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SOME COMPLETE INVARIANT METRICS IN GRAUERT TUBES

Su-Jen Kan

Abstract. We first show the existence of the complete invariant Kähler metric − log(r2−
ρ) on the Grauert tube T rX over homogeneous X. The existence of a complete Kähler-

Einstein metric of negative Ricci curvature on T rX, when X is semi-compact, is also
proved. If X is of rank-one symmetric then near the center there exists a Kähler poten-

tial depending solely on the Monge-Ampère solution
√

ρ and the solving of the complete
Kähler-Einstein metric is reduced to the solving of an ODE. The restriction to the center

of the complete Kähler-Einstein metric is proportional to the original Riemannian metric

of X is proved. The holomorphic sectional curvatures of this Kähler-Einstein metric along
leaves of the Monge-Ampère foliation near the center is estimated.

1. Introduction.

It is usually difficult to construct an invariant complete metric. Our goal in this article
is to give two complete invariant Kähler metrics in certain kinds of Kähler manifolds,
so-called Grauert tubes, and evaluate their curvature behavior.

A Grauert tube T rX is the disk bundle of a Riemannian manifold X of radius
r
2 equipped with a complex structure which turns every leaf of the Riemannian fo-
liation into a holomorphic curve. The first invariant complete metric discussed is
−(log(r2 − ρ))ij̄dzidzj̄ where 4ρ is the length square function; another invariant metric
is the complete Kähler-Einstein metric of negative scalar curvature.

For a bounded strictly pseudoconvex domain D ⊂ Cn, Cheng-Yau have proved the
existence and uniqueness of a complete Kähler-Einstein metric g of negative scalar cur-
vature by solving a Monge-Ampère type equation. In this article we show the existence
of such Kähler-Einstein metrics in T rX provided X is semi-compact.

On studying the existence of complete Ricci-flat metrics on Grauert tubes over com-
pact rank-one symmetric spaces, Stenzel [St] has exploited the two point homogeneity
of the center to reduce the Monge-Ampère equation to an ODE.

In Grauert tubes over rank-one symmetric spaces, by using the invariance property
and the two-point homogeneity of the center, we construct a Kähler potential of the
Kähler-Einstein metric of negative scalar curvature to be a function depending solely
in ρ. The Monge-Ampère equation defining the Kähler-Einstein metric is an ODE.
Thus the solving of the complete Kähler-Einstein metric is reduced to the solving of an
explicit ODE in ρ.
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Using some curvature formula derived in [P-M] and the asymptotic expansion of ρ
near the center, we are able to evaluate the holomorphic sectional sectional curvature
of the above Kähler-Einstein metric along leaves of the Monge-Ampère foliation near
the center. We test the Grauert tubes T rRn, T rSn and Grauert tubes over the complex
projective space, over the quaternionic space and Grauert tubes over the Caley plane.
All the above examples have negative holomorphic sectional curvature along the Monge-
Ampère leaves near the center; we are not sure whether this and the boundary behavior
would imply the negativity of the holomorphic sectional curvature along the leaves in
the whole Grauert tube.

The organization of this article is the following. In §2 we prove the existence of
a complete invariant Kähler metric and calculate its holomorphic sectional curvature
along leaves of the Monge-Ampère foliation. §3 is on the existence or non-existence of
different types of complete Kähler-Einstein metrics. When the center is of rank-one, the
potential function of the complete Kähler-Einstein metric of negative scalar curvature is
a function of the variable ρ was proved in §4. In §5 we show that the defining equation
of the above Kähler-Einstein metric can be reduced to an ODE. In §6, we estimate
the holomorphic sectional curvature of this Kähler-Einstein metric along leaves of the
Monge-Ampère foliation near the center.

The author would like to thank Yen-Chi Roger Lin for simplifying the proof of Lemma
4.3.

2. Grauert tubes and complete invariant Kähler metrics.

Let (Xn, g) be a connected real-analytic Riemannian manifold. Following [G-S], there
exists a neighborhood U of X in the ambient complexified space CX and a non-negative
real-analytic smooth strictly plurisubharmonic function ρ such that X is the zero set of
ρ and (∂∂̄

√
ρ)n = 0 on U −X. Such a solution ρ is not unique; any positive multiple of

ρ still works. To make it unique, some initial conditions are needed. Guillemin-Stenzel
have chosen the initial condition as ( ∂2ρ

∂zi∂z̄j
)|X = 2(gij).

In the equivalent complexification of [L-S], the normalization adopted was
( ∂2ρ

∂zi∂z̄j
)|X = 1

2 (gij). In the later case, ρ is exactly the length square of tangent vectors.

The normalization we used in [K1] and [K-M] was ( ∂2ρ
∂zi∂z̄j

)|X = (gij). Hence the ρ chosen

in this article is actually twice of the ρ in the author’s previous articles, i.e., ( ∂2ρ
∂zi∂z̄j

)|X =
2(gij). The normalization is not important to the rigidity problems. However, it is
crucial to the solving of Kähler-Einstein potentials and the completeness of the metrics.

The adapted complex structure in U—viewed as an open subset of TX—is the unique
complex structure which turns every leaf of the Riemannian foliation into a holomorphic
curve. The strictly plurisubharmonic function ρ is just 4 times the length-squared func-
tion on each tangent vector since in [L-S] the ρ is exactly the length-squared function.

