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AN INITIAL VALUE PROBLEM FOR TWO-DIMENSIONAL IDEAL
INCOMPRESSIBLE FLUIDS WITH CONTINUOUS VORTICITY

Elaine Cozzi

Abstract. We study an initial value problem for the two-dimensional Euler equation.
In particular, we consider the case where initial data belongs to a critical or subcritical

Besov space, and initial vorticity is continuous with compact support. Under these

assumptions, we conclude that the solution to the Euler equation loses an arbitrarily
small amount of regularity as time evolves.

1. Introduction

In this paper, we study the Euler Equation modeling incompressible fluid flow on
R2, given by

∂tv(t, x) = −v · ∇v −∇p,

∇ · v = 0,

v|t=0 = v0,

(1)

where the vorticity of the fluid is given by

ω = ω(v) = ∂1v
2 − ∂2v

1.

It is known that when initial data for (1) is in the supercritical Sobolev space
W s+1,p(R2), where sp > 2, the solution does not lose any regularity as time evolves
(see, for example, [4], [5]). Much less is known when initial data belongs to the critical
Sobolev spaces, where sp = 2, or to the subcritical Sobolev spaces, where sp < 2. We
therefore restrict our attention to these two cases. In addition, we assume that the
initial vorticity is continuous with compact support.

The motivation for this paper is a result of Bahouri and Chemin found in [1], where
the authors show that a lower bound for the Sobolev exponent of ω(t) is determined
by the log-Lipschitz norm of v(t). They define

V (t) = sup
|x−y|≤1

|v(t, x)− v(t, y)|
|x− y|(1− log |x− y|)

,

and they prove the following theorem:

Theorem 1. Let v be a solution to (1) such that ω(v0) = ω0 ∈ L∞(R2) ∩W s,p(R2),
for sp ≤ 2 and s ∈ (0, 1]. Fix s′ < s, and define σ(s′, t) = s′ exp(−

∫ t

0
V (τ)dτ). Then

ω(t) ∈ W σ(s′,t),p(R2) for all t ∈ R.
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In this paper, we show that, if we also assume ω0 is continuous with compact
support, then we can improve the lower bound for loss of regularity to an arbitrarily
small amount. More precisely, we show that, given ε > 0 arbitrarily small, and T > 0
fixed, if ω0 ∈ W s,p(R2) ∩ Cc(R2) with sp ≤ 2, p ∈ (1,∞), and s ∈ (0, 2), then ω(t)
belongs to W s−ε,p(R2) for all t ∈ [0, T ]. As in [1], we study the vorticity equation
corresponding to the Euler equation. When n = 2, the vorticity equation is given by

∂tω + v · ∇ω = 0,

ω|t=0 = ω0.
(2)

To prove our result, we show that ω(t) belongs to the Besov space Bs−ε
p,∞ (see Definition

3) for all t in a finite time interval [0, T ]. Our general approach is to localize the
frequency of the terms of (2), which results in a new equation with a commutator
term on the right-hand side:

∂t∆qω + v · ∇∆qω = [v · ∇,∆q]ω,

∆qω|t=0 = ∆qω0.
(3)

We then prove the necessary estimate on the Lp norm of the commutator on the
right-hand side of (3), and apply a Gronwall argument to show that ω(t) is in Bs−ε

p,∞.
The main novelty of this paper is that our methods allow us to draw conclusions

for ω0 ∈ Bs
p,∞(R2) ∩ Cc(R2) for all s ∈ (0, 2), whereas, if we restrict our attention to

the case s ∈ (0, 1], we can prove the result by combining methods used in [1] with the
following theorem, which we prove in Section 3:

Theorem 2. Let v be a solution to (1) such that ω(v0) = ω0 ∈ Cc(R2). Let g(t)
be the measure-preserving homeomorphism in R2 satisfying ∂tg(t, x) = v(t, g(t, x)).
Given δ > 0 and T > 0, it follows that ||g(t)−1 − Id||C1−δ ∈ L∞([0, T ]).

2. Littlewood-Paley Decomposition and Function Spaces

In this section, we set notation and recall the definitions of the function spaces
which we use throughout the proof of our main theorem.

