lip
0 which is C0-close to f , then for each interval Ii ∈ I there

is an interval Ĩi which is Markov for f̃ and is close to Ii. Clearly if the C0-distance
between f̃ and f is sufficiently small then each Ĩi has length < δ, and their union has
measure > 1− δ. Further, for each Ĩi there exist intervals J̃i,j , 1 ≤ j ≤ j0, which are
close to Ji,j and such that f̃ni,j (J̃i,j) = Ĩi.

With these notations fixed, we complete the proofs of the two parts of the propo-
sition separately.

Part (i): Let f̃ ∈ E lip
0 so that the set U = {x ∈ T1; f̃(x) 6= f(x)} has m(U) < β,

where how small β needs to be will become clear along the way. First, notice that
the C0-distance between f̃ and f is small (in fact, less than Λfβ). So we can define
intervals Ĩi, J̃i,j , for 1 ≤ i ≤ i0 and 1 ≤ j ≤ j0 as explained above. Let V =⋃N

n=0 fn(U). Then m(V ) ≤ (1 + Λf + · · ·+ ΛN
f )β is small. Define Ãi = Ĩi ∩Ai r V .

Then m(Ai r Ãi) is small: at most m(Ii r Ĩi) + m(V ). So if β is small enough then
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m(Ãi)/m(Ĩi) > .4. Moreover, if y ∈ Ãi then
d(f̃Ĩi

)∗m
dm

(y) > 2 + ε. This shows that

f̃Ĩi
is distorted for each i and accordingly that f̃ is δ-good.

Part (ii): Now assume f is C1 and f̃ is γ-C1-close to f . Again we can define
intervals Ĩi, J̃i,j , for 1 ≤ i ≤ i0 and 1 ≤ j ≤ j0. Let Ãi = Ĩi ∩ Ai. By taking a small
γ, we guarantee that f̃n is C1-close to fn for 1 ≤ n ≤ N , and therefore

j0∑
j=1

|((f̃ni,j |J̃i,j)−1)′(y)| > 2 for every y ∈ Ãi.

So the f̃Ĩi
are distorted and and f̃ is δ-good. �

We remark that with a little more effort it is possible to improve simultaneously
the two parts of proposition 2, showing that being δ-good is an open condition in E lip

0

in the total variation metric dBV(f, g) =
∫

T1 |f ′ − g′| dm.

4. Proof of proposition 3

Let f0 ∈ E1
0 and δ > 0; we will show that there exists a δ-good map h ∈ E1

0 such
that dlip(h, f0) < 3δ. For simplicity, we will assume that f is orientation-preserving.
The proof can be easily adapted to cover the general case.

Step 1. Linearization. By lemma 2, we can find f ∈ Epl
0 with dlip(f, f0) < δ. Since

f ∈ Epl
0 , there exists n0 such that if I is a Markov interval of order n ≥ n0 then f |I

is linear.
Let ` ≥ n0 be large (to be specified later). Fix a Markov interval T such that the

sets T , f−1(T ), . . . , f−`(T ) are disjoint, and their union has Lebesgue measure less
than δ.

Let PT be the collection of (Markov) subintervals of T that are sent onto T by
fT . Let KT = T r

⋃
I∈PT

I. Notice that for any I ∈ PT , order(I) ≥ order(T ) + `,
order(T ) ≥ ` ≥ n0 and fT |I = forder(I)−order(T )|I is linear.

Step 2. Another perturbation. If I is an interval, denote by ΦI the only order-
preserving linear bijection I → (0, 1).

Each interval in PT has length at most λ−`
f m(T ). Since ` is large, we can find

ξ ∈ T r
⋃

I∈PT
I such that

η = ΦT (ξ) ∈ (.4, .41).
We define a perturbation g of f as follows:

• g equals f outside f−1(T r KT ) ∪ · · · ∪ f−`(T r KT ).
• Let Ξ = f−1

T (ξ). Consider all sequences of intervals

I` → I`−1 → · · · → I0

with f(Ij) = Ij−1 and I0 ∈ PT . Let ξ0 = I0∩Ξ. Then ΦI0(ξ0) = η. Let ξi =
Φ−1

Ii
(η+ i

2` ). We define g|Ii for 1 ≤ i ≤ ` as the unique orientation preserving
homeomorphism onto Ii−1 whose restriction to each connected component
of Ii r {ξi} is linear and such that g(ξi) = ξi−1. Let Q = ΦI0 ◦ g` ◦ Φ−1

I`
. It

is the homeomorphism of (0, 1) depicted in figure 2.
Notice that the Lipschitz distance between g and f is at most Cf/`, for some

constant Cf depending on f only, and hence it is < δ since ` is large.
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η + 1
2

η

Figure 2. Graph of Q : (0, 1) → (0, 1).

