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GONALITY OF MODULAR CURVES IN CHARACTERISTIC p

Bjorn Poonen

Abstract. Let k be an algebraically closed field of characteristic p. Let X(pe; N) be

the curve parameterizing elliptic curves with full level N structure (where p - N) and
full level pe Igusa structure. By modular curve, we mean a quotient of any X(pe; N)

by any subgroup of
`
(Z/peZ)× × SL2(Z/NZ)

´
/{±1}. We prove that in any sequence

of distinct modular curves over k, the k-gonality tends to infinity. This extends earlier
work, in which the result was proved for particular sequences of modular curves, such as

X0(N) for p - N . As an application, we prove the function field analogue of a uniform

boundedness conjecture for the image of Galois on torsion of elliptic curves.

1. Introduction

1.1. Gonality. The gonality γk(X) of a curve1 X over a field k is the smallest possible
degree of a dominant rational map X 99K P1

k. For any field extension L of k, we define
also the L-gonality γL(X) of X as the gonality of XL := X ×k L. General facts about
gonality (mostly well-known) are gathered in Proposition A.1 in the appendix.

1.2. Modular curves. Our goal is to obtain lower bounds on the gonality of mod-
ular curves. By Proposition A.1(ii), it suffices to consider k = C and k = Fp (an
algebraic closure of Fp) for each prime p.

Suppose N is a positive integer not divisible by the characteristic of k. Choose
a primitive N -th root of unity ζ. Let X(N) be the smooth projective model of
the (possibly coarse) moduli space parameterizing triples (E,P,Q) where P,Q ∈ E
are a basis for E[N ] with Weil pairing eN (P,Q) = ζ. For k = C, we can describe
X(N)(C) alternatively as the quotient of an extended upper half plane by a finite-
index subgroup of PSL2(Z). More generally, any congruence subgroup G ≤ PSL2(Z)
gives rise to a curve XG over C. Abramovich proved:

Theorem 1.1 ([Abr96]). Let D = (PSL2(Z) : G). Then γC(XG) ≥ 7
800D.

Remark 1.2. As mentioned in [Abr96], combining Theorem 1.1 with the genus bound
g − 1 ≤ D/12 [Shi94, Proposition 1.40] yields

γC(XG) ≥ 21
200

(g − 1).

The proof of Theorem 1.1 makes use of a lower bound on the leading nontrivial
eigenvalue of the noneuclidean Laplacian; this bound has been improved since 1996,
so the constants 7/800 and 21/200 can be improved too. See also [BGJGP05, §4.3]
for some further results.
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In characteristic p, one has other kinds of modular curves, involving level structure
where p divides the level. If q = pe for some e ∈ Z≥1, the Igusa curve of level q is
the smooth projective model Ig(q) of the curve over Fp parameterizing pairs (E,R)
where E is an ordinary elliptic curve, and R is a generator of the kernel of the degree-
q Verschiebung isogeny Vq : E(q) → E, where E(q) is the elliptic curve obtained by
raising all the coefficients of a model of E to the q-th power. Given N not divisible
by p, and e ∈ Z≥1, we can define also a hybrid modular curve X(pe;N) over Fp

parameterizing (E,R, P, Q), with R generating kerVq and P,Q ∈ E[N ] as above.
The group GpeN := (Z/peZ)× × SL2(Z/NZ) acts on X(pe;N). The kernel of the

action is {±1} embedded diagonally in GpeN . For any subgroup G ≤ GpeN containing
{±1}, let XG be the smooth projective model of the quotient X(pe;N)/G. The GpeN

form an inverse system with inverse limit

S := Z×p ×
∏

prime ` 6= p

SL2(Z`).

The inverse image of G under S � GpeN is an open subgroup of the profinite group
S, and every open subgroup of S containing {±1} arises this way for some peN . Thus
we may define XG for any open subgroup G of S containing {±1}.

It seems likely that there is a constant c > 0 independent of p and G such that
γFp

(XG) ≥ c(S : G). We are unable to prove such a linear lower bound, even for fixed
p, but we can show that the gonality goes to infinity for fixed p. Here is our main
theorem:

Theorem 1.3. Fix a prime p. Let G1, G2, . . . be a sequence of distinct open subgroups
of S containing {±1}. Then γFp

(XGi
)→∞ as i→∞.