Proposition 1. There exists two radial functions χ ∈ S and ϕ ∈ S satisfying the
following properties:

(i) supp χ ⊂ {ξ ∈ R2 : 0 ≤ |ξ| ≤ 4
3},

(ii) supp ϕ ⊂ {ξ ∈ R2 : 3
4 ≤ |ξ| ≤ 8

3},
(iii) χ(ξ) +

∑∞
j=0 ϕj(ξ) = 1,

where ϕj(ξ) = ϕ(2−jξ) (so ϕ̌j(x) = 2jnϕ̌(2jx)).

Proof. See [6]. �

Observe that, if |j− j′| ≥ 2, then supp ϕj ∩ supp ϕj′ = ∅, and, if j ≥ 1, then supp
ϕj ∩ supp χ = ∅.

Definition 1. Let f ∈ S′. We define

∆−1f = χ(D)f = χ̌ ∗ f .
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For j ≥ 0, ∆jf = ϕ̌j ∗ f .
For j ≤ −2, ∆jf = 0.
For k ∈ Z, Skf =

∑k−1
j=−1 ∆jf = χ(2−kD)f .

Definition 2. Let s ∈ R. We define the Zygmund space Cs
∗ to be the space of tem-

pered distributions f such that

||f ||Cs
∗

:= sup
q≥−1

2qs||∆qf ||L∞ < ∞.

It is well known that the norm on Cs
∗ is equivalent to the classical Cs norm when

s is not an integer and s > 0. For a proof of this, see [3], Proposition 2.3.1.

Definition 3. Let s ∈ R, p, q ∈ [1,∞]. We define the inhomogeneous Besov space
Bs

p,q to be the space of tempered distributions f such that

||f ||Bs
p,q

:= (
∞∑

j=−1

2jqs||∆jf ||qLp)

1
q

< ∞.

When q = ∞, write
||f ||Bs

p,∞
:= sup

j≥−1
2js||∆jf ||Lp .

Remark. Note that Bs
∞,∞ = Cs

∗ .

Definition 4. The space of log-Lipschitz functions, denoted by LL, is the space of
bounded functions f on Rn such that

||f ||LL := ||f ||L∞ + sup
|x−y|≤1

|f(x)− f(y)|
|x− y|(1− log |x− y|)

< ∞.

An important tool throughout the proof of the main theorem will be a decomposi-
tion introduced by J.-M. Bony in [2]. We recall the definition of the paraproduct and
remainder used in this decomposition.

Definition 5. Define the paraproduct of two functions f and g by

Tfg =
∑
i,j

i≤j−2

∆if∆jg =
∞∑

j=1

Sj−1f∆jg.

We use R(f, g) to denote the remainder. R(f, g) is given by the following bilinear
operator:

R(f, g) =
∑
i,j

|i−j|≤1

∆if∆jg.

Bony’s decomposition gives

fg = Tfg + Tgf + R(f, g).
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3. Proof of Theorem 2

It is known (see [10]) that if ||v(t)||LL ∈ L1
loc(R+), then the flow g(t) exists, is

unique, is a measure-preserving homeomorphism from R2 to R2, and satisfies the
equation

(4) g(t, x) = x +
∫ t

0

v(τ, g(τ, x))dτ.

Furthermore,

(5) g(t)− Id ∈ Cexp(−
R t
0 ||v(τ)||LLdτ).

From (5), we see that the Holder exponent of g(t) − Id is determined by the log-
Lipschitz norm of v. One can characterize log-Lipschitz functions using the following
inequality (see [1]):

(6) C−1||f ||LL ≤ ||S0f ||L∞ + sup
q≥1

||∇Sqf ||L∞
q + 1

≤ C||f ||LL

for a constant C > 0. When computing the Holder exponent of g(t) − Id, (5) and
(6) motivate us to study the behavior of the quantity ||∇Sqv(t)||L∞ . In this section,
we assume ω0 ∈ Cc(R2), and we show that, given ε > 0 and T > 0, ||∇Sqv(t)||L∞ ≤
ε(q + 1) for sufficiently large q and for all t ∈ [0, T ]. We then conclude that g(t) is
locally Holder continuous with Holder exponent arbitrarily close to 1. We begin with
the following lemma:

Lemma 2. Let u ∈ Cc(R2). Given ε > 0, there exists an N > 0 such that ||∆ju||L∞ <
ε for all j > N .

