
Math. Res. Lett. 14 (2007), no. 4, 597–613 c© International Press 2007

A NEW APPROACH TO MINIMISING BINARY QUARTICS
AND TERNARY CUBICS

Tom Fisher

Abstract. We prove a theorem on the minimisation of genus one curves, generalising

work of Birch and Swinnerton-Dyer [3], Cremona and Serf [5], [13] and Cremona and
Stoll [6], [7]. The advantage of our approach over earlier methods is that we do not need

to treat residue characteristics 2 and 3 as special cases.

1. Invariants

Let C be a smooth curve of genus one defined over a field K, and let D be a
K-rational divisor on C of degree n ≥ 2. We write [D] for the linear equivalence class
of D.

1.1. Binary quartics. If n = 2 then we pick x, y ∈ K(C) such that L(D) and L(2D)
have bases 1, x and 1, x, x2, y. The 9 elements 1, x, x2, y, x3, xy, x4, x2y, y2 in the 8
dimensional vector space L(4D) satisfy a linear dependence relation. Furthermore
the coefficient of y2 is non-zero. We deduce that the pair (C, [D]) has an equation

(1) y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e.

If char (K) 6= 2 then we may complete the square so that α0 = α1 = α2 = 0. The
classical invariants of the binary quartic

f(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4

are
I = 12ae− 3bd+ c2,
J = 72ace− 27ad2 − 27b2e+ 9bcd− 2c3.

We define the invariants c4 and c6 of (1) by taking c4 = 24I and c6 = 25J in the case
α0 = α1 = α2 = 0. We then extend to the general case by demanding that c4 and c6
are preserved by all changes of co-ordinates of the form y 7→ y + r0x

2 + r1x+ r2. In
addition we put ∆ = (c34 − c26)/1728. We find that c4, c6 and ∆ are primitive integer
coefficient polynomials in the indeterminates α0, α1, α2, a, b, c, d, e. This enables us to
define the invariants c4, c6 and ∆ in arbitrary characteristic. Moreover if we put

(α0, α1, α2, a, b, c, d, e) = (0, a1, a3, 0, 1, a2, a4, a6)

then our expressions for c4, c6 and ∆ reduce to the standard formulae for an elliptic
curve in Weierstrass form (recalled in §4.1). It is convenient to rewrite (1) as a
homogeneous equation of degree 4, where x, z, y are assigned degrees 1, 1, 2.

(2) y2 + (α0x
2 + α1xz + α2z

2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4.

By abuse of terminology we call (2) a binary quartic.
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1.2. Ternary cubics. If n = 3 then we pick a basis x, y, z for L(D). Writing down
10 elements in the 9 dimensional vector space L(3D) we deduce that (C, [D]) is defined
by a ternary cubic

F (x, y, z) = ax3 + by3 + cz3 + a2x
2y + a3x

2z
+ b1xy

2 + b3y
2z + c1xz

2 + c2yz
2 +mxyz.

The Hessian of the ternary cubic F (x1, x2, x3) is

H(x1, x2, x3) = −1/2× det
(

∂2F

∂xi∂xj

)
i,j=1,2,3

.

The factor −1/2, although not standard, is a convenient choice. The Hessian of any
linear combination of F and H again belongs to the pencil spanned by F and H.
Following [8], [12], the invariants c4 and c6 are determined by the relation

H(λF + µH) = 3(c4λ2µ+ 2c6λµ2 + c24µ
3)F + (λ3 − 3c4λµ2 − 2c6µ3)H.

In addition we put ∆ = (c34 − c26)/1728. We find that c4, c6 and ∆ are primitive
integer coefficient polynomials in the indeterminates a, b, c, a2, a3, b1, b3, c1, c2,m. This
enables us to define the invariants c4, c6 and ∆ in arbitrary characteristic. Moreover
if we put

(a, b, c, a2, a3, b1, b3, c1, c2,m) = (−1, 0,−a6, 0,−a2, 0, 1,−a4, a3, a1)

then our expressions for c4, c6 and ∆ reduce to the standard formulae for an elliptic
curve in Weierstrass form (recalled in §4.1).

1.3. Computing the Jacobian. It was observed by Weil [16] that the invariants of
a binary quartic may be used to compute its Jacobian. The generalisation to ternary
cubics may be found in [1].

Theorem 1.1. Let c4, c6 and ∆ be the invariants of a binary quartic, respectively a
ternary cubic.
(a) The binary quartic, respectively ternary cubic, defines a smooth curve of genus
one if and only if ∆ 6= 0.
(b) If char (K) 6= 2, 3 then the Jacobian has Weierstrass equation

(3) y2 = x3 − 27c4x− 54c6.

Notice that (3) has invariants 64c4, 66c6 and 612∆. As pointed out in [2] these
formulae for the Jacobian can be improved by minimising at 2 and 3. We give details
in Appendix A.

1.4. Equivalence of models.

Definition 1.2. We say that a pair of binary quartics, respectively ternary cubics,
are equivalent if they arise from the same pair (C, [D]).

More concretely, binary quartics are equivalent if they are related by making a
substitution of the form

x = αx′ + βz′

z = γx′ + δz′

y = µ−1y′ + r0x
′2 + r1x

′z′ + r2z
′2
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and then multiplying through by µ2. This transformation is denoted [µ, r, A] where
r = (r0, r1, r2) and

A =
(
α β
γ δ

)
.

Similarly, ternary cubics are equivalent if they are related by making a substitution
of the form xy

z

 = A

x′y′
z′


and then multiplying through by µ. This transformation is denoted [µ,A]. In both
cases it is to be understood that µdetA 6= 0. Putting λ = µdetA we find (again in
both cases) that c′4 = λ4c4, c′6 = λ6c6 and ∆′ = λ12∆.