1.3. Outline of proof of main theorem. Many of the ideas used in the proof
of Theorem 1.3 are due to earlier authors, though we consider a broader class of
modular curves than had been treated earlier. Section 2 proves Theorem 2.5, an
inequality in the direction opposite to Proposition A.1(i): the ideas used here and
their application to the classical modular curves X0(N) can be found in [HS91],
[NS96], and [Bak99, Chapter 3]. Theorem 2.5 reduces the problem to finding lower
bounds on gonality over finite fields, and these can be obtained by counting in the
spirit of [Ogg74], which among other things determined the N for which X0(N) is
hyperelliptic. In Section 3 we find that, as in [Ogg74], modular curves of level prime
to p have too many supersingular points over Fp2 to have small gonality. In Section 4
we cite results of Schweizer [Sch05], who obtained lower bounds on the Fp-gonality of
Igusa curves directly from the geometry of the curves, instead of first getting lower
bounds on Fp-gonality by counting Fp-points. Section 5 uses Goursat’s lemma to
study the subgroups of S, so that the prime-to-p and p-power cases can be combined
to prove the general case of Theorem 1.3 in Section 6.

1.4. Application to the image of Galois. One application of results like Theo-
rem 1.3, noted already by many other authors, is to the function field analogue of
the strong uniform boundedness theorem for elliptic curves. By the work of Mazur,
Kamienny, and Merel [Mer96], for every d ∈ Z≥1, there exists a constant Nd such
that for any number field K with [K : Q] ≤ d and for any elliptic curve E over K,
the torsion subgroup E(K)tors of the finitely generated abelian group E(K) satisfies
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#E(K)tors ≤ Nd. In the function field case, we can prove a stronger result, one which
bounds the index of the image of Galois acting on torsion. If E is an ordinary elliptic
curve over a field K of characteristic p ≥ 0, and Ks is a separable closure of K, there
exists a homomorphism

ρE : Gal(Ks/K)→ Z×p ×
∏
` 6=p

GL2(Z`)

describing the Galois action on lim←− ker
(
Vpe : E(pe) → E

)
and the `-adic Tate modules

of E. (Of course, if charK = 0, there is no Z×p factor.)

Theorem 1.4. Given p ≥ 0 and d ∈ Z≥1, there exists a constant Np,d such that for
any field k of characteristic p, any field K of degree ≤ d over k(t), and any elliptic
curve E over K with j(E) not algebraic over k, the index (S : ρE(Gal(Ks/K)) ∩ S)
is at most Np,d.

Remark 1.5. Cojocaru and Hall [CH05, Theorem 1.1] give an explicit upper bound
on the set of primes ` 6= char k for which the image of ρE in GL2(Z/`Z) does not
contain SL2(Z/`Z); their bound depends on the genus and not only on the gonality
of the function field K.

Remark 1.6. In Theorem 1.4, we cannot hope to bound the index of ρE(Gal(Ks/K))
in Z×p ×

∏
` 6=p GL2(Z`) (i.e., with GL2 instead of the SL2 in the definition of S), since

the determinant of the image in GL2(Z`) gives the action of Gal(Ks/K) on roots of
unity, and this is trivial if k is algebraically closed, for example.

Theorem 1.4 will be deduced from Theorem 1.3 in Section 7.

2. Change in gonality under extension of the ground field

In this section we give an exposition of the “tower theorem” of Nguyen and Saito
[NS96, Theorem 2.1], and its implication for relating gonalities of a single curve over
different fields. We will reprove it as our Proposition 2.4, since [NS96] remains un-
published after 10 years, and since we can simplify the proof slightly. Throughout
this section, k is a perfect field.

Proposition 2.1 (Castelnuovo-Severi inequality). Let F , F1, F2 be function fields of
curves over k, of genera g, g1, g2, respectively. Suppose that Fi ⊆ F for i = 1, 2 and
the compositum of F1 and F2 in F equals F . Let di = [F : Fi] for i = 1, 2. Then

g ≤ d1g1 + d2g2 + (d1 − 1)(d2 − 1).

Proof. See [Sti93, III.10.3]. �

Let X be a curve over k. A subfield F of k(X) will be called d-controlled if there
exists e ∈ Z>0 such that [k(X) : F ] = d/e and the genus of F is ≤ (e− 1)2.

Lemma 2.2. If F is d-controlled, and f ∈ k(X) is a rational function of degree d,
then F (f) is d-controlled.
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Proof. View F (f) as the compositum of F and k(f) in k(X). Let a = [F (f) : F ].
Then [k(X) : F (f)] = d/(ae), so [F (f) : k(f)] = ae. By Proposition 2.1, the genus of
F (f) is at most

a(e− 1)2 + 0 + (a− 1)(ae− 1) = (ae− 1)2 − ae(a− 1)(e− 1) ≤ (ae− 1)2,

since a, e ≥ 1. �

Corollary 2.3. A subfield of k(X) generated over k by one or more elements of
degree d is d-controlled.