Proof. Since u ∈ Cc(R2), we can construct a sequence (uk) ⊂ C∞
c (R2) such that

uk → u uniformly. Also, since uk ∈ C∞
c (R2), there exists an N > 0 so that

||∆juk||L∞ < ε
2 for j > N . Therefore, for k sufficiently large, and for all j > N ,

we have

||∆ju||L∞ ≤ ||∆j(uk − u)||L∞ + ||∆juk||L∞
< ε.

This completes the proof. �

In dimension two, we can rewrite the vorticity equation given in (2) as ω(t, x) =
ω0(g(t)−1(x)). Therefore, if we assume that ω0 ∈ Cc, then ω(t) ∈ Cc for all t ∈ R.
We now apply Lemma 2 to ω(t) and conclude that, for fixed t, given ε > 0, there
exists Nt such that supj>Nt

||∆jω(t)||L∞ < ε. In what follows, we need Nt to be time
independent. We therefore prove the following lemma:

Lemma 3. Let v be a solution to (1) such that ω(v0) = ω0 ∈ Cc(R2). Given ε > 0
and T > 0, there exists an N = N(T, ε) so that supj>N ||∆jω(t)||L∞ < ε for all
t ∈ [0, T ].

Proof. To prove the lemma, we use the Ascoli-Arzela Theorem to show that the set
A = {ω(t) : t ∈ [0, T ]} is compact in C(M), where M is the compact subset of R2

containing the supports of all elements of A. The set A is clearly equibounded as
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||ω(t)||L∞ = ||ω0||L∞ for all t ∈ [0, T ]. To show equicontinuity, we observe that, for
x1 and x2 in R2 satisfying g(t1, x1) = g(t2, x2) = x, we have,

|x1 − x2| ≤ |t1 − t2| sup
τ∈[t1,t2]

||v(τ)||L∞

≤ C|t1 − t2|(||ω0||Lp + ||ω0||L∞),

where we used the bound ||v(t)||L∞ ≤ C(||ω0||Lp + ||ω0||L∞) for p ∈ (1, 2). (For a
proof of this bound, we refer the reader to [8], Theorem 3.1.) Therefore, by uniform
continuity of ω0, given ε > 0, there exists δ > 0 such that, for |t1 − t2| < δ and for all
x ∈ R2,

|ω(t1, x)− ω(t2, x)| = |ω0(x1)− ω0(x2)|

<
ε

2
.

We conclude that, for |t1 − t2| < δ,

||ω(t1, x1)− ω(t1, x2)| − |ω(t2, x1)− ω(t2, x2)||
≤ |ω(t1, x1)− ω(t2, x1)|+ |ω(t1, x2)− ω(t2, x2)| < ε.

(7)

Equicontinuity follows from (7). Finally, we observe that A is closed in C(M) by
sequential continuity of ω in time and compactness of [0, T ]. We conclude that A is
compact in C(M). From this compactness, it follows that for any t ∈ [0, T ] and ε > 0,
there exists ti ∈ [0, T ], i = 1, 2, ...,M , such that ||∆jω(t)||L∞ < ε

2 + ||∆jω(ti)||L∞ for
all j. Furthermore, given ω(ti), there exists an Nti

such that supj>Nti
||∆jω(ti)||L∞ <

ε
2 . Let N = max{Nt1 , ....NtM

}. Then, for all t ∈ [0, T ],

sup
j>N

||∆jω(t)||L∞ < ε.

This completes the proof. �

We bound ||∆j∇v||L∞ by C||∆jω||L∞ if j ≥ 0, and we bound ||∆−1∇v(t)||L∞ with
C||ω0||Lp for p ∈ (1,∞) using Bernstein’s inequality. From Lemma 3, we conclude
that, for N sufficiently large, and for all t ∈ [0, T ],

(8) ||SN∇υ(t)||L∞ ≤ ε(N + 1).

We now use (8) to compute the Holder exponent for the flow corresponding to the
velocity of a fluid with initial vorticity in Cc(R2), which will complete the proof of
Theorem 2. We show that, given ε > 0 and T > 0, g(t)−1 − Id belongs to Cσ(t)(R2)
for all t ∈ [0, T ], where σ(t) = e−Ctε, and C is an absolute constant. We then let
δ = 1− e−CTε, and we make δ as small as we would like by our choice of ε.