2. Statement of global results

Let E be an elliptic curve defined over a number field K with ring of integers OK

and class number hK . We write [n] for the multiplication-by-n map on E.

Definition 2.1. An n-covering of E is a pair (C, π) where C is smooth curve of
genus one defined over K and π : C → E is a morphism defined over K, such that
π = [n] ◦ψ for some isomorphism ψ : C ∼=E defined over K. By abuse of notation we
usually refer to the n-covering as C rather than (C, π).

Giving C the structure of n-covering of its Jacobian is equivalent to specifying a
K-rational divisor class [D] on C of degree n. Indeed given an n-covering π : C → E
with π = [n] ◦ ψ we put D = ψ∗(n.0E). Conversely given D we define π : C →
Pic0 C = E;P 7→ [n.P − D]. We say that an n-covering has trivial obstruction if
it is possible to represent the given divisor class by a K-rational divisor D. In the
cases n = 2, 3 this is the condition for the n-covering to have an equation of the form
described in §1.

We are ready to state our main theorem.

Theorem 2.2. Let E be an elliptic curve defined over a number field K, with OK-
coefficient Weierstrass equation

(4) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(i) Assume (hK , 2) = 1. If C is an everywhere locally soluble 2-covering of E, then
C has an OK-coefficient equation

(5) y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e

with the same invariants c4, c6 and ∆ as (4).
(ii) Assume (hK , 3) = 1. If C is an everywhere locally soluble 3-covering of E, then
C has an OK-coefficient equation

ax3 + by3 + cz3 + a2x
2y + a3x

2z + b1xy
2 + b3y

2z + c1xz
2 + c2yz

2 +mxyz = 0

with the same invariants c4, c6 and ∆ as (4).



600 TOM FISHER

We give examples in Appendix B to show that the hypothesis on the class number
cannot be removed.

Theorem 2.2 is most fruitfully applied in conjunction with the standard techniques
for computing local and (where possible) global minimal Weierstrass equations. In
the case K = Q we refer to [4, §3.2]. For K a general number field one should consult
the original papers of Kraus, Connell, Laska and Tate cited there. Tate’s algorithm,
which provides more detailed local information, is also described in [15]. A discussion
of the passage from local to global in this context may be found in [14, Chapter
VIII,§8].

Remark 2.3. By completing the square, Theorem 2.2(i) implies a weaker version
where α0 = α1 = α2 = 0, but the binary quartic (5) has invariants 24c4, 26c6, 212∆
for c4, c6, ∆ the invariants of (4).

Remark 2.4. Theorem 2.2 constructs a model for C with exactly the same invariants
as (4). If our models for C and E have invariants c′4, c

′
6, ∆′ and c4, c6, ∆ respectively,

then an apparently weaker version would give that ∆′ divides ∆ in OK . In fact the
full result may be deduced from this. Indeed Theorem 1.1 gives c′4 = λ4c4, c′6 = λ6c6
and ∆′ = λ12∆ for some λ ∈ K×. So once we know λ−1 ∈ OK , we can reduce to the
case λ = 1 by rescaling, say, the x co-ordinate of our model for C.

We recall a standard definition.

Definition 2.5. Let E be an elliptic curve defined over a number field K. The
minimal discriminant DE/K is the integral ideal of K generated by ∆(a1, a2, a3, a4, a6)
as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

ranges over all OK-coefficient Weierstrass equations for E.

The minimal discriminant DC/K of a 2-covering or 3-covering C with trivial ob-
struction is defined in an entirely analogous manner. The proof of Theorem 2.2 also
gives

Theorem 2.6. Let E be an elliptic curve defined over a number field K. Let C be a
2-covering or 3-covering of E with trivial obstruction.
(i) There is an integral ideal l of K such that DC/K = l12DE/K .
(ii) If C is everywhere locally soluble then l = 1.

Remark 2.7. We suspect it may be possible to give a general definition of the minimal
discriminant of a genus one curve C that agrees with our definitions in the case C is
equipped with a K-rational divisor D of degree n = 1, 2 or 3. Theorem 2.6(ii) would
then be a special case of the statement that if two genus one curves are everywhere
locally isomorphic then they have the same minimal discriminant.

In order to compare Theorem 2.2 with earlier work on minimisation we combine it
with Kraus’ conditions for the existence of a Weierstrass equation with given invari-
ants. In the case K = Q these state:

Theorem 2.8. Let c4, c6 be integers such that ∆ = (c34 − c26)/1728 is a non-zero
integer. Then there exists an integer coefficient Weierstrass equation with invariants
c4 and c6, if and only if

(i) ord3(c6) 6= 2, and
(ii) either c6 ≡ −1 (mod 4), or ord2(c4) ≥ 4 and c6 ≡ 0, 8 (mod 32).
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Proof. This is [9, Proposition 2]. In fact the necessity of these conditions is immediate
from Tate’s formulaire, i.e. (8) and (9). �

Theorem 2.8 may be used to determine whether a given integer coefficient Weier-
strass equation is minimal. Indeed a Weierstrass equation with invariants c4 and c6
is minimal at p if and only if p−4c4 and p−6c6 fail to satisfy Kraus’ conditions.

Definition 2.9. An integer coefficient binary quartic, respectively ternary cubic, with
invariants c4 and c6 is p-reducible if it is equivalent to an integer coefficient binary
quartic, respectively ternary cubic, with invariants p−4c4 and p−6c6.

Theorems 2.6 and 2.8 have the following corollary.