Proof. Induction on the number of elements: the case of one element is trivial (e = 1),
and Lemma 2.2 gives the inductive step. �

Proposition 2.4 (Tower theorem). Let X be a curve over a perfect field k. Let
L ⊇ k be an algebraic field extension. Let d = γL(X). Then k(X) has a d-controlled
subfield.

Proof. Enlarging L cannot increase γL(X), so we may assume L/k is Galois. Choose
f ∈ L(X) of degree d. Let FL be the subfield generated over L by the Gal(L/k)-
conjugates of f . By Corollary 2.3, FL is d-controlled as a subfield of L(X). The
action of Gal(L/k) on L(X) preserves FL, and the invariant subfield Fk := F

Gal(L/k)
L

satisfies [k(X) : Fk] = [L(X) : FL] and has the same genus as FL. Thus Fk is a
d-controlled subfield of k(X). �

Theorem 2.5. Let X be a curve over a perfect field k. Let L ⊇ k be an algebraic
field extension. Let d = γL(X). Assume that X(k) 6= ∅.

(i) If d ≤ 2, then γk(X) = d.
(ii) If d > 2, then γk(X) ≤ (d− 1)2.
(iii) In any case, γL(X) ≥

√
γk(X).

Proof.
(i) If d = 1, then X ' P1

k, so γk(X) = 1. If d = 2, then X is elliptic or
hyperelliptic; if elliptic, then γk(X) = 2; if hyperelliptic then the canonical
map is a degree-2 map to a genus-0 curve Z over k, and Z(k) 6= ∅ so Z ' P1

k,
so γk(X) = 2.

(ii) Now suppose d > 2. By Proposition 2.4 there exists e ∈ Z>0 and a rational
map π : X 99K Y of curves over k such that deg π = d/e and the genus g of
Y satisfies g ≤ (e− 1)2. We have Y (k) 6= ∅. If g = 0, then Y ' P1, so

γk(X) ≤ d/e ≤ d < (d− 1)2.

If g = 1, then e ≥ 2 and γk(Y ) = 2, so

γk(X) ≤ (d/e)γk(Y ) ≤ (d/2)2 = d < (d− 1)2.

If g ≥ 2, then γk(Y ) ≤ g by Proposition A.1(iv), so

γk(X) ≤ d

e
γk(Y ) ≤ d

e
(e− 1)2.

For e ∈ [1, d], the function d
e (e − 1)2 is maximized at e = d, and the value

there is (d− 1)2.
(iii) This follows directly from the first two parts.
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�

Remark 2.6. The hypothesis X(k) 6= ∅ is necessary: Genus-1 curves over Q have
Q-gonality 2, but their Q-gonality can be arbitrarily large.

Remark 2.7. We do not know whether the (d−1)2 in Theorem 2.5(ii) can be improved.

Remark 2.8. For N = 38, 44, 53, 61, the modular curve X0(N) is of genus 4 and has
Q-gonality 4 and Q-gonality 3 [HS99, p. 136]. In particular, Theorem 2.5(ii) is best
possible for d = 3.

3. Level prime to p

Suppose p - N . We begin by defining a twisted form X(N)′ over Fp2 of X(N). Let
M be (Z/NZ)2 made into a Gal(Fp/Fp2)-module by letting the p2-power Frobenius
automorphism act as multiplication by −p. There exists an isomorphism of Galois
modules ι :

∧2
M → µN ; fix one. Let X(N)′ be the smooth projective model of the

affine curve over Fp2 parameterizing pairs (E, φ) where E is an elliptic curve and φ
is an isomorphism E[N ] → M under which the Weil pairing corresponds to ι. Over
Fp, X(N)′ becomes isomorphic to X(N). The automorphisms of M as an abelian
group automatically commute with the Galois action, so they induce automorphisms
of X(N)′ defined over Fp2 . Thus we get SL2(Z/NZ)/{±1} ≤ AutX(N)′. Moreover,
it follows from [BGJGP05, Lemma 3.21] that all the points of X(N)′ corresponding
to supersingular elliptic curves are defined over Fp2 .