Fix ε > 0. Write v = v1,N + v2,N , where v1,N = SN−1v, and v2,N = (Id− SN−1)v.
By (8), it follows that |v1,N (t, x) − v1,N (t, y)| ≤ ||∇SN−1v(t)||L∞ |x − y| ≤ CNε|x −
y| for large enough N . Similarly, for large N we can conclude that |v2,N (t, x) −
v2,N (t, y)| ≤ C

∑∞
j=N−1 2−j ||∆j∇v(t)||L∞ ≤ C2−N ε. Letting N = − log2 |x − y|, we

have that for |x− y| sufficiently small,

|v(t, x)− v(t, y)| ≤ |(v1,N (t, x) + v2,N (t, x))− (v1,N (t, y) + v2,N (t, y))|
≤ C(ε(− log2 |x− y|)|x− y|+ ε|x− y|)
≤ Cε(1− log2 |x− y|)|x− y|.

(9)
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We now use (9) and Osgood’s Lemma (see [3], Lemma 5.2.1) to compute properties
of the flow. We write

|v(t, g(t, x))− v(t, g(t, y))| ≤ Cε(1− log2 |g(t, x)− g(t, y)|)|g(t, x)− g(t, y)|
whenever |g(t, x)− g(t, y)| < δ. From (4), this gives

|g(t, x)− g(t, y)| ≤ |x− y|+
∫ t

0

Cε(1− log2 |g(τ, x)− g(τ, y)|)|g(τ, x)− g(τ, y)|dτ.

By Osgood’s Lemma, we conclude that

− log(1− log |g(t, x)− g(t, y)|) + log(1− log |x− y|) ≤ Ctε.

Taking the exponential twice, we get

|g(t, x)− g(t, y)|
|x− y|e−Ctε ≤ e1−e−Ctε

≤ e

whenever |x− y| < δ, which gives

|(g(t, x)− x)− (g(t, y)− y)|
|x− y|e−Ctε ≤ e + 1.

In the case |x− y| ≥ δ, we have

|(g(t, x)− x)− (g(t, y)− y)|
|x− y|e−Ctε ≤ 2δ−e−Ctε

||g(t)− Id||L∞ .

To see that ||g(t)−1 − Id||C1−δ ∈ L∞loc(R+), we observe that

sup
x,y∈R2

|(g(t, x)− x)− (g(t, y)− y)|
|x− y|e−Ctε ≤ (e + 1) + 2δ−e−Ctε

||
∫ t

0

v(τ, g(τ, ·))dτ ||L∞

≤ (e + 1) + 2δ−1T (||ω0||Lp + ||ω0||L∞)

for all t ∈ [0, T ]. This completes the proof of Theorem 2.

4. Paradifferential Estimates for the Transport Equation

In this section, we consider an initial value problem for the vorticity equation
corresponding to the two-dimensional Euler Equation. When n = 2, the vorticity
equation is given by

∂tω + v · ∇ω = 0,

ω|t=0 = ω0.
(10)

Note that, if ω satisfies (10), then ∆qω satisfies the following equation:

∂t∆qω + v · ∇∆qω = [v · ∇,∆q]ω,

∆qω|t=0 = ∆qω0.
(11)

We want to prove the following estimate:

Proposition 4. Let p ∈ (1,∞) and σ > 0 be fixed. Then there exists two positive
constants C1(σ) and C2 such that

||[v · ∇,∆q]ω||Lp ≤ C1(σ)(C2 + ||Sq−1∇v||L∞)2−qσ||ω||Bσ
p,∞

.
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Proof. We consider the cases q ≥ 4 and q < 4 separately. We first assume q ≥ 4 and
use Bony’s decomposition to write

[v · ∇,∆q]ω =
2∑

j=1

[Tvj
∂j ,∆q]ω + [T∂j ·vj ,∆q]ω + [∂jR(vj , ·),∆q]ω.

We address each piece of the sum separately. We start with [Tvj ∂j ,∆q]ω. Write

[Tvj ∂j ,∆q]ω =
q+4∑

q′=q−4

[Sq′−1(vj),∆q]∆q′∂jω.