Notice that the Lipschitz distance between g and f is at most Cf/ℓ, for some
constant Cf depending on f only, and hence it is < δ since ℓ is large.

Step 3. Some properties of g. Let Pk
g,T be the family of (g-Markov) subintervals

of T that are sent onto T by gk
T . Notice that P1

g,T = PT .
If ζ is a singularity for g, in the sense that g is not linear in a neighborhood of ζ,

then:

(i) either ζ is a singularity for f – in this case it is contained in f−n0(0);
(ii) or ζ belongs to f−i(KT ) for some 1 ≤ i ≤ ℓ;
(iii) or ζ belongs to g−i(Ξ) for some 1 ≤ i ≤ ℓ.

Lemma 4. If L is an element of P2
g,T and J is a connected component of g−k(L),

k ≥ 1, then gk|J is linear.

Proof. If gk|J is not linear then gj(J) intersects a singularity ζ of g for some 0 ≤ j < k.
Since L = gk(J) belongs to P2

g,T , there are at least three different i > 0 such that

gi(ζ) ∈ T . Thus ζ cannot be of the type (i) above: indeed, the set f−n0(0) = g−n0(0)
is forward invariant for both f and g, and it does not intersect T . ζ cannot be of the
type (ii): the first iterate of ζ that belongs to T belongs indeed to KT , and subsequent
iterates do not enter T again. ζ cannot be a singularity of type (iii): the first iterate
of ζ that belongs to T also belongs to Ξ, so the second iterate that belongs to T is
ξ, and the subsequent iterates lie outside T . So there can be no such singularity, and
the result follows. �

Lemma 5. If L is an element of Pk
g,T then Dist(gk

T |L) ≤ (Λg/λg)
2ℓ

.

Proof. Take L ∈ P1
g,T . Let r be such that gr(L) = T . Then gr−ℓ|L is linear, and

hence Dist(gT |L) = Dist(gℓ|gr−ℓ(L)) ≤ (Λg/λg)
ℓ. This implies the assertion of the

lemma for k = 1 and k = 2. Now, if k ≥ 2 and and L ∈ Pk
g,T then, by lemma 4,

gk−2
T |L is linear, so the assertion also follows. �

Lemma 6. g is ergodic and conservative with respect to Lebesgue measure.

Proof. We will adapt the argument in the proof of lemma 3. Let X ⊂ T
1 be a forward

g-invariant set with m(X) > 0.

Figure 2. Graph of Q : (0, 1) → (0, 1).
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the result follows. �

Lemma 5. If L is an element of Pk
g,T then Dist(gk

T |L) ≤ (Λg/λg)
2`.

Proof. Take L ∈ P1
g,T . Let r be such that gr(L) = T . Then gr−`|L is linear, and

hence Dist(gT |L) = Dist(g`|gr−`(L)) ≤ (Λg/λg)
`. This implies the assertion of the

lemma for k = 1 and k = 2. Now, if k ≥ 2 and and L ∈ Pk
g,T then, by lemma 4,

gk−2
T |L is linear, so the assertion also follows. �

Lemma 6. g is ergodic and conservative with respect to Lebesgue measure.

Proof. We will adapt the argument in the proof of lemma 3. Let X ⊂ T1 be a forward
g-invariant set with m(X) > 0.

Assume that X ∩ T has zero Lebesgue measure. By a density point argument, we
can take a g-Markov interval L such that m(L∩X)/m(L) is close to 1. Any forward-
image gk(L) cannot be contained in the set W =

⋃`
j=1 f−j(T ). By the Markov
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property, gk(L) ∩ W = ∅ for 0 ≤ k ≤ order(L) − order(T ) − `. Since g equals f
outside W , gorder(L)−order(T )−`|L is linear. In particular,

Dist(gorder(L)|L) ≤ (Λg/λg)
order(T )+`

.