Proposition 3.1. Let p, N , and X(N)′ be as above. Let G be a subgroup of
SL2(Z/NZ)/{±1} of index D. Let X be the curve X(N)′/G. Then the Fp2-gonality
γ of X satisfies

γ ≥ p− 1
12(p2 + 1)

D.

Proof. This resembles the proof of [BGJGP05, Lemma 3.22]. By [BGJGP05,
Lemma 3.20], the number of supersingular points on X is ≥ (p−1)D/12, and these are
images of supersingular points on X(N)′ so they are defined over Fp2 ; thus #X(Fp2) ≥
(p − 1)D/12. On the other hand, #X(Fp2) ≤ γ#P1(Fp2) = γ(p2 + 1). Combine the
two previous sentences. �

Remark 3.2. Let g be the genus of X. One could also combine Proposition 3.1 with
the bound g − 1 < D/12 of [Shi94, Proposition 1.40] to give a lower bound for γ in
terms of g instead of D.

We now consider the Fp-gonality of all modular curves of level prime to p.

Corollary 3.3. Fix p. Define Φp(D) :=
√

p−1
12(p2+1)D. If G is the inverse image under

S �
∏

` 6=p SL2(Z`) of an open subgroup of index D in
∏

` 6=p SL2(Z`) containing {±1},
then γFp

(XG) ≥ Φp(D).

Proof. Combine Proposition 3.1 and Theorem 2.5(iii). �
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Remark 3.4. One could also consider Atkin-Lehner quotients of X0(N) for N prime
to p. These are generally not of the form XG. Nevertheless, gonality bounds tending
to infinity for fixed p can be obtained: first apply Proposition 3.1 to get a lower
bound on γFp2 (X0(N)), next use Proposition A.1(vi) to get a lower bound on the
Fp2-gonality of any quotient of X0(N), and finally apply Theorem 2.5. This works
since the size of the Atkin-Lehner group (some power of 2) is asymptotically small
compared to the index of the congruence subgroup Γ0(N) in PSL2(Z).

4. Level a power of p

The necessary lower bound on the gonality of Ig(pe) has been proved already by
Schweizer, in a strong form:

Theorem 4.1 ([Sch05, Lemma 1.5(d,e)]).

(i) If p ≥ 7, then p+13
24 ≤ γFp

(Ig(p)) ≤ p−1
6 .

(ii) If e > 1 and pe /∈ {25, 9, 8, 4}, then γFp
(Ig(pe)) = pγFp

(Ig(pe−1)).

In fact, [Sch05] proves many more results. The above are more than we need to
deduce the following.

Corollary 4.2. Let G be the inverse image under S � Z×p of an open subgroup of
index D in Z×p containing {±1}. Then γFp

(XG) > D/12.

Proof. First suppose that XG = Ig(pe) for some prime power pe > 2. Then D =
pe−1(p− 1)/2. For pe ≤ 25, we have D < 12, and γFp

(XG) ≥ 1 > D/12 trivially. For
p > 25, Theorem 4.1(i) gives

γFp
(Ig(p)) ≥ p + 13

24
>

p− 1
24

=
D

12
.

For pe > 25 with e > 1, we use induction on e, with Theorem 4.1(ii) giving the
inductive step.

Any other XG in Corollary 4.2 is a quotient of Ig(pe) for some pe > 2, and the
inequality for XG follows from the inequality for Ig(pe), by Proposition A.1(vi). �

Remark 4.3. An alternative approach to lower bounds on the gonality of Igusa curves
is to show that they have many points over certain finite fields, to deduce that the
gonality over these finite fields is large, and then to apply Theorem 2.5. One can no
longer use supersingular points, however, since these are totally ramified in Ig(pe)

j→
P1, and hence their number does not grow with e. Instead we could use ordinary
points: it follows from [Pac96, Corollary 2.13] and Hurwitz class number estimates
that # Ig(q)(Fq) ≥ q3/2−o(1) as q → ∞. Or one could use cusps, as in the proof
of [Sch04, Theorem 6.1], to get lower bounds on # Ig(q)(Fp), since the cusps split

completely in Ig(pe)
j→ P1 [KM85, Corollary 12.7.2]. But the lower bounds on gonality

obtained by these methods are weaker than the ones we took from [Sch05].
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5. Group theory

Here we study the open subgroups of S. Let Sp = Z×p and S 6=p =
∏

` 6=p SL2(Z`),
so S = Sp × S 6=p. Given an open subgroup G ≤ S, let Gp and G 6=p be the images of
G in Sp and S 6=p, respectively.