Corollary 2.10. Let c4 and c6 be integers such that ∆ = (c34 − c26)/1728 is a non-
zero integer. The following conditions are necessary and sufficient for every integer
coefficient p-adically soluble binary quartic, respectively ternary cubic, with invariants
c4 and c6 to be p-reducible.

p ≥ 5 p4 |c4 and p6 |c6,
p = 3 either 35 |c4 and 39 |c6, or 34 ||c4, 36 ||c6 and 312 |∆,
p = 2 either 28 |c4, 29 |c6 and 2−9c6 ≡ 0, 1 (mod 4),

or 24 ||c4, 26 ||c6, 212 |∆ and 2−6c6 ≡ −1 (mod 4).

The analogue of Corollary 2.10 for binary quartics without the cross terms (i.e.
putting α0 = α1 = α2 = 0) is established by Cremona and Stoll [6, Appendix A]
based on earlier work of Birch and Swinnerton-Dyer [3, Lemmas 3,4,5], [4, Proposition
3.6.1]. Their result is identical to ours at all primes p 6= 2, but is changed beyond
recognition at p = 2. The method of Birch and Swinnerton-Dyer has been extended to
quadratic number fields by Cremona and Serf [5], [13]. In the case of ternary cubics,
Corollary 2.10 is a theorem of Cremona and Stoll [7].

The method of Birch and Swinnerton-Dyer, and its generalisations cited above, re-
quire an analysis of a large number of tedious (yet elementary) special cases, especially
when dealing with the primes p = 2, 3. As observed by Cremona and Stoll [6], [7] the
results for p ≥ 5 generalise immediately to an arbitrary number field. In contrast for
p = 2, 3 it seems necessary to treat each possible value of the absolute ramification
index as a new special case.

Our proof of Theorem 2.2 avoids all these special cases, and so gives a more general
result. Nonetheless the old approach retains the following advantages:

• It gives efficient algorithms for minimising binary quartics and ternary cubics.
This is useful in the number field method for 2-descent and 3-descent, where
we obtain binary quartics and ternary cubics that initially have very large
coefficients. An algorithm for minimising based on the proof of Theorem 2.2
would need to begin by finding explicit local solutions. It is therefore unlikely
to be more efficient than the existing methods.

• In the invariant theory method for 2-descent (introduced in [3] and improved
by Cremona in his program mwrank) it is more efficient to search for binary
quartics without the cross terms. See [6] for a detailed discussion.

• As pointed out by Cremona and Stoll [6], [7] the hypothesis of local solubility
may be weakened to that of solubility over an unramified extension of each
local field. It is not clear how to match this result using our methods.
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It has long been known that Theorem 2.2 is false if one does not make the hypothesis
that C is everywhere locally soluble. Our favourite examples are given by the curves

(6)
Ca : y2 = ax4 + a3 ∆ = 212a12

Ca : x3 + ay3 + a2z3 = 0 ∆ = −39a12.

One finds that for p ≥ 5 a prime, Cp has Jacobian C1, yet Cp is not p-reducible.
Indeed if Cp were p-reducible then one would obtain a model with good reduction at
p. It would follow that Cp(Qp) 6= ∅ which, upon inspection of (6), is plainly not the
case.

It is easy to show that the converse of Theorem 2.6(ii) is false. For example
the binary quartic y2 = 3x4 + x2z2 − z4 has discriminant ∆ = 28.3.132 yet is 2-
adically insoluble. Similarly the ternary cubic x3 + 2y3 + 5z3 = 0 has discriminant
∆ = −24.39.54 yet is 3-adically insoluble.

The following is an overview of the proofs of Theorems 2.2 and 2.6. First we reduce
to a local statement, using strong approximation in the case of Theorem 2.2. Then
we use our hypothesis of local solubility to rewrite our binary quartics and ternary
cubics as equations of a particularly simple form. These special equations, which
we call generalised Weierstrass equations, are introduced in §4.2. Our proofs are
completed by enacting a subtle variant of Tate’s algorithm to minimise generalised
Weierstrass equations.

In a sequel to this paper we plan to generalise Theorem 2.2 to n-coverings of elliptic
curves. The proof will be by induction on n (in the local setting) starting from the
case n = 3 considered here. The case n = 4 should be compared with Womack’s
algorithm [17] for minimising a pair of homogeneous quadratics in 4 variables.

It is clear that the models obtained in Theorem 2.2 are far from unique. An
interesting problem would be to determine the number of integral equivalence classes
of solutions. Here we say that two models are integrally equivalent if, in the notation
of §1.4, they are related by an integer coefficient transformation with λ a unit.

3. The passage from local to global

Let K be a finite extension of Qp with ring of integers OK . Theorem 2.2 has the
following local analogue.

Theorem 3.1. Let E be an elliptic curve defined over K. Let c4, c6 and ∆ be the
invariants of an OK-coefficient Weierstrass equation for E. Then
(i) Every soluble 2-covering C of E has an OK-coefficient equation

y2 + (α0x
2 + α1x+ α2)y = ax4 + bx3 + cx2 + dx+ e

with invariants c4, c6 and ∆.
(ii) Every soluble 3-covering C of E has an OK-coefficient equation

ax3 + by3 + cz3 + a2x
2y + a3x

2z + b1xy
2 + b3y

2z + c1xz
2 + c2yz

2 +mxyz = 0

with invariants c4, c6 and ∆.

We give the proof of Theorem 3.1 in §4. First we show how to deduce Theorems 2.2
and 2.6 from Theorem 3.1.

Proof of Theorem 2.6: Let n = 2 or 3. We recall that E is an elliptic curve defined
over a number field K, and that C is an n-covering of E with trivial obstruction. We
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fix a prime p of K and put γp = ordp(DC/K), εp = ordp(DE/K). We aim to show
(i) γp = εp + 12m for some integer m ≥ 0, and
(ii) if C(Kp) 6= ∅ then m = 0.

We choose an OK-coefficient model for C whose discriminant ∆C satisfies ordp(∆C) =
γp, and an OK-coefficient Weierstrass equation for E whose discriminant ∆E satisfies
ordp(∆E) = εp.