Letting u = ∆q′∂jω, letting h = φ̌ (recall we are assuming q ≥ 4 here), and keeping
in mind that |q′ − q| ≤ 4, we have

||[Sq′−1(vj),∆q]u||Lp =

||
∫

R2
h(y)(Sq′−1(vj)(x− 2−qy)− Sq′−1(vj)(x))u(x− 2−qy)dy||Lp

≤ C||Sq′−1∇v||L∞2−q||u||Lp

≤ C24σ||Sq′−1∇v||L∞2−qσ||ω||Bσ
p,∞

,

where we used the fact that h ∈ S and therefore zh(z) is integrable, as well as
Bernstein’s inequality. We now sum over q′ to get

||[Tvj
∂j ,∆q]ω||Lp ≤ C24σ2−qσ||ω||Bσ

p,∞

q+4∑
q′=q−4

||Sq′−1∇v||L∞

≤ C24σ2−qσ||ω||Bσ
p,∞

(||Sq−1∇v||L∞ + ||∇v||C0
∗
).

(12)

We now consider [T∂j ·vj ,∆q]ω. To bound ||T∂j∆qωvj ||Lp , we use Bernstein’s inequality
and our assumption that q ≥ 4, as well as properties of our partition of unity, to write

||T∂j∆qωvj ||Lp ≤
∞∑

q′=q

C2q2−q′ ||Sq′−1∆qω||Lp ||∆q′∇v||L∞

≤ C||∆qω||Lp sup
q′≥q

||∆q′∇v||L∞

≤ C||∇v||C0
∗
2−qσ||ω||Bσ

p,∞
.

(13)

Furthermore, since the Fourier support of Sq′−1∂jω∆q′vj is contained in an annulus
with inner and outer radius C12q′ and C22q′ respectively, we can write

||∆q(T∂jωvj)||Lp ≤
q+4∑

q′=q−4

||Sq′−1∂jω||L∞ ||∆q′v||Lp

≤
q+4∑

q′=q−4

C2q′2−q′ ||Sq′−1ω||L∞ ||∆q′∇v||Lp

≤
q+4∑

q′=q−4

C||Sq′−1∇v||L∞ ||∆q′ω||Lp

≤ C24σ(||Sq−1∇v||L∞ + ||∇v||C0
∗
)2−qσ||ω||Bσ

p,∞
.

(14)
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Once again, we used Bernstein’s inequality in the second inequality. It is in this
inequality that our assumption that q ≥ 4 is necessary. For the third inequality, we
used the fact that Calderon-Zygmund operators are bounded on Lp for p ∈ (1,∞).
Combining (13) and (14), we see that

(15) ||[T∂j ·vj ,∆q]ω||Lp ≤ C24σ(||Sq−1∇vj ||L∞ + ||∇v||C0
∗
)2−qσ||ω||Bσ

p,∞

for q ≥ 4.
We now study the remainder term, [∂jR(vj , ·),∆q]ω. We need the following lemma:

Lemma 5. If s + σ > 0, then ||R(a, b)||Bs+σ
p,∞

≤ C(s, σ)||a||Bs
∞,∞

||b|||Bσ
p,∞

, where
C(s, σ) = C2Mσ( 1

1−( 1
2 )s+σ + 2N(s+σ) + ... + 21(s+σ)) for fixed positive integers M and

N .

Proof. For a proof of the lemma, we refer the reader to [9]. �

To handle the remainder term, we will consider low and high frequencies of vj

separately. We begin with [∂jR((Id − ∆−1)vj , ·),∆q]ω. Using Lemma 5 with s =
1, Bernstein’s inequality, and the fact that the Fourier transform of (Id − ∆−1)∇v
vanishes in a neighborhood of the origin, we write

||∆q∂jR((Id−∆−1)vj , ω)||Lp ≤ 2−qσ||R((Id−∆−1)vj , ω)||Bσ+1
p,∞

≤ C(σ)2−qσ||(Id−∆−1)v||B1
∞,∞

||ω||Bσ
p,∞

≤ C(σ)2−qσ||∇v||C0
∗
||ω||Bσ

p,∞
.