Lemma 5.1. Let B ∈ Z>0. Any open subgroup H of S 6=p of index ≤ B contains∏
`≤B!, 6̀=p

{1} ×
∏

`>B!, 6̀=p

SL2(Z`).

Proof. For each ` 6= p, identify SL2(Z`) with a subgroup of S 6=p in the obvious way.
It suffices to show that H contains SL2(Z`) for each ` > B! with ` 6= p.

The kernel of the action of S 6=p on the coset space S 6=p/H is a normal open subgroup
N E S 6=p contained in H. Let n := (S 6=p : N), so n ≤ B!. Now ` > B! ≥ n, so
1/n ∈ Z`, and (

1 1
0 1

)
=

(
1 1/n
0 1

)n

∈ N,

where the matrices belong to SL2(Z`) ≤ S 6=p. Similarly
(

1 0
1 1

)
∈ N . But these two

matrices generate the dense subgroup SL2(Z) of SL2(Z`), so SL2(Z`) ≤ N ≤ H. �

Lemma 5.2. For each B > 0, there are at most finitely many open subgroups G of
S such that (Sp : Gp) < B and (S 6=p : G 6=p) < B.

Proof. Fix B. By Lemma 5.1, it suffices to consider instead the situation in which
S 6=p is replaced by SL :=

∏
`∈L SL2(Z`) for a finite set L of primes 6= p: i.e., G is

now an open subgroup of Sp × SL, GL is the image of G in SL, and we are given
(Sp : Gp) < B and (SL : GL) < B.

Since Sp and S 6=p are topologically finitely generated, there are finitely many pos-
sibilities for Gp and GL. Goursat’s Lemma [Lan02, p. 75] states that each possible G
is the inverse image under

Gp ×GL �
Gp

Hp
× GL

HL

of the graph of an isomorphism
Gp

Hp
→ GL

HL

for some normal open subgroups Hp E Gp and HL E GL. By the finite generation
again, it suffices to bound (Gp : Hp) = (GL : HL). It is bounded by the supernatural
number gcd(#Sp,#SL), which is finite, since Sp has a pro-p open subgroup, while
SL has an open subgroup of order prime to p. (See [Ser02, I.§1.3] for the notion of
supernatural number.) �

6. The general case of Theorem 1.3

Proof of Theorem 1.3. Let m > 0. We will show that γFq
(XGi) > m for all but finitely

many i. Let Φp be as in Corollary 3.3. Choose B0 such that min{Φp(B), B/12} > m
for all B ≥ B0. By Lemma 5.2, all but finitely many Gi in our sequence have either
(Sp : (Gi)p) ≥ B or (S 6=p : (Gi)6=p) ≥ B. For each such i, XGi

dominates an XG with
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G as in Corollary 3.3 or Corollary 4.2; then γFp
(XG) exceeds either Φp(B) or B/12.

By Proposition A.1(vii),

γFp
(XGi

) ≥ γFp
(XG) ≥ min{Φp(B), B/12} > m.

�

7. Image of Galois

Proof of Theorem 1.4. We may assume that k is algebraically closed. By Theo-
rem 1.3, there are only finitely many subgroups G ≤ S containing {±1} such that
γFp

(XG) ≤ d. Choose Np,d such that Np,d ≥ 2(S : G) for every such G.
Let K be a field of degree ≤ d over k(t), and let E be an elliptic curve over K

with j(E) not algebraic over k (i.e., not in k). Then E is ordinary. Write K = k(C),
where C is a curve over k with γk(C) ≤ d. Define H := ρE(Gal(Ks/K)). Since k is
algebraically closed, H ⊆ S. We want (S : H) ≤ Np,d.

Suppose not. If (S : H) is infinite, then since S/H is a profinite group, we can
find a group H ′ with H ≤ H ′ ≤ S and Np,d < (S : H ′) < ∞. If (S : H) is
finite, let H ′ = H. In either case, let H ′′ be the group generated by H ′ and −1, so
Np,d/2 < (S : H ′′) < ∞. By definition of Np,d, the group H ′′ does not equal any of
the groups G, so γFp

(XH′′) > d. Equivalently, by Proposition A.1(ii), γk(XH′′) > d.
The curve XH′′ is defined as a quotient of some X(pe;N). Choosing level structure

for E over Ks gives a point in X(pe;N)(Ks), and the action of Gal(Ks/K) moves
this point within the H ′′-orbit, since H ⊆ H ′′, so the image point in XH′′(Ks) is
K-rational. This point in XH′′(K) may be viewed as a rational map C 99K XH′′ , and

this map is non-constant since the composition C 99K XH′′
j→ X(1) ' P1 corresponds

to j(E) ∈ K − k. Proposition A.1(vii) implies γk(XH′′) ≤ γk(C) ≤ d, contradicting
the previous paragraph. �

Appendix A. General facts about gonality

Proposition A.1. Let X be a curve of genus g over a field k.
(i) If L is a field extension of k, then γL(X) ≤ γk(X).
(ii) If k is algebraically closed, and L is a field extension of k, then γL(X) =

γk(X).
(iii) If g > 1, then γk(X) ≤ 2g− 2. For each g > 1, there exist k and X for which

equality holds.
(iv) If X(k) 6= ∅, then γk(X) ≤ g + 1. If X(k) 6= ∅ and g ≥ 2, then γk(X) ≤ g

(and again, equality is possible for each g).
(v) If k is algebraically closed, then γk(X) ≤ b g+3

2 c. Equality holds for a general
curve of genus g over k.

(vi) If π : X 99K Y is a dominant rational map of curves over k, then γk(X) ≤
(deg π)γk(Y ).

(vii) If π : X 99K Y is a dominant rational map of curves over k, then γk(Y ) ≤
γk(X).

Proof.
(i) Trivial.
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(ii) Given a map over L, standard specialization arguments give a map over k of
the same degree.

(iii) The canonical linear system |K| has dimension g−1 ≥ 1 and degree 2g−2. So
we may use a rational function whose divisor is the difference of two different
canonical divisors. Equality holds for the general curve over the function field
of the moduli space Mg of genus-g curves in characteristic 0, since its only
line sheaves are the powers of the canonical sheaf: this was the Franchetta
conjecture, proved in [Har83] and strengthened in [Mes87].

(iv) Let P ∈ X(k). The Riemann-Roch theorem shows that dim |(g + 1)P | ≥ 1,
and that dim |K − (g − 2)P | ≥ 1 if g − 2 ≥ 0. These linear systems have
degree g + 1 and g, respectively.

Now we prove that equality is possible, by considering the general curve
Xg,1 over the function field of the moduli space Mg,1 of genus-g curves with
one marked point in characteristic 0. We may assume g ≥ 3. The Picard
group of Xg,1 is generated by the canonical sheaf K and the class of the
marked point P : this extension of the Franchetta conjecture can be deduced
from the description of the Picard group of the moduli stack of genus-g curves
with two marked points, in the same way that the original Franchetta con-
jecture is deduced in [AC87, §4]. It remains to show that dim |aK + bP | < 1
whenever a, b ∈ Z are such that deg(aK +bP ) < g. By adding multiples of P ,
it suffices to consider the case deg(aK +bP ) = g−1. By Riemann-Roch sym-
metry, we may assume a ≥ 1. If a = 1, we have dim |K − (g − 1)P | = 0 since
the general point P is not a Weierstrass point. If a > 1, |aK−(2a−1)(g−1)P |
is empty by [Nee84, Theorem 4.2].

(v) These are consequences of Brill-Noether theory: see (1.1) and (1.5) of
[ACGH85, Chapter V] for an exposition. The first statement is proved in
arbitrary characteristic in [KL72,KL74]. The second statement is proved in
characteristic 0 in [Far66,Mar67,Mar68], and can be deduced in characteristic
p from the unramified case of [Oss05, Theorem 1.2], for instance.

(vi) Trivial.
(vii) (The ideas in the following argument go back at least to [New72, Theo-

rem VII.2].) Choose f ∈ k(X) of degree d := γk(X). Let r = deg π =
[k(X) : k(Y )]. Let P (T ) ∈ k(Y )[T ] be the characteristic polynomial of f
viewed as an element of the field extension k(X) of k(Y ). For some finite
normal extension M of k(Y ), we may write P (T ) =

∏r
i=1(T − fi) for some

fi ∈ M . As a function in M , f has degree [M : k(X)]d. The same is true of
each fi, since they are all in the same Aut(M/k(Y ))-orbit. The polar divisor
of a coefficient of P viewed in M is at most the sum of the polar divisors of
the fi, so each coefficient has degree at most r[M : k(X)]d = [M : k(Y )]d as
a function in M , and hence degree at most d as a function in k(Y ). Since
f is non-constant, at least one of these coefficients is non-constant. Thus
γk(Y ) ≤ d.

�
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