To prove (i) we use the formulae of Appendix A to construct an OK-coefficient
model for E with discriminant ∆C . (Notice that for p - 6 it suffices to use The-
orem 1.1.) Thus εp ≤ γp. Moreover ∆C = λ12∆E for some λ ∈ K×. Putting
m = ordp(λ) gives γp = εp + 12m as required.

To prove (ii) we use Theorem 3.1 to construct an Op-coefficient model for C with
discriminant ∆E . In the notation of §1.4 this new model is related to the old by a
transformation [µp, rp, Ap], respectively [µp, Ap]. For t ∈ K×

p the following transfor-
mations are identical:

(7)
n = 2 [µp, rp, Ap] = [t−2µp, t

2rp, tAp]
n = 3 [µp, Ap] = [t−3µp, tAp].

We may therefore assume that rp ∈ O3
p and Ap ∈ Matn(Op). We approximate rp

by a vector r ∈ O3
K and Ap by a matrix A ∈ Matn(OK). Since we can find a finite

set of primes, not containing p, that generates the class group, there exists µ ∈ K×

with ordp(µ) = ordp(µp) yet ordp′(µ) ≥ 0 for all p′ 6= p. Finally the transformation
[µ, r, A], respectively [µ,A], gives a newOK-coefficient model for C whose discriminant
∆ satisfies ordp(∆) = εp. Thus γp ≤ εp as required. �

Before proceeding with the proof of Theorem 2.2 we need two lemmas on strong
approximation. For A = (aij) ∈ Matn(Kp) we put ||A||p = max1≤i,j≤n ||aij ||p.

Lemma 3.2. Let S be a finite set of primes of K. Suppose we are given Ap ∈ SLn(Op)
for each prime p ∈ S and let ε > 0. Then there exists A ∈ SLn(OK) such that
||A−Ap||p < ε for all p ∈ S.

Proof. Let Eij be the n × n matrix with entry 1 in the (i, j)-th place, and zeros
elsewhere. Using the identities(

1 1
0 1

) (
1 0
−1 1

) (
1 1
0 1

)
=

(
0 1
−1 0

)
and (

1 0
−α−1 1

) (
1 α− 1
0 1

) (
1 0
1 1

) (
1 α−1 − 1
0 1

)
=

(
α 0
0 α−1

)
one can show (via row and column operations) that SLn(Op) is generated by the
matrices In+λEij for λ ∈ Op and i 6= j. So it suffices to treat the case Ap = In+λpEij

with λp = 0 for all but one prime p in S. We are done by the Chinese Remainder
Theorem. �

Lemma 3.3. Let S be a finite set of primes of K and let δ ∈ OK . Suppose we are
given Ap ∈ Matn(Op) with det(Ap) = δ for each prime p ∈ S and let ε > 0. Then
there exists A ∈ Matn(OK) with det(A) = δ such that ||A−Ap||p < ε for all p ∈ S.
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Proof. By Lemma 3.2 it suffices to treat the case where each local matrix Ap is
diagonal. We aim to construct a matrix A with the required properties, say A = (aij).
Let b ∈ OK be an S-unit which is p-adically small for all p ∈ S. (This is possible by
the finiteness of the class group.) We set ai i+1 = b for all 1 ≤ i ≤ n− 1. We then use
the Chinese Remainder Theorem to choose diagonal entries for our matrix A that are
p-adically close to the diagonal entries of Ap for all p ∈ S. We put

an1 = (−1)n(
∏n

i=1 aii − δ)/bn−1.

Setting all remaining entries zero gives the required matrix A. �

Proof of Theorem 2.2: Let n = 2 or 3. We recall that E is an elliptic curve
defined over a number field K, and C is an everywhere locally soluble n-covering of
E. In particular C has trivial obstruction everywhere locally. It is shown in [11] that
the obstruction takes values in the Brauer group. So by global class field theory, C has
trivial obstruction. (This is the only stage in the proof where we use the hypothesis
of local solubility at the infinite places. This is only an issue for n = 2.) Thus C is
represented by a binary quartic or a ternary cubic. We use the transformations of
§1.4 to find such a model with OK-coefficients.

Let ∆C and ∆E be the discriminants of our models for C and E. By Theorem 1.1
we have ∆C = λ12∆E for some λ ∈ K×. Let S be a finite set of primes containing a set
of generators for the class group, and all primes p with ordp(λ) 6= 0. Theorem 3.1 tells
us that for each p ∈ S our model for C is equivalent to an Op-coefficient model with
discriminant ∆E . In the notation of §1.4 the equivalence is given by a transformation
[µp, rp, Ap], respectively [µp, Ap], with µp ∈ K×

p , rp ∈ K3
p and Ap ∈ GLn(Kp). We

are free to make adjustments of the form (7). Not only does this allow us to assume
that rp ∈ O3

p and Ap ∈ Matn(Op) for all p ∈ S, but also, since (hK , n) = 1, we can
find µ ∈ K× with

ordp(µ) =
{

ordp(µp) for p ∈ S,
0 for p 6∈ S.

Our local transformations are now of the form [µ, rp, Ap], respectively [µ,Ap] with
rp ∈ O3

p and Ap ∈ Matn(Op).
Let λp = µdetAp. Since ∆C = λ12

p ∆E it follows that λ/λp is a root of unity.
Making adjustments to rp and Ap (say, by rescaling the x co-ordinate on our local
model) we may suppose that λ = λp for all p ∈ S. We put δ = λµ−1. Then
detAp = δ for all p ∈ S, and moreover δ ∈ OK . We use Lemma 3.3 to construct a
matrix A ∈ Matn(OK) with determinant δ that is p-adically close to Ap for all p ∈ S.
In the case n = 2 we also approximate the rp for p ∈ S by a vector r ∈ O3

K . Finally
the transformation [µ, r, A], respectively [µ,A], gives a new OK-coefficient model for
C with discriminant ∆E . We are done by Remark 2.4. �

4. Proofs in the local case

We work over a local field K, complete with respect to a discrete valuation ord :
K× → Z. We write R for the ring of integers and π for a uniformiser. The residue
field is k = R/πR. We make no restriction on the characteristic of k (or for that
matter K).
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4.1. Weierstrass equations. We recall some standard facts about elliptic curves
and Weierstrass equations, many of which we have been using already. The formulae
are taken from [14, Chapter III].