(16)

Here C(σ) = C(1, σ) from Lemma 5. To bound ||∂jR((Id − ∆−1)vj ,∆qω)||Lp , note
that

||∂jR((Id−∆−1)vj ,∆qω)||Lp ≤
∑
q′,q′′

|q′−q′′|≤1
|q′−q|≤1

2q||∆q′′(Id−∆−1)v||L∞ ||∆q′∆qω||Lp

≤ C||∇v||C0
∗
2−qσ||ω||Bσ

p,∞
.

(17)

In the first inequality above, we used the fact that the support of the Fourier trans-
form of ∆q′′(Id − ∆−1)v∆q′∆qω is contained in a ball with radius C2q, along with
Bernstein’s inequality, to get the factor 2q. In the second inequality, we used the
inequality ||(Id − ∆−1)v||B1

∞,∞
≤ C||∇v||C0

∗
. We now combine (17) with (16) to

conclude that

(18) ||[∂jR((Id−∆−1)vj , ·),∆q]ω||Lp ≤ C(σ)||∇v||C0
∗
2−qσ||ω||Bσ

p,∞
.

We now estimate ||[∂jR(∆−1vj , ·),∆q]ω||Lp . Using the definition of the remainder
operator, as well as the properties of our partition of unity, we write

[∂jR(∆−1vj , ·),∆q]ω = ∂jR(∆−1vj ,∆qω)−∆q(∂jR(∆−1vj , ω))

= ∂j(
∑
i,k

|i−k|≤1

∆k∆−1vj∆i∆qω)−∆q∂j(
∑
i,k

|i−k|≤1

∆k∆−1vj∆iω).
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We begin by estimating ∆q∂j(
∑

i,k

|i−k|≤1
∆k∆−1vj∆iω). We first reintroduce the sum

over j, allowing us to use the fact that div v = 0 to move ∂j inside the parentheses
and differentiate ω. This, along with properties of our partition of unity, gives

2∑
j=1

||∆q∂j(
∑
i,k

|i−k|≤1

∆k∆−1vj∆iω)||Lp ≤ C
2∑

j=1

1∑
l=−1

0∑
k=−1

||∆q(∆k∆−1vj∆k−l∂jω)||Lp .

(19)

Note that in the second line of (19), the Fourier support of ∆k∆−1vj∆k−l∂jω is
contained in a ball with radius C2k. Therefore, the sum in the second line is 0 if
q ≥ k+M , for a constant M . Furthermore, k ≤ 0. Therefore, we are only considering
q ≤ M . We then write

2∑
j=1

1∑
l=−1

0∑
k=−1

||∆q(∆k∆−1vj∆k−l∂jω)||Lp

≤ C2Mσ||v||L∞2−qσ||ω||Bσ
p,∞

.

(20)

To bound ||∂j(
∑

i,k

|i−k|≤1
∆k∆−1vj∆i∆qω)||Lp , we use the fact that the Fourier trans-

form of ∆−1vj is supported in the neighborhood of the origin, and we recognize that
div v = 0 allows us to move ∂j inside the parentheses. Therefore,

2∑
j=1

||∂j(
∑
i,k

|i−k|≤1

∆k∆−1vj∆i∆qω)||Lp

≤ C

2∑
j=1

1∑
l=−1

0∑
k=−1

||∆k∆−1v||L∞2k−l||∆k−l∆qω||Lp

≤ C||v||L∞2−qσ||ω||Bσ
p,∞

,

(21)

where we used Bernstein’s inequality and Holder’s inequality to get the first inequality
in (21). We now combine (19) through (21) to conclude that

(22) ||[∂jR(∆−1vj , ·),∆q]ω||Lp ≤ C2Mσ||v||L∞2−qσ||ω||Bσ
p,∞

.

Combining (12), (15), (18), and (22), we conclude that for q ≥ 4,

||[v · ∇,∆q]ω||Lp

≤ C(2Mσ + C(σ))(||Sq−1∇vj ||L∞ + ||∇v||C0
∗

+ ||v||L∞)2−qσ||ω||Bσ
p,∞

.

To complete the proof for the case q ≥ 4, we bound ||∇v||C0
∗
+ ||v||L∞ by C(||ω0||L∞ +

||ω0||Lp) for fixed p < 2. This completes the proof for the case q ≥ 4.

For the case q < 4, write:

(23) [v · ∇,∆q]ω = v · ∇∆qω −∆q(v · ∇ω).