A Grauert tube of radius r over center X is defined to be T rX = { ρ < r2 } =
{(x, v) ∈ TX : x ∈ X, |v| < r

2} equipped with the adapted complex structure. Let
rmax(X) be the maximal possible radius such that the adapted complex structure could



SOME COMPLETE INVARIANT METRICS IN GRAUERT TUBES 635

be defined. It is clear, for r < rmax(X), that the set

L := {(x, v) ∈ TX : x ∈ X, |v|g =
r

2
}

consist of smooth strictly pseudoconvex points. We call L the strictly pseudoconvex
boundary of the Grauert tube T rX.

It is clear that rmax(X) > 0 when X is compact or homogeneous since the adapted
complex structure comes from local calculation of the geometry. However, the radius
might very well shrink to 0 for non-compact X.

Since ρ is strictly plurisubharmonic and
√
ρ satisfies the homogeneous complex

Monge-Ampère equation, ∂∂̄
√
ρ has rank n− 1 on T rX −X. Hence ker ∂∂̄

√
ρ defines a

smooth foliation of T rX−X by Riemannian surfaces, called the Monge-Ampère foliation
(c.f. [B-K]). The Grauert tube T rX admits a strictly plurisubharmonic defining function
ρ − r2. Therefore, the function h = − log(r2 − ρ) is strictly plurisubharmonic on T rX
which induces a Kähler metric hij̄dzidzj̄ in T rX. We would like to see the curvature
behavior of this Kähler metric, at least to see the holomorphic sectional curvature along
the leaves of the Monge-Ampère foliation. The reference for the following discussion is
[P-W]. First of all, the exhaustion requirement of the Monge-Ampère solution u in the
statement of Theorem 3.1 of [P-W] is not necessary. They didn’t use the exhaustion
property for any calculation in §3 and §4 of [P-W]. The exhaustion is only needed in the
characterization of a complex manifold possessing certain exhaustion properties stated
in Theorem 5.2 of [P-W]. Secondly, there is a typo in the statement of their Theorem
3.2. Let u satisfy the complex homogeneous Monge-Ampère equation away from the
n-dimensional zero set and h = f−1(u) where f is a real-valued function. Let Z be a
vector field such that the leaves of the Monge-Ampère foliation associated to u are the
flows of Z. The correct form for the holomorphic sectional curvature with respect to the
Kähler metric hij̄dzidzj̄ along the Monge-Ampère leave generated by the vector field Z
should be

(2.1) K(Z/‖Z‖) =
f ′′(ρ)
f ′(ρ)

{
2+

[f ′(ρ)]2

[f ′′(ρ)]3

[
f ′′′′(ρ)− 2

[f ′′′(ρ)]2

f ′′(ρ)

]
+

(
f ′(ρ)f ′′′(ρ)

[f ′′(ρ)]2
− 2

)2}
.

The typo has occurred due to a misprinting of the term ( f ′

f ′′ )2(should be ( f ′′

f ′ )2 instead)
and a mix-up of the signature on the calculation of K(Z/‖Z‖) on p. 370 of [P-W].
Express the relation as h = g(u) then (2.1) could be simplified as

(2.2) K(Z/‖Z‖) = −g
′′(u)g′′′′(u)− [g′′′(u)]2

[g′′(u)]3
.

The geodesic distance with respect to the h-metric from the level set {u = a} to the
level set {u = b} is 1√

2

∫ b

a

√
g′′(u)du.

Recall that h is defined as h = − log(r2 − ρ). That is,

(2.3) u :=
√
ρ = (r2 − e−h)

1
2

satisfies the complex homogeneous Monge-Ampère equation on T rX −X.

Let Z be the complex gradient vector field of the Kähler metric hij̄dzidzj̄ . Then,
following discussions in [P-W], the leaves of the Monge-Ampère foliation associated
to
√
ρ on T rX are the flows of Z and each leaf of the foliation is a totally geodesic

submanifold of T rX with respect to the metric hij̄dzidzj̄ .
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Proposition 2.1. Let X be a real-analytic Riemannian manifold such that the Grauert
tube T rX exists, h = − log(r2 − ρ). The holomorphic sectional curvature of the Kähler
metric hij̄dzidzj̄ along the leaves of the Monge-Ampère foliation generated by the vector
field Z is

K(Z/‖Z‖) = −3r6 + 3r4ρ+ 9r2ρ2 + ρ3

(r2 + ρ)3
.

The function −3 ≤ K(Z/‖Z‖) < −2 is increasing and it approaches −2 near the strictly
pseudoconvex boundary of the Grauert tube.

Proof. From (2.3), u = f(h) = (r2 − e−h)
1
2 . Plugging this f into the formula (2.1), the

K(Z/‖Z‖) is obtained; it is a function depending on the level set ρ alone. The strictly
pseudoconvex boundary is the set {ρ = r2} and the holomorphic sectional curvature
near the boundary is approaching −1. �

Remark.

(I). In general, the above metric −(log(r2 − ρ))ij̄ is not invariant. However, we
may construct an invariant complete metric of similar type if the index of the quo-
tient space Aut(T rM)/Aut0(T rM) is finite. Following the discussion in [K3], we know
that Aut0(T rM) = Isom0(M) and we are able to construct an G-invariant strictly
plurisubharmonic non-negative function ψ(z) =

∑k
j=1 ρ(gj(z)) in T rM where G denote

Aut(T rM) and {g1 = id, g2, . . . , gk} ∈ G, so that G/G0 = {gjG0 : j = 1, . . . , k} and
ψ(z) → ∞ as z goes to the strictly pseudoconvex boundary. In this case, the metric
−(log(r2 − ψ))ij̄ is complete and invariant in T rM .