Definition 4.1. An elliptic curve (E, 0) defined over K is a smooth curve of genus
one defined over K equipped with a rational point 0 ∈ E(K).

We choose x, y ∈ K(E) such that L(2.0) and L(3.0) have bases 1, x and 1, x, y.
Then the 7 elements 1, x, y, x2, xy, x3, y2 in the 6 dimensional vector space L(6.0)
satisfy a linear dependence relation. Furthermore the coefficients of x3 and y2 are
non-zero. Rescaling x and y we deduce that (E, 0) has a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Following Tate’s formulaire we define

(8)

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and

(9)
c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

As noted in §1 these formulae for c4, c6 and ∆ may also be obtained by specialising
the invariants of a binary quartic or ternary cubic.

Definition 4.2. A Weierstrass equation for (E, 0) is minimal if ord(∆) is minimal
subject to the condition a1, a2, a3, a4, a6 ∈ R.

Any two Weierstrass equations for (E, 0) are related by making a substitution of
the form

x = u2x′ + r
y = u3y′ + u2sx′ + t

and then dividing through by u6. This transformation is denoted [u; r, s, t]. The
coefficients a′i of the new Weierstrass equation are related to the coefficients ai of the
old via

(10)

ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (rs+ t)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

The associated quantities (8) and (9) are transformed by

(11)

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

and u4c′4 = c4, u6c′6 = c6, u12∆′ = ∆.
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4.2. Generalised Weierstrass equations. We generalise the standard definitions
recalled in the last subsection.

Definition 4.3. A generalised elliptic curve (E, 0, 0′) defined over K is a smooth
curve of genus one defined over K equipped with an ordered pair of rational points
0, 0′ ∈ E(K). The possibility 0 = 0′ is allowed.

We choose x, y ∈ K(E) such that L(0 + 0′) and L(2.0 + 0′) have bases 1, x and
1, x, y. Then the 8 elements 1, x, y, x2, xy, x3, y2, x2y in the 7 dimensional vector space
L(4.0 + 3.0′) satisfy a linear dependence relation. Furthermore the coefficient of y2 is
non-zero. We deduce that (E, 0, 0′) has a generalised Weierstrass equation

y2 + α1xy + α3y = ξx2y + ηx3 + α2x
2 + α4x+ α6.

The invariants c4, c6 and ∆ are defined as polynomials in ξ, η, α1, α2, α3, α4, α6 by
specialising the invariants of a ternary cubic.

Definition 4.4. A generalised Weierstrass equation for (E, 0, 0′) is minimal if ord(∆)
is minimal subject to the condition ξ, η, α1, α2, α3, α4, α6 ∈ R.

Any two generalised Weierstrass equations for (E, 0, 0′) are related by making a
substitution of the form

x = v2wx′ + ρ
y = v3w2y′ + v2wσx′ + τ

and then dividing through by v6w4. This transformation is denoted [v, w; ρ, σ, τ ]. The
coefficients of the new generalised Weierstrass equation are related to the old via

v−1ξ′ = ξ
wη′ = η + σξ

vwα′1 = α1 − 2ρξ + 2σ
v2w2α′2 = α2 + (2ρσ + τ)ξ − σα1 + 3ρη − σ2

v3w2α′3 = α3 − ρ2ξ + ρα1 + 2τ
v4w3α′4 = α4 + ρ(ρσ + 2τ)ξ − σα3 + 2ρα2 − (ρσ + τ)α1 + 3ρ2η − 2στ
v6w4α′6 = α6 + ρ2τξ + ρα4 + ρ2α2 + ρ3η − τα3 − τ2 − ρτα1.

We have arranged that if ξ = 0, η = 1, αi = ai and

[v, w; ρ, σ, τ ] = [u, 1; r, s, t]

then these formulae reduce to those recalled in §4.1.

Proposition 4.5. Let (E, 0, 0′) have generalised Weierstrass equation

(12) y2 + α1xy + α3y = ξx2y + ηx3 + α2x
2 + α4x+ α6.

Then (E, 0) has Weierstrass equation

(13) Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

where

(14)

a1 = α1

a2 = α2 + ξα3

a3 = ηα3 − ξα4

a4 = ηα4 + ξα2α3 − ξ2α6

a6 = η2α6 − ξηα1α6 + ξηα3α4 − ξ2α2α6.
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Moreover the generalised Weierstrass equation (12) and its associated Weierstrass
equation (13) have the same invariants c4, c6 and ∆.

Proof. The required isomorphism is given by

X = ηx+ ξy
Y = ηy + ξ(−α1y + ξxy + ηx2 + α2x+ α4).

The statement concerning invariants is proved by direct calculation. An alternative
proof is given by specialising the formulae of Artin, Rodriguez-Villegas and Tate
recalled in Appendix A. �

Lemma 4.6. If we transform a generalised Weierstrass equation (12) by [v, w; ρ, σ, τ ]
then the associated Weierstrass equation (13) is transformed by [u; r, s, t] where

(15)

u = vw
r = ρη + τξ
s = σ − ρξ
t = τη − 2ρ2ξη + (ρσα1 − ρα2 + σα3 + 2στ)ξ − ρ(ρσ + τ)ξ2.