Keeping in mind that q ≤ 3, it is easy to see that

(24) ||v · ∇∆qω||Lp ≤ C(||ω0||Lp0 + ||ω0||L∞)2−qσ||ω||Bσ
p,∞

,



582 ELAINE COZZI

where again we used the bound ||v||L∞ ≤ C(||ω0||Lp0 + ||ω0||L∞) for fixed p0 ∈ (1, 2).
We now write the second term of (23) as

(25) ∆q(v · ∇ω) =
2∑

j=1

∆q(Tvj ∂jω + T∂jωvj + R(vj , ∂jω)).

We successfully bounded the Lp norm of the remainder term of (25) in (16), (19),
and (20) of the proof for the q ≥ 4 case (note that (16), (19), and (20) hold for all
q). Therefore, we are only concerned with

∑2
j=1 ∆q(Tvj

∂jω +T∂jωvj). Using the fact
that Sq′−1vj∆q′∂jω has Fourier support in an annulus with inner radius C12q′ and
outer radius C22q′ , and, once again, keeping in mind that q ≤ 3, we have

||∆q(Tvj ∂jω)||Lp ≤
q+4∑

q′=q−4

C||Sq′−1v||L∞2q′ ||∆q′ω||Lp

≤ C(||ω0||Lp0 + ||ω0||L∞)2−qσ||ω||Bσ
p,∞

(26)

for p0 ∈ (1, 2). Furthermore, since q ≤ 3, we write

||∆q(T∂jωvj)||Lp ≤
q+4∑

q′=q−4

||Sq′−1∂jω∆q′vj ||Lp

≤ C

q+4∑
q′=q−4

q′−2∑
k=−1

2−kσ||ω||Bσ
p,∞

||v||L∞

≤ C23σ(||ω0||Lp0 + ||ω0||L∞)2−qσ||ω||Bσ
p,∞

.

This completes the proof of the q < 4, and therefore completes the proof of the
estimate for all q. We conclude that, for all q,

||[v · ∇,∆q]ω||Lp ≤ C1(σ)(||Sq−1∇vj ||L∞ + ||ω0||Lp0 + ||ω0||L∞)2−qσ||ω||Bσ
p,∞

.

�

Note that, if we define h(t, x) = g(t)−1(x)− x, then h satisfies an equation similar
to (10). We have the following:

∂thi + v · ∇hi + vi = 0,

hi|t=0 = 0.
(27)

Since hi satisfies (27), it also satisfies

∂t∆qhi + v · ∇∆qhi = −∆qvi + [v · ∇,∆q]hi,

∆qhi|t=0 = 0.
(28)

This motivates us to prove a similar commutator estimate with h in place of ω. We
prove that the following estimate holds:
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Proposition 6. Let p ∈ (1,∞), δ > 0, and σ > 0 be fixed. Then there exists two
positive constants C1(σ) and C2 such that

||[v · ∇,∆q]h||Lp ≤ C1(σ)(C2 + ||Sq−1∇v||L∞)2−qσ||h||Bσ
p,∞

+
q+4∑

q′=q−4

C(δ)2q′δ||∆q′v||Lp ||h||C1−δ .

Proof. The proof of Proposition 6 is identical to the proof of Proposition 4 with h in
place of ω for every term except ∆q(T∂jhvj). Therefore, we restrict our attention to
this term. This portion of the proof will result in the second piece on the right-hand
side in Proposition 6.

Note that, in the proof of Proposition 4, we use the assumption that q ≥ 4 only
when bounding ||∆q(T∂jωvj)||Lp . For all other terms, q ≥ 0 suffices. This obser-
vation, combined with the fact that we will only need to assume q ≥ 0 to bound
||∆q(T∂jhvj)||Lp , leads us to consider the cases q = −1 and q ≥ 0 separately.

We first assume q ≥ 0, and we write ∆q(T∂jhvj) = ∆q(
∑∞

q′=1 Sq′−1∂jh∆q′vj).
Using the fact that Sq′−1∂jh∆q′vj has Fourier support in an annulus with inner
radius C12q′ and outer radius C22q′ , we apply Bernstein’s inequality and Holder’s
inequality to get

||∆q(T∂jhvj)||Lp ≤
q+4∑

q′=q−4

q′−2∑
k=−1

2kδ2k(1−δ)||∆kh||L∞ ||∆q′v||Lp

≤
q+4∑

q′=q−4

C(δ)2q′δ||h||C1−δ ||∆q′v||Lp .