(II). There is a mistake in the proof of Lemma 6.1 in [K3]. A correction is provided
in the argument before Proposition 3.5 of [K4]. Nevertheless, Theorem 6.4 [K3] still
holds, i.e., Aut0(T rM) = Isom0(M) generically.

We’ll restrict our attention to homogeneous Riemannian manifolds to guarantee the
existence of the Grauert tube structure and the invariance of the above h-metric. It was
shown in [K3] that over such kind of centers the automorphism group of the Grauert
tube T rX is obtained from the differential of the isometry group of X except when X
is the real-hyperbolic space and the radius r = π

2 . In other word, if X is homogeneous
and T rX is not covered by the ball, then Aut(T rX) = Isom(X) for any r < rmax(X).

Throughout this article, we assume that all the centers of Grauert tubes are homo-
geneous and Grauert tubes are not covered by the ball. We claim that the strictly
plurisubharmonic function ρ will induce a complete invariant Kähler metric in T rX.

Theorem 2.2.

Let (X, g) be a homogeneous Riemannian manifold, (hij̄) = −(log(r2 − ρ))ij̄ be a
Kähler metric in T rX, r < rmax(X) and T rX is not covered by the ball. Then

(1) (X, 2g/r2) is a totally geodesic submanifold of the Kähler manifold (T rX,h);
(2) (hij̄) is a complete invariant Kähler metric in T rX;
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(3) The holomorphic sectional curvature along each leaf of the Monge-Ampère fo-
liation is an increasing function depending on ρ, which is bounded by −2 and
approaches −2 near the strictly pseudoconvex boundary.

Proof. Since Aut(T rX) = Isom(X), the potential function − log(r2 − ρ) is biholomor-
phically invariant and hence the induced metric is invariant. Following the lines in
[C-Y],

(2.4) hij̄ =
ρij̄

r2 − ρ
+

ρiρj̄

(r2 − ρ)2
.

In local coordinates, ρ has the following asymptotic expansion near X; ρ(z) =∑
i,j 4gij(x)yiyj +h.o.t. The restrictions of ∂ρ

∂zi
and ∂ρ

∂z̄j
to the center X are zero. There-

fore, the restriction of the metric (hij̄) to X is proportional to (gij),

(2.5) hij̄ |X =
ρij̄ |X
r2

=
2gij

r2
.

The anti-biholomorphism τ sending (x, v) to (x,−v) is invariant and thus is an isometry
of the metric (hij̄). Since X is the fixed point set of τ and the induced metric is
proportional to the metric g, (X, g) is a totally geodesic submanifold of the Kähler
manifold (T rX,h).

Let dh denote the distance function on T rX induced from the metric (hij̄) and define
the metric d(p, q) := dh(p, q),∀p, q ∈ X. Then, any l ∈ Isom(X) is an isometry of (X, d)
and any Cauchy sequence in (X, d) converges. Since (hij̄) = −(log(r2−ρ))ij̄ is invariant,
the proof on the completeness of the Kobayashi metric in Theorem 5.2 of [K3] could be
transplanted here. It proves that the metric (hij̄) is complete.

The third part is just the restatement of Prop. 2.1. �

§3. Complete Kähler-Einstein metrics on Grauert tubes.

A Kähler-Einstein metric is a Kähler metric whose Ricci tensor is proportional to the
metric tensor. It is known that every Kähler metric can be locally written as fij̄ = ∂2f

∂zi∂z̄j

for some potential function f . In local coordinates the Ricci tensor associated to this
metric is

(3.1) Rij̄ = − ∂2

∂zi∂z̄j
(log(det(fkl̄))) ;

a Kähler-Einstein metric (fij̄) of Ricci curvature λ is defined by the following

(3.2)
∂2

∂zi∂z̄j
(log(det(fkl̄))) = −λ ∂2f

∂zi∂z̄j
.

There are three cases: λ > 0, λ = 0, λ < 0. A classical theorem of Myers stated
that there is no complete Kähler-Einstein metric of positive Ricci curvature on a non-
compact manifold. We rule out the possibility of having a complete Kähler-Einstein
metric of positive Ricci curvature in Grauert tubes.
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A Kähler metric with vanishing Ricci curvature is called Ricci-flat. In [St], Stenzel
has shown the existence of complete Ricci-flat metrics on Grauert tubes of infinite radius
over compact symmetric spaces of rank-one. Yau has proved in [Y] a necessary condition,
which requires that M does not admit any non-constant bounded holomorphic function,
to the existence of a complete Kähler-Einstein metric of non-negative Ricci curvature in
a Kähler manifold M . Therefore, according to Yau’s theorem, there is no non-constant
bounded holomorphic function on TX when X is of compact rank-one symmetric. In
fact, this holds for any TX.

Lemma 3.1. Let X be a real-analytic Riemannian manifold such that the adapted
complex structure exists on the whole tangent bundle TX. Then there is no non-constant
bounded holomorphic function on TX.

Proof. By the definition of the adapted complex structure, there exists holomorphic
mappings f : C → TX such that the images are Monge-Ampère foliations of TX.
Suppose there is a bounded holomorphic function h on TX. We may assume h : TX →
∆ where ∆ is the unit disc in C. Then h · f is a bounded entire function in C which
must be a constant. Hence h is a constant function. A contradiction. �

The situation is on the contrary when r < rmax(X).

Lemma 3.2. Let X be a compact Riemannian manifold, T rX be a Grauert tube of
radius r < rmax(X). Then there is no complete Ricci-flat Kähler metric on T rX.