Proof. A direct calculation. �

4.3. An algorithm for minimising. We continue to write R for the ring of integers
of K. It is clear that every generalised Weierstrass equation is equivalent to one with
coefficients in R.

Theorem 4.7. A generalised Weierstrass equation with coefficients in R is minimal
if and only if its associated Weierstrass equation is minimal.

Proof. It is clear from Proposition 4.5 that if a generalised Weierstrass equation is
not minimal then its associated Weierstrass equation is not minimal. Indeed if the
generalised Weierstrass equation is minimised by a transformation [v, w; ρ, σ, τ ] then
its associated Weierstrass equation is minimised by [u; r, s, t] where u, r, s, t are given
by (15).

To prove the theorem we give an algorithm for minimising a generalised Weierstrass
equation, subject only to the hypothesis that the associated Weierstrass equation is
not minimal. The basic idea is as follows. By hypothesis there is a transformation
[1; r, s, t] which when applied to the associated Weierstrass equation gives πi | ai for
all i. We hope to solve (15) for ρ, σ, τ . If successful, we apply the transformation
[1, 1; ρ, σ, τ ] to our generalised Weierstrass equation, and thus reduce to the case πi |ai

for all i. With a bit of luck we can then use (14) to show that the αi are divisible by
certain powers of π. Finally we minimise using either [π, 1; 0, 0, 0] or [1, π; 0, 0, 0].

In practice our algorithm is a hybrid of the above sketch and the first few steps of
Tate’s algorithm: see [15].

Step 1. If π | ξ and π | η then we repeatedly apply the transformation [π−1, π; 0, 0, 0]
until either ξ or η is a unit.

Step 2. By hypothesis π |∆. So the reduction mod π of our generalised Weierstrass
equation has a singular point. By Step 1 either π -ξ or π -η. So the points at infinity
on the reduction are smooth. Making a transformation of the form [1, 1; ρ, 0, τ ] we
may suppose that the singular point is (x, y) = (0, 0). Then π |α3, α4, α6. By (14) we
also have π |a3, a4, a6.



608 TOM FISHER

Step 3. By hypothesis π | c4 = b22 − 24b4. But by Step 2 we already have π | b4 =
2a4 + a1a3. Therefore π |b2 where

b2 = a2
1 + 4a2 = α2

1 + 4α2 + 4ξα3.

Since π |α3 we deduce π |(α2
1 +4α2). Making a transformation of the form [1, 1; 0, σ, 0]

we may assume that π |αi for all i. By (14) we also have π |ai for all i.

Step 4. By hypothesis there is a transformation [1; r, s, t] for which the transformed
quantities a′i satisfy πi | a′i for all i. Since we already have π | ai for all i it follows
by (10) that

π |2s, π |(3r − s2), π |2t, π |(3r2 − 2st), π |(r3 − t2).

From these we deduce π | r, s, t. (Recall that we make no assumption on the charac-
teristic of k.)

The algorithm now splits into two cases.

Case π -η. Making a transformation [1, η; 0, 0, 0] we may assume that η = 1. Let r, s, t
be as in Step 4. We solve for ρ, σ, τ satisfying

(16)
r = ρ+ ξτ
s = σ − ξρ
t = τ − 2ξρ2 + ξ(α1ρσ − α2ρ+ α3σ + 2στ)− ξ2ρ(ρσ + τ).

To do this we set (ρ1, σ1, τ1) = (r, s, t) and recursively define

ρn = r − ξτn−1

σn = s+ ξρn

τn = t+ 2ξρ2
n − ξ(α1ρnσn − α2ρn + α3σn + 2σnτn) + ξ2ρn(ρnσn + τn).

Since π |r, s, t and π |α1, α2, α3 it follows by induction that

ρn+1 ≡ ρn (mod πn)
σn+1 ≡ σn (mod πn)
τn+1 ≡ τn (mod πn+1).

Since K is complete1 the sequences ρn, σn, τn converge to ρ, σ, τ ∈ R, a solution
to (16). We apply the transformation [1, 1; ρ, σ, τ ] and hence reduce to the case πi |ai

for all i. Since π |ρ, σ, τ we still have π -η and π |αi for all i. We now use (14) to show
that π2 | α6 since π2 | a6, then π2 | α4 since π2 | a4, then π2 | α3 since π2 | a3, and so
on. In the end we get πi |αi for all i. We can then minimise using the transformation
[π, 1; 0, 0, 0].

Case π | η. By Step 1 we have π - ξ. Making a transformation [ξ−1, 1; 0, 0, 0] we may
assume that ξ = 1. Let r, s, t be as in Step 4. Since

a′4 = a4 − sa3 + 2ra2 − (rs+ t)a1 + 3r2 − 2st

we have π2 |a4. Then using (14) we obtain π2 |α6 and π3 |a6. Since

a′3 = a3 + ra1 + 2t
a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

it follows that π2 | t and π2 |a3.

1In fact an approximate solution to (16) would suffice, so we don’t really need that K is complete.
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We apply the transformation [1, 1; 0, s, r] to our generalised Weierstrass equation.
After this transformation we still have π |η and π |αi for all i. According to Lemma 4.6
the associated Weierstrass equation is transformed by [1; r, s, t′] where t′ = rη+sα3 +
2rs. Since t ≡ t′ ≡ 0 (mod π2) it follows by (10) and (11) that

π |a1, π2 |a2, a3, π3 |a4, π4 |a6

and πi |bi for all i. Using (14) we obtain π2 |α4, α6 and then

π2 |(α2 + α3), π3 |(α2α3 − α6), π4 |α2α6.

From these we deduce

π |α1, π2 |α2, α3, α4, π3 |α6.