(29)

We now consider the case q = −1. As in the proof of Proposition 4 when assuming
q < 4, we begin by writing:

(30) [v · ∇,∆q]h = v · ∇∆qh−∆q(v · ∇h).

For the first term of (30), we use the fact that q = −1 to get

(31) ||v · ∇∆qh||Lp ≤ C(||ω0||Lp0 + ||ω0||L∞)2−qσ||h||Bσ
p,∞

for p0 ∈ (1, 2). The second term of (30) can be written as

(32) ∆q(v · ∇h) =
2∑

j=1

∆q(Tvj
∂jh + T∂jhvj + R(vj , ∂jh)).

The proof of the bound on the Lp norm of the remainder term in (32) is identical
to the proofs of (16), (19), and (20), (which hold for all q), with h in place of ω.
Furthermore, we handled the Lp norm of ∆q(T∂jhvj) (see (29), which also holds for
all q). Therefore, in (32), we are only concerned with ∆q(Tvj

∂jh). For this term, we
refer the reader to the proof for ω with q < 4, given in (26). This completes the proof
of the case q = −1, and therefore completes the proof of the estimate for all q. �
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5. Main Theorem

In this section, we prove the following theorem:

Theorem 3. Let v0 ∈ Bs+1
p,∞(R2), div v0 = 0, and let ω(v0) = ω0 ∈ Cc(R2), where

sp ≤ 2, s ∈ (0, 2), and p ∈ (1,∞). Let ε > 0. There exists a unique solution to (1)
such that ||v(t)||Bs+1−ε

p,∞
belongs to L∞loc(R+).

Furthermore, let g(t, x) be the measure-preserving homeomorphism satisfying
∂tg(t, x) = v(t, g(t, x)). Define h(t, x) = g(t)−1(x) − x. Then, under the above as-
sumptions on v0 and ω0, it follows that, for fixed δ > 0, ||h(t)||Bs+1−δ

p,∞
belongs to

L∞loc(R+).

Remark. Uniqueness in Theorem 3 follows from [10].

Proof. We begin by proving the first part of the theorem. Our approach is as fol-
lows: we fix ε′ > 0 and T > 0, and we define σ(t) = s exp{−C

s ε′t}. We then
show that ||v(t)||

B
σ(t)+1
p,∞

∈ L∞([0, T ]), where C is an absolute constant. Letting

ε = s− s exp{−C
s ε′T}, we make ε as small as we would like by our choice of ε′.

We first prove the theorem on a sufficiently small time interval [t0, t]. We then use
a bootstrapping argument to show that the theorem holds on any finite time interval
[0, T ]. From (11) and Proposition 4, it follows that

||∆qω(t)||Lp ≤ ||∆qω(t0)||Lp

+
∫ t

t0

C1(σ(τ))(C2 + ||Sq−1∇v(τ)||L∞)2−qσ(τ)||ω(τ)||
B

σ(τ)
p,∞

dτ.

We see from the proof of Proposition 4 that C1(σ(t)) can be bounded by an absolute
constant for all σ(t) ∈ (0, 2). Therefore, for the remainder of the proof, we drop the
dependence of C1 on σ(t). We multiply both sides of the equation by 2qσ(t) and take
the supremum over q to get

||ω(t)||
B

σ(t)
p,∞

≤ ||ω(t0)||Bσ(t0)
p,∞

+ sup
q
{
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2qσ(t)−qσ(τ)||ω(τ)||
B

σ(τ)
p,∞

dτ}.

We now show that the supremum over q on the right-hand side is finite. We claim
that the loss of regularity in the Besov exponent, resulting in the term 2q(σ(t)−σ(τ)),
is enough to combat the growth of ||Sq−1∇v(τ)||L∞ .

When taking the supremum over q of the time integral, we consider two cases
separately: the supremum over q ≤ N , and the supremum over q > N . We then use
(8) to handle the supremum over q > N . We write

||ω(t)||
B

σ(t)
p,∞

≤ ||ω(t0)||Bσ(