Proof. Since a Grauert tube over a compact center admits a strictly plurisubharmonic
exhaustion function, it is a Stein manifold. T rX is a relatively compact submanifold
of the Stein manifold T rmaxX. For z, w ∈ T rX, there is a holomorphic function f
on T rmaxX such that f(z) 6= f(w). The restriction function f |T rX of f on T rX is
a bounded non-constant holomorphic function on T rX. Hence there is no complete
Ricci-flat metric on T rX for r < rmax. �

When the centers of Grauert tubes are compact symmetric spaces of rank-one and
the radii are ∞, Stenzel, in [St], has assured the existence of such complete Ricci-flat
metrics. We don’t know how the situation goes in T rmaxX, rmax < ∞ nor in Grauert
tubes over non-compact centers. The following two special cases could be seen.

Proposition 3.3. There is no complete Ricci-flat metric in T rRn, r <∞ or in T rHn,
r ≤ rmax(Hn).

Proof. Grauert tubes over the Euclidean space are simply

T rRn = {x+ iy ∈ Cn : |y|2 =
n∑

j=1

y2
j < r2}.

It is clear that

T rRn ⊂ {z1 ∈ C : y2
1 < r2} × · · · × {zn ∈ C : y2

n < r2}.
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By the Riemann Mapping Theorem, T rRn is a domain in ∆n ⊂ Cn, where ∆ represents
the unit disc in C. Define a function f(z) =

∑n
j=1 zj in ∆n. The restriction of f to

T rRn is a bounded non-constant holomorphic function in T rRn.

Recall from its construction on p. 357 of [K-M], Grauert tubes over Hn could be
expressed as

Ds = {w ∈ Cn : |w1|2 + · · ·+ |wn|2 − 1 < s|w2
1 + · · ·+ w2

n − 1|}

where s ∈ (−1, 1]. The maximal Grauert tube is D1 and 1 − w2
1 − · · · − w2

n cannot be
0 or a negative real number. We specify the branch for the square root function to be
the one with argument in [0, π), then

f(w) :=
1

1− i
√

1− w2
1 − · · · − w2

n

is a bounded non-constant holomorphic function in T rHn, r ≤ rmax(Hn). �

In [C-Y], the authors have introduced the concept of bounded geometry, a general-
ization of strictly pseudoconvexity, to facilitate the solvability of a Monge-Ampère type
equation which is necessary for the existence of Kähler-Einstein metrics. We would like
to see the existence of such kinds of Kähler-Einstein metrics in Grauert tubes of various
types.

Definition. A real-analytic Riemannian manifold (X, g) is semi-compact if there exists
a compact subset K ⊂M such that Isom(M) ·K = M .

It is clear that all compact Riemannian manifolds, homogeneous Riemannian mani-
folds and products of them are all included in this family. Furthermore, rmax(X) > 0
if X is semi-compact.

Theorem 3.4. Let Xn be a semi-compact Riemannian manifold, T rX be a Grauert
tube of radius r < rmax(X). Then there is a unique complete real-analytic Kähler-
Einstein metric of Ricci curvature −(n + 1) on T rX. The holomorphic sectional cur-
vature approaches to −1 near the strictly pseudoconvex boundary points.

Proof. The metric (hij̄) = −(log(r2 − ρ))ij̄ is a complete Isom(X)-invariant Kähler
metric in T rX. Since X is semi-compact, there exists a compact subset K ⊂ X such
that Isom(X) ·K = X. The far ends of X and tangent vectors over them would be well
under control. The other part to be taken care of is the set

{(x, v) : v ∈ TxX, |v| =
r

2
}

consisting of smooth strictly pseudoconvex boundary points. Since h is Isom(X)-
invariant and every point in X could be shifted to a point in the compact set K through
an isometry, it is clear that such a complete Kähler manifold (T rX,hij̄) is of bounded ge-
ometry as defined by Cheng and Yau. Furthermore, the function −(log(r2−ρ)) is strictly
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plurisubharmonic in the whole manifold T rX. Therefore, following the discussion of [C-
Y] on p.519, there exists a unique function u such that (−(log(r2− ρ))ij̄ + uij̄) > 0 and

(3.3) det(−(log(r2 − ρ))ij̄ + uij̄) = e(n+1)ue−(n+1) log(r2−ρ).

The metric (−(log(r2 − ρ))ij̄ + uij̄) is the unique complete Kähler-Einstein metric of
Ricci curvature −(n + 1) in T rX. Since ρ is real-analytic, the real-analyticity of the
Kähler-Einstein metric follows from Theorem 4.4 of [C-Y]. �

Remark. When X is compact, the above radius is allowed to be r = rmax(X) following
the argument of [C-Y] on exhausting a bounded pseudoconvex domain by bounded
strictly pseudoconvex domains.

The uniqueness of a Kähler-Einstein metric implies that it is invariant with respect
to any biholomorphic map. It is also clear that this metric is invariant under any anti-
biholomorphism of the Grauert tube. That is, any anti-biholomorphism is an isometry
of this metric. Therefore, the fixed point set of an anti-biholomorphism equipped with
the reduced metric is a totally geodesic submanifold. Take the natural anti-holomorphic
involution of the Grauert tube T rX, then (X,hX) is a totally geodesic submanifold of
the Kähler-Einstein manifold (T rX,h) where hX := h|X .

Lemma 3.5. Suppose there is a Kähler potential depending real-analytically on the
function ρ alone in a Grauert tube T rX. Then the restriction of the Kähler metric to
the X is a metric proportional to the original Riemannian metric (gij̄) of X.