Since
a6 = η2α6 − ηα1α6 + ηα3α4 − α2α6

it follows that π5 |a6. Next using

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

we obtain first π3 |a3 and then π4 |a4. By (14) we also have π3 |α4 and π4 |α6. We
can then minimise using the transformation [1, π; 0, 0, 0]. �

Recall that we defined the invariants of a generalised Weierstrass equation (12) as
the invariants of the ternary cubic

(17) y2z + α1xyz + α3yz
2 − (ξx2y + ηx3 + α2x

2z + α4xz
2 + α6z

3) = 0.

A calculation shows that these are the same as the invariants of the binary quartic

(18) y2 + (−ξx2 + α1xz + α3z
2)y = ηx3z + α2x

2z2 + α4xz
3 + α6z

4.

Proof of Theorem 3.1: Let n = 2 or 3. We recall that E is an elliptic curve
defined over K, with K a finite extension of Qp. We are given an OK-coefficient
Weierstrass equation for E and a soluble n-covering C of E. The structure of n-
covering determines a K-rational divisor class [D] on C. For 0 a rational point on C
the Riemann-Roch space L(D − (n− 1).0) is 1-dimensional. Hence

D ∼ (n− 1).0 + 0′

where 0′ is a rational point on C. By Theorem 4.7 the generalised elliptic curve
(C, 0, 0′) has an OK-coefficient generalised Weierstrass equation with the same invari-
ants as a minimal Weierstrass equation for E. Then (18) or (17) is a model for the
pair (C, [D]) with discriminant dividing that of our original Weierstrass equation. We
are done by the local analogue of Remark 2.4. �

Remark 4.8. More concretely, a soluble binary quartic, respectively ternary cubic,
may be put in generalised Weierstrass form using (in the notation of §1.4) a trans-
formation [1, 0, A], respectively [1, A]. Indeed in the case n = 2 we move the rational
point to (x : z) = (1 : 0). The resulting binary quartic has no x4 term and is therefore
of the form (18). In the case n = 3 we move the rational point to (x : y : z) = (0 : 1 : 0)
and its tangent line to z = 0. The resulting ternary cubic has no terms y3 or xy2

and is therefore of the form (17). We can then minimise by following the proof of
Theorem 4.7.
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Appendix A. Formulae for the Jacobian

In §1 we defined the invariants c4, c6 and ∆ of a binary quartic, respectively a
ternary cubic. We now attempt to “work back” through the formulae (8) and (9) in
order to define quantities b2, b4, b6, b8 and a1, a2, a3, a4, a6. In the case n = 2, we find

c4 ≡ (α2
1 − 4α0α2 + 4c)2 (mod 24).

We set b2 = α2
1 − 4α0α2 + 4c and solve for b4, b6, b8 using (9). Next we set a1 = α1

and a2 = −α0α2 + c. It turns out that we can write b4 = α1a3 + 2a4 where a3 and a4

are polynomials not involving α1. Putting a6 = (b6 − a2
3)/4 we obtain

a1 = α1

a2 = c− α0α2

a3 = α0d+ α2b
a4 = −4ae+ bd− (α2

0e+ α0α2c+ α2
2a)

a6 = −4ace+ ad2 + b2e− (α2
0ce+ α2

1ae+ α2
2ac+ α0α2bd) + α0α1be+ α1α2ad.

In the case n = 3, we find

c4 ≡ (m2 − 4(a2c2 + a3b3 + b1c1))2 (mod 24).

We set b2 = m2 − 4(a2c2 + a3b3 + b1c1) and solve for b4, b6, b8 using (9). Next we set
a1 = m and a2 = −(a2c2 +a3b3 +b1c1). It turns out that we can write b4 = ma3 +2a4

where a3 and a4 are polynomials not involving m. Putting a6 = (b6−a2
3)/4 we obtain

a1 = m

a2 = −(a2c2 + a3b3 + b1c1)
a3 = 9abc− (ab3c2 + ba3c1 + ca2b1)− (a2b3c1 + a3b1c2)
a4 = −3(abc1c2 + acb1b3 + bca2a3)

+ a(b1c22 + b23c1) + b(a2c
2
1 + a2

3c2) + c(a2
2b3 + a3b

2
1)

+ a2c2a3b3 + b1c1a2c2 + a3b3b1c1

a6 = −27a2b2c2 + 9abc(ab3c2 + ca2b1 + ba3c1) + 3abc(a2b3c1 + a3b1c2)
− (a2bc32 + b2ca3

3 + c2ab31 + a2cb33 + b2ac31 + c2ba3
2)

+ 2(abc1c2 + bca2a3 + cab1b3)(a2c2 + a3b3 + b1c1)
− 3(aba3b3c1c2 + bca2a3b1c1 + caa2b1b3c2)
− (b1c1 + a2c2)(ab23c1 + bc2a

2
3)

− (c2a2 + a3b3)(bc21a2 + ca3b
2
1)

− (a3b3 + b1c1)(ca2
2b3 + ab1c

2
2)

− a2a3b1b3c1c2 − 3abc(a2c2 + a3b3 + b1c1)m
+(ab(a3c

2
2 + b3c

2
1) + bc(a2

2c1 + a2
3b1) + ac(a2b

2
3 + b21c2))m

+(ab1b3c1c2 + ba2a3c1c2 + ca2a3b1b3)m
− (abc1c2 + bca2a3 + cab1b3)m2 + abcm3.

We record an immediate consequence.

Lemma A.1. Let a1, a2, a3, a4, a6 be the quantities associated to a binary quartic or
ternary cubic, as defined above. Then the Weierstrass equation

(19) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

has the same invariants c4, c6 and ∆ as the original binary quartic or ternary cubic.
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These formulae, in the case of a ternary cubic, are due to Artin, Rodriguez-Villegas
and Tate [2]. Moreover it is shown in their paper that (19) is a formula for the Jacobian
that works in arbitrary characteristic. In characteristic different from 2 and 3 this is
already clear from Theorem 1.1.