It follows that m(gorder(L)(L ∩ X)) is close to 1. This shows that the assumption
m(X ∩ T ) = 0 cannot be true.

Since f is conservative (lemma 3), m-almost every point in T returns to T by
forward iterates of f . It follows that the same is true for g. So the intervals in Pk

g,T

cover T m-mod 0. Moreover, these intervals have lengths at most λk`
g . Therefore we

can find L and k ≥ 2 such that L ∈ Pk
g,T and m(L ∩ X)/m(L) is arbitrarily close

to 1. By lemma 5, m(gk
T (L ∩ X))/m(T ) is arbitrarily close to 1. It follows that

m(X ∩ T )/m(T ) = 1. So gorder(T )(X ∩ T ) ⊂ X has full m-measure on the circle. �

Lemma 7. g is δ-good.

Proof. First, let us define the family I: an interval I belongs to I iff there exists
n = n(I) > ` such that fn(I) = T and fk(T ) ∩ T = ∅ for 0 ≤ k < n. Notice that:

• For every I ∈ I, gk(I) = fk(I) for 0 ≤ k ≤ n(I), and hence I is Markov for
g.

• For every I ∈ I, m(I) < m(T ) < δ.
•

⋃
I∈I I = T1 r

⋃`
j=0 f−j(T ) m-mod 0; in particular m(

⋃
I∈I I) > 1− δ.

We have to show that for each I ∈ I, gI is distorted. For this, it is enough to prove
that (where Pg,I is the collection of intervals J ⊂ I that are sent onto I by gI):

(i)
⋃

J∈Pg,I
J = I m-mod 0;

(ii) if J ∈ Pg,I and r is such that gr(J) = I then ΦI ◦ gr ◦ Φ−1
J = Q.

Indeed in this case we can take A = Φ−1
I (0, η) in definition 1.

The first property follows from lemma 6. Let us check the second one. Let {i1 <
· · · < it} = {k; 0 ≤ k ≤ r, gk(J) ⊂ g−`(T )}. Then

0 < i1 < i1 + ` < · · · < it−1 < it−1 + ` < it < it + ` < r.

We claim that git |J is linear. This is clear if t = 1. Notice that git+`(J) is an
element of PT : indeed, gr−it−`+n(I) takes git+`(J) onto T . This implies that gij+`(J)
is an element of P1+t−j

g,T . By lemma 4, git−1+`|J is linear, therefore git |J is linear, as
claimed.

Since git+`(J) is an element of PT , Φgit+`(J) ◦ g` ◦Φ−1
git (J)

= Q. It is also clear that
gr−it−`|git+`(J) is linear. It follows that ΦI ◦ gr ◦ Φ−1

J = Q, as desired. �

Step 4. Smoothening g. For X ⊂ T1 and ε > 0, let Bε(X) be the ε-neighborhood
of X. Let S be the (already described) set of singularities of g; then S is closed in T1

and m(S) = 0. In particular, m(Bα(S)) → 0 as α → 0.
Let G : R → R be the lift of g satisfying G(0) = 0. For α > 0, let

Gα(x) =
1
2α

∫ x+α

x−α

G(y)dy.

Then Gα : R → R is the lift of some C1 map gα : T1 → T1 such that for every x ∈ T1,

|g′α(x)− f ′0(x)| ≤ dlip(g, f0) + sup
y∈Bα(x)

|f ′0(y)− f ′0(x)|.
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(Recall f0 is the original C1 map.) Hence |g′α(x) − f ′0(x)| ≤ 2δ for every x ∈ T1

provided α is sufficiently small. Moreover, since g is linear on connected components
of T1 r S, gα equals g outside the α-neighborhood of S.

Unfortunately, gα does not necessarily fix 0. To remedy that, take a family of C1

diffeomorphisms φξ : T1 → T1 parameterized by ξ ∈ T1, such that

φξ(ξ) = 0, lim
ξ→0

sup
x∈T1

|φ′ξ(x)− 1| = 0, and lim
ξ→0

m{x ∈ T1; φξ(x) 6= x} = 0.

Define hα = φgα(0) ◦ gα. If α is small then hα ∈ E1
0 and dlip(hα, f0) < 3δ. Also,

limα→0 m{x ∈ T1; hα(x) 6= g(x)} = 0. By part (i) of proposition 2, hα is δ-good
provided α is small enough. This concludes the proof of proposition 3.
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