Proof. It is clear by the real-analyticity of the potential function, the fact that
( ∂2ρ

∂zi∂z̄j
)|X = 2(gij) and that on the center ρ = 0, ∂ρ

∂zj
= 0 and ∂ρ

∂z̄j
= 0,∀j = 1, · · · , n. �

Besides the ball case, it is almost impossible to get any explicit solution from (3.2).
Stenzel is the first one who has successfully simplified the equation (3.2) on certain
Grauert tubes to an ODE for the case λ = 0 by examining the special properties
occurred from the complex homogeneous Monge-Ampère equation defining the Grauert
tubes. Later on, R. Aguilar discussed the possibility of writing the Kähler potential in
terms of the radius of the Grauert tubes. We’ll show that if X is a compact symmetric
space of rank-one, is Rn, or is Hn, then there is a potential function in T rX for the
complete Kähler-Einstein metricof Ricci −(n+ 1) depending on ρ alone. Furthermore,
the defining equation (3.2) is reduced to an ODE.

§4. Potential functions depending on the radius.

Consider the complete Kähler-Einstein metric k of Ricci −(n + 1) on the unit ball
B = {(z1, · · · , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1}. A standard potential function for k is
f = − log(1 − |z1|2 − · · · − |zn|2). The unit ball is a Grauert tube over the hyperbolic
space of radius π

2 which is half the maximal radius. In terms of projective coordinates,
the ball is biholomorphic to

M0 = {w ∈ Cn+1 : w2
1 + · · ·+ w2

n − w2
n+1 = −1,

|w1|2 + · · ·+ |wn|2 − |wn+1|2 < 0}.
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The Monge-Ampère solution
√
ρ in the model M0 was given at (7.12) of [K1](with

slightly different scaling), η := |w1|2 + · · · + |wn|2 − |wn+1|2 = − cos
√
ρ. The biholo-

morphism from M0 to Bn is given as zj = wj/wn+1, j = 1, · · · , n. The above η is then
η = |z1|2+···+|zn|2−1

|z2
1+···+z2

n−1| . The potential function

f = − log(1− |z1|2 − · · · − |zn|2)
= − log(−η)|z2

1 + · · ·+ z2
n − 1|

= − log(−η)− log |z2
1 + · · ·+ z2

n − 1|.

Since ∂∂̄ log |z2
1 + · · · + z2

n − 1| = 0, the function f and − log(−η) = − log(cos
√
ρ), a

function of ρ alone, are in the same Kähler class. Therefore, they define the same Kähler
metric.

Giving a compact Lie groupG and a closed subgroupK ofG. In [Sz], Szőke has shown
the biholomorphic equivalence of GC/KC and the tangent bundle T (G/K) equipped with
the adapted complex structure associated to the bi-invariant metric on G/K. Putting
a further restriction on the Lie groups, G is semi-simple and K is closed and connected
then it was proved by Stenzel [St] that there exists a GC-invariant non-vanishing holo-
morphic (n, 0) section ω in GC/KC = T (G/K), the Grauert tube over G/K of infinite
radius. The whole class of compact symmetric spaces of rank-one has fulfilled the above
condition. That is, there exists an G-invariant nowhere vanishing holomorphic (n, 0)
form V on the whole tangent bundle TG when G is a compact symmetric space of rank-
one. Since G is the isometry group and a Grauert tube is invariant under the action of
the isometry group of the center manifold, this V is an G-invariant nowhere vanishing
holomorphic (n, 0) form when restricted to any finite Grauert tubes T rG, r <∞.

It is not clear at all whether this kind of holomorphic (n, 0) forms exist in Grauert
tubes over generic real-analytic Riemannian manifolds. Nevertheless, it is not hard
to see that such kind of (n, 0) forms do exist in Grauert tubes of small radii over any
homogeneous Riemannian manifold. Let (X, g) be a homogeneous Riemannian manifold
and let V denote the Riemannian volume form, the unique n-form which has the value
1 at any orthonormal basis, of (X, g). It is clear that V is isometrically invariant and
is real-analytic. Let VC be the complexification of V. Since the geometric properties
of a homogeneous Riemannian manifold is controlled within a compact subset, there
exists a small ε > 0 such that VC is a well-defined nowhere vanishing Isom(X)-invariant
holomorphic (n, 0) form in T εX. By the rigidity of the Grauert tubes over homogeneous
Riemannian manifolds, VC is also biholomorphically invariant. We summarize the above
discussion as the following lemma.

Lemma 4.2. Let X be a homogeneous Riemannian manifold. Then there exists a
nowhere vanishing invariant holomorphic (n, 0) form on T εX for ε << 1.

It is interesting to see how far this ε could go. It is clear that ε could be chosen to be
any positive number when X is a compact symmetric space of rank-one. It is also clear
that this holds for the Euclidean space Rn since the invariant Riemannian volume form
is V = dx1 ∧ dx2 · · · ∧ dxn. Its complexification VC = dz1 ∧ dz2 · · · ∧ dzn is an invariant
holomorphic (n, 0) form in the Grauert tube

T rRn = {z = x+ iy ∈ Cn : |y| < r}.
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The desired (n, 0) form also exists in T rHn. Let

Hn = {x ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n − x2

n+1 = −1, xn+1 > 0}.
The quadratic form

∑n
j=1 dx

2
j − dx2

n+1 has induced on Hn a postive definite symmetric
2-tensor Lg. For r ∈ (0, π],

(4.1)
T rHn = {z ∈ Cn+1 :z2

1 + · · ·+ z2
n − z2

n+1 = −1,

|z1|2 + · · ·+ |zn|2 − |zn+1|2 < − cos r}.
The strategy is to find the Riemannian volume form in Hn and then complexify it to a
holomorphic (n, 0) form in T rHn. Consider the isometric map

(4.2) ψ : (Rn, g) → (Hn,Lg), ψ(x1, · · · , xn) = (x1, · · · , xn, (1 +
n∑

j=1

x2
j )

1
2 )

where g = (gij) is the pulled back of the metric Lg;

(4.3) gij = δij −
xixj

1 +
∑n

k=1 x
2
k

.