Appendix B. The class group

We give some examples to show that the hypothesis on the class number in Theo-
rem 2.2 cannot be removed. First we need two lemmas.

Lemma B.1. Let [K : Qp] < ∞ with p 6= 2. Let [µ, r, A] with µ ∈ K×, r ∈ K3 and
A ∈ GL2(K) be a transformation relating two OK-coefficient binary quartics with
good reduction. Then

ord(µ) ≡ ord(detA) ≡ 0 (mod 2).

Proof. Since p 6= 2 we may assume the binary quartics have no cross terms (i.e.
α0 = α1 = α2 = 0) and r = 0. Let π ∈ K with ord(π) = 1. Since both binary
quartics have good reduction we have ord(µ) = − ord(detA). So without loss of
generality

[µ, r, A] = [π−a−b, 0,
(
πa 0
0 πb

)
]

for some a ≥ b. If a > b then the first binary quartic has singular reduction above
(x : z) = (0 : 1). So a = b and ord(µ) ≡ ord(detA) ≡ 0 (mod 2). �

Lemma B.2. Let [K : Qp] < ∞. Let [µ,A] with µ ∈ K× and A ∈ GL3(K) be a
transformation relating two OK-coefficient ternary cubics with good reduction. Then

ord(µ) ≡ ord(detA) ≡ 0 (mod 3).

Proof. Let π ∈ K with ord(π) = 1. Since both ternary cubics have good reduction
we have ord(µ) = − ord(detA). So without loss of generality

[µ,A] = [π−a−b−c,

πa 0 0
0 πb 0
0 0 πc

]

for some a ≥ b ≥ c. If b > c then the first ternary cubic has singular reduction at
(x : y : z) = (0 : 0 : 1). If a > b = c then the reduction contains the line x = 0. So
a = b = c and ord(µ) ≡ ord(detA) ≡ 0 (mod 3). �

Example B.3. Let K = Q(
√
−35) and α = (−1 +

√
−35)/2. Let E be the elliptic

curve with Weierstrass equation

y2 = x3 − 11x+ 14

and C the 2-covering of E with equation

(20) y2 = α(x2 − αz2)(x2 − 2αz2).

We have ∆E = 29 and ∆C = 29.312. The prime 3 factors in OK as (3) = pp with
p2 = (α). We can minimise (20) locally at p and p by means of the transformations

[3−1, 0,
(

1 0
0 1

)
] and [1, 0,

(
1 0
0 3−1

)
].
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We suppose for a contradiction that C has an OK-coefficient equation with the
same invariants as E. Let [µ, r, A] be the transformation relating (20) and this new
equation. Then by Lemma B.1 we find

ordp(µ) ≡ 1 (mod 2)
ordp(µ) ≡ 0 (mod 2)

and ordq(µ) ≡ 0 (mod 2) for all q - 2, 3. Since 2 is inert in K and hK = 2 it follows
that p is principal. This is the required contradiction. Finally we note that α ∈ (K∗

2 )2,
so C is everywhere locally soluble.

Example B.4. Let K = Q(
√
−23) and α = 2 +

√
−23. Let E be the elliptic curve

with Weierstrass equation

y2 + y = x3 + (2
√
−23)x+ (8 + 3

√
−23)

and C the 3-covering of E with equation

(21) 3x3 + α(x2y − xz2 + 3y2z) + α2y3 = 0.

We have (∆E) = p1p2 and ∆C = α12∆E where p1 = (1 + 6
√
−23) and p2 = (1527 +

446
√
−23) are prime ideals. The prime 3 factors in OK as (3) = pp with p3 = (α).

We can minimise (21) locally at p by means of the transformation

[3−4,

3 0 0
0 1 0
0 0 1

].

We suppose for a contradiction that C has an OK-coefficient equation with the
same invariants as E. Let [µ,A] be the transformation relating (21) and this new
equation. Then by Lemma B.2 we find

ordp(µ) ≡ 2 (mod 3)

and ordq(µ) ≡ 0 (mod 3) for all q 6= p, p1, p2. Since p1 and p2 are principal and
hK = 3 it follows that p is principal. This is the required contradiction. Finally we
note that C is globally soluble.

Acknowledgements

I would like to thank John Cremona and Michael Stoll for sharing many of their
ideas on this topic. The computer calculations in support of this work were performed
using MAGMA [10].

References

[1] S.Y. An, S.Y. Kim, D.C. Marshall, S.H. Marshall, W.G. McCallum and A.R. Perlis, Jacobians

of genus one curves, J. Number Theory 90 (2001), no. 2, 304–315.

[2] M. Artin, F. Rodriguez-Villegas, J. Tate, On the Jacobians of plane cubics, Adv. Math. 198
(2005), no. 1, 366–382.

[3] B.J. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves I. J. Reine Angew. Math. 212
(1963), 7–25.

[4] J.E. Cremona, Algorithms for modular elliptic curves, Second edition, Cambridge University

Press, Cambridge, 1997.

[5] J.E. Cremona and P. Serf, Computing the rank of elliptic curves over real quadratic number
fields of class number 1, Math. Comp. 68 (1999), no. 227, 1187–1200.



MINIMISING BINARY QUARTICS AND TERNARY CUBICS 613

[6] J.E. Cremona and M. Stoll, Minimal models for 2-coverings of elliptic curves, LMS J. Comput.
Math. 5 (2002), 220–243.

[7] J.E. Cremona and M. Stoll, Minimisation and reduction for 3- and 4-coverings of elliptic curves,

in preparation.
[8] D. Hilbert, Theory of algebraic invariants, Cambridge University Press, Cambridge, 1993.
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