Lemma 4.3. det(gij) = 1
1+

∑n
k=1 x2

k
.

Proof. Let A := ( xixj

1+
∑n

k=1 x2
k
) be an n × n matrix and let {λj}n

j=1 be eigenvalues of A.
Then the eigenvalues of (gij) are {1−λj}n

j=1 since (gij) = I−A and both matrices share
the same eigenvectors. Taking out the common factors of each row and then subtracting
the j-rows by the first row. It is clear that the matrix A has rank one, i.e., A has n− 1
zero eigenvalues. Since the trace is the sum of all eigenvalues, we conclude that the
non-zero eigenvalue of A is

∑n
k=1 x2

k

1+
∑n

k=1 x2
k
. Therefore the matrix (gij) has n− 1 eigenvalues

1 and one eigenvalue

1−
∑n

k=1 x
2
k

1 +
∑n

k=1 x
2
k

=
1

1 +
∑n

k=1 x
2
k

.

Therefore, det(gij) = 1
1+

∑n
k=1 x2

k
. �

Let V denote the Riemannian volume form in the model (Rn, g) and V̂ the corre-
sponding volume form in (Hn,Lg),

(4.4)

V =
√

(det(gij))dx1 ∧ dx2 · · · ∧ dxn =
1√

1 +
∑n

k=1 x
2
k

dx1 ∧ dx2 · · · ∧ dxn.

V̂ =
1√

1 +
∑n

k=1 x
2
k

dx1 ∧ dx2 · · · ∧ dxn =
1

xn+1
dx1 ∧ dx2 · · · ∧ dxn.

Since V is isometrically invariant and ψ is an isometry, the volume form V̂ is a
nowhere vanishing isometrically invariant (n, 0) form in (Hn,Lg). That is, V̂ is an
SO+(n, 1) invariant nowhere vanishing real-analytic n-form in (Hn,Lg). The symbol
SO+(n, 1) denotes the subgroup of SO(n, 1) which keeps Hn invariant, which is the
isometry group of (Hn,Lg). Let

(4.5) V̂C =
1

zn+1
dz1 ∧ dz2 · · · ∧ dzn

be the complexification of V̂.
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Lemma 4.4. V̂C|T rHn is a nowhere vanishing invariant holomorphic (n, 0) form in the
Grauert tube T rHn for all r ∈ (0, π].

Proof. Let A ∈ SO+(n, 1), z = x + iy ∈ T rHn, the action of A on z is defined as
Az = Ax + iAy. By the characteristic property of SO(n, 1), it could be checked that
T rHn is invariant under the action of SO+(n, 1).

Since Aut(T rHn) = Isom(Hn), V̂C|T rHn is naturally an invariant holomorphic (n, 0)
form. The existence of V̂C is equivalent to the nonvanishing of zn+1. From the definition
of T rHn in (4.1), we see that

x2
1 + · · ·+ x2

n − x2
n+1 <

−1− cos r
2

≤ 0.

Hence xn+1 = =zn+1 6= 0 throughout the whole tube T rHn. �

Two crucial points in [St] to prove the existence of a complete Ricci-flat metric are the
existence of a non-vanishing globally defined holomorphic (n, 0) form and the isotropy
of the center. They are essential in simplifying (3.2) to an ODE.

Theorem 4.5. Let X be a symmetric space of rank-one, k = (kij̄) be the Kähler-
Einstein metric of Ricci −(n + 1) in the Grauert tube T rX. Then there exists an
ε > 0 and a potential function h for the metric (kij̄) such that the restriction of h to
T εX depends real-analytically on ρ. The ε could be chosen to be equal to r when X is
compact, X is the Euclidean plane Rn or the real-hyperbolic space Hn.

Proof. Let f be a Kähler potential of the Kähler-Einstein metric k, by definition

(4.6) Ric(k) = −∂∂̄ log det(kij̄) = −(n+ 1)∂∂̄f.

Let ε be as in Lemma 4.2. We take it to be r in the case r is less ε. By the rigidity of
Grauert tubes over homogeneous spaces, Aut(T εX) = Isom(X) = Aut(T rX).

Since k is an invariant metric, ∂∂̄f is invariant under the action of Aut(T rX) =
Isom(X) := I. Thus ∂∂̄f |T εX is also I-invariant. Let V be the holomorphic I-invariant
(n, 0) form in T εX constructed in Lemma 4.2, then V ∧ V̄ is a nowhere vanishing I-
invariant (n, n) form in T εX. Thus there is an I-invariant function F on T εX such
that

(4.7) (∂∂̄f |T εX)n = FV ∧ V̄.

The transitivity and the rank-one condition of I imply that I map each level set {ρ = c}
onto the level set itself. Therefore, F is I-invariant and F is a function of ρ. In local
coordinates (z1, · · · , zn), V = ζ(z)dz1 ∧ · · · ∧ dzn for a holomorphic function ζ and (4.7)
is read as

(4.8) det(
∂2f

∂zk∂z̄l
) = F (ρ)|ζ|2.
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The equation (4.6) holds as well when the defining function f is restricted to T εX.
Comparing (4.6) and (4.8), on T εX,

(4.9)
∂2f

∂zi∂z̄j
=

1
n+ 1

∂2

∂zi∂z̄j
logF (ρ)|ζ|2 =

1
n+ 1

∂2

∂zi∂z̄j
logF (ρ).

Hence h := 1
n+1 logF (ρ)is a potential of the Kähler-Einstein metric k depending solely

on ρ when restricted to T εX.

The rest of the theorem is clear since such an invariant nowhere vanishing holomorphic
(n, 0) form exists in T rX for any r ≤ rmax(X) for the listed three cases. �

5. Reduction to an ordinary differential equation.

Given a Riemannian manifold (X, g), the Riemannian density function S of X is
defined as follows. In polar coordinates with p as the origin the volume element of the
geodesic ball centered at p of radius r is given by rn−1Spdv where dv is the measure on
Sn−1. A Riemannian manifold (X, g) is harmonic if the density function S solely depends
on the geodesic distance. Standard examples are symmetric spaces of rank-one.

In [A], Aguilar has viewed the real-analytic Riemannian manifold X as the diagonal
of the product manifold X × X and then extended the real-analytic objects through
the analytic complexification to the complex manifold XC ×XC. He showed if there is
a Kähler-Einstein potential depending solely on the Monge-Ampère solution

√
ρ in the

Grauert tube T rX, then the Kähler potentials of such kind of Kähler-Einstein metrics
satisfy an ODE near the center. By the uniqueness of analytic continuation, if there
exists a potential function for a Kähler-Einstein metric in a Grauert tube which depends
solely on the Monge-Ampère solution

√
ρ then the potential function satisfies an ODE

in the whole tube.

Since a rank-one symmetric space is harmonic and homogeneous, there exists a Kähler
potential, solely depending on the length square function ρ, for the complete Kähler-
Einstein metric of negative Ricci in T rX. Such a potential function is defined by the
following ODE

ĥ′′(u)(ĥ′(u))(n−1) exp(−(n+ 1)ĥ(u)) = Cru
n−1Ŝ(u),

ĥ(r) = ∞, Cr is a non-zero constant depending on T rX and ĥ.

Let h = ĥ + log Cr

(n+1) which is also a Kähler potential of the complete Kähler-Einstein
metric of scalar curvature −(n+1). h satisfies the following ODE as described in Prop.
5.1 of [A],

(5.1) h′′(u)(h′(u))(n−1) exp(−(n+ 1)h(u)) = un−1Ŝ(u).

The derivatives are taken with respect to the Monge-Ampère solution u =
√
ρ; Ŝ(u) :=

S(−u2) where S is the density function of the respective center manifold. Hence, Ŝ is
a real-analytic function of ρ. By Theorem 4.5, h is a real-analytic function of ρ. Take
derivatives with respect to the variable ρ and rewrite (5.1) as

(5.2) (h′(ρ))n + 2ρ(h′(ρ))n−1h′′(ρ) = e(n+1)h(ρ)Ŝ(
√
ρ).
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Proposition 5.1. Let Xn be a symmetric space of rank-one and let k be the complete
Kähler-Einstein metric of Ricci curvature −(n+1) in the Grauert tube T εX = {ρ < ε2}
as described in Lemma 4.2. Then the Kähler-Einstein metric k has a unique real-
analytic Kähler potential h such that h is a solution of the equation (5.2) with the
boundary condition h(ε2) = ∞ and d2h

dρ2 (0) > 0. The ε could be chosen to be any number
less than rmax(X) when X is compact, X is Rn or Hn.

Proof. Since the Kähler-Einstein metric comes from the perturbation of the defining
function − log(ε2 − ρ), the boundary condition h(ε2) = ∞ follows. Since h is a real-
analytic function of ρ, the condition h′′(0) > 0 follows from Lemma 3.5. Denote u =

√
ρ.

Suppose f(u) and g(u) are potential functions of a complete Kähler-Einstein metric of
Ricci −(n+ 1) in the Grauert tube T εX. Let F (u) = f(u)− g(u), by the uniqueness of
the complete Kähler-Einstein metric of negative scalar curvature,

(5.3) ∂∂̄F (u) = 0.

Away from the set {u = 0}, using the fact that (∂∂̄u)n = 0,

(∂∂̄F (u))n = nF ′′(u)(F ′(u))n−1∂u ∧ ∂̄u ∧ (∂∂̄u)n−1.

The non-vanishing of ∂u∧ ∂̄u∧(∂∂̄u)n−1 implies F ′′(u)(F ′(u))n−1 = 0 which shows that
F (u) = cu + d for some constants c and d. The condition (5.3) will force c to be zero
since ∂∂̄u is non-vanishing. However if d 6= 0, g(u) and f(u) = g(u) + d can’t both be
solutions of (5.1) unless the density function is identically zero which is a contradiction.
Therefore, d = 0 and the uniqueness follows. �

Remark. For n = 1, T rX, by Riemannian mapping theorem, is biholomorphic to the
unit disc in C and the equation (5.1) descends to h′′e−2h = 1 which has a simple solution
h(ρ) = − log(r2 − ρ) on T rX. There is a simple solution h = − log cos(

√
ρ) for (5.1)

at r = π
2 , which coincides with the example in §4 since T

π
2Hn is biholomorphic to the

unit ball.

6. Curvature behavior near the center.

As a Grauert tube is foliated by Monge-Ampère foliations, it is interesting to see
how curvatures behave along the Monge-Ampère leaves and near the center. In [K2],
the author has proved that the rigidity of the Grauert tube holds if the Kähler-Einstein
metric is negatively curved, i.e., if all sectional curvatures of the Kähler-Einstein metric
are negative everywhere, the Grauert tube has a unique center. It is a naive guessing
that this negativity occurs for all Grauert tubes. We will show the sectional curvature
is proportional to the sectional curvature of the original Riemannian metric, hence it
could be of any signature.

Lemma 6.1. Let (X, g) be a rank-one symmetric space, k be the complete Kähler-
Einstein metric of Ricci −(n + 1) in T εX. Then sectional curvatures of k on X are
proportional to sectional curvatures of g on X.

Proof. Since (X, k|X) is totally geodesic in (T rX, k), the curvature behavior of the
metric k on X is the same as the metric k|X on X. By Prop. 5.1 and Lemma 3.5, k|X
is proportional to the Riemannian metric g. The result follows. �
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Lemma 6.2. Let h(u) be a potential function of a Kähler metric in a Grauert tube
T rX with an asymptotic expansion h(u) = a+ bu2 + cu4 +O(6), b 6= 0, near the center
X. Then, the holomorphic sectional curvature K along the Monge-Ampère leaves near
the center of the tube is −6c

b2 .

Proof. A direct calculation from (2.2) shows that near the center the holomorphic sec-
tional curvature along the leaves is

(h′′′)2 − h′′h′′′′

(h′′)3
= −6

c(b− 6cu2)
(b+ 6cu2)3

which goes to −6c
b2 as u→ 0. �

We are able to estimate the holomorphic sectional curvature for a couple of cases.

Proposition 6.3. Let X be the Euclidean space or the unit sphere, k be the complete
Kähler-Einstein metric on the Grauert tube T rX of Ricci curvature −(n + 1). Then,
near the center, k has negative holomorphic sectional curvature along the Monge-Ampère
leaves.

Proof. Let h(u) denote the unique real-analytic potential function of the Kähler-Einstein
metric k described in Proposition 5.1. h(u) has to satisfy the ordinary differential
equation (5.1) with suitable Ŝ(u). As h is a real–analytic function of ρ, we may write
the asymptotic expansion of h near the center as

h(u) = a+ bu2 + cu4 +O(6).

By lemmas 3.5 and 6.1, b > 0.

Comparing the asymptotic expansions of the both sides of (5.1), we have

Ŝ(u) = 1, c =
b2(n+ 1)
2n+ 4

for the flat case and

Ŝ(u) = (
sinh u

u
)(n−1), c =

(n− 1)b+ 6(n+ 1)b2

6(4 + 2n)

for the sphere case. Both c are positive, by Lemma 6.2 the holomorphic sectional
curvatures are negative. �

When X = Hn the corresponding density function and c are

Ŝ(u) = (
sin u

u
)n−1, c =

−(n− 1)b+ 6(n+ 1)b2

6(4 + 2n)
.

This c is positive only if b > n−1
6(n+1) . On the other hand b = 1

2 exp n+1
n a, the size of b is

controlled by a. If a is very negative then b will not satisfy the inequality b > n−1
6(n+1) .



SOME COMPLETE INVARIANT METRICS IN GRAUERT TUBES 647

It seems the boundary condition for h at u = ε doesn’t give much information about
what happens at u = 0.

The situation is quite simple for other compact rank-one symmetric spaces. For the
complex projective space

Ŝ(u) = 2n−1un−1cosh
u

2
(sinh

u

2
)n−1, c =

(n+ 2)b+ 24(n+ 1)b2

24(4 + 2n)
;

for the quaternionic projective space

Ŝ(u) = 2n−1un−1(cosh
u

2
)3(sinh

u

2
)n−1, c =

(n+ 8)b+ 24(n+ 1)b2

24(4 + 2n)
;

for the Caley plane

Ŝ(u) = 2n−1un−1(cosh
u

2
)7(sinh

u

2
)n−1, c =

(n+ 20)b+ 24(n+ 1)b2

24(4 + 2n)
.

Since b is positive, c > 0 for all the above three cases. The holomorphic sectional
curvatures of the complete Kähler-Einstein metric of Ricci −(n+1) of the Grauert tube
T rX along the Monge-Ampère leaves near the center is negative when X is the complex
projective space, the quaternionic projective space or the Caley plane.

References

[A] R. Aguilar, Pseudo-Riemannian metrics, Kähler-Einstein metrics on Grauert tubes and har-
monic Riemannian manifolds, Q. J. Math. 51, no. 1 (2000), 1-17.

[B-K] E. Bedford and M. Kalka, Foliations and complex Monge-Ampère equation, Comm. Pure
Appl. Math. 30 (1977), 543-571.

[C-Y] S.-Y. Cheng and S.-T. Yau, On the existence of a complete Kähler metric on non-compact

complex manifolds and the regularity of Fefferman’s equation, Comm. Pure. Appl. Math. 33

(1980), 507-544.

[G-S] V. Guillemin & M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation,
J.Diff. Geom. 34 (1991), 561-570.

[K1] S.-J. Kan, The asymptotic expansion of a CR invariant and Grauert tubes, Math. Ann. 304

(1996), 63-92.

[K2] , On the rigidity of non-positively curved Grauert tubes, Math. Z. 229 (1998), 349-363.

[K3] , On rigidity of Grauert tubes over homogeneous Riemannian manifolds, J. reine

angew. Math. 577 (2004), 213-233.

[K4] , Complete hyperbolic Stein manifolds with prescribed automorphism groups, Com-

ment. Math. Helv. 82 No. 2 (2007), 371-383.

[K-M] S.-J. Kan and D. Ma, On rigidity of Grauert tubes over Riemannian manifolds of constant
curvature, Math. Z. 239 (2002), 353-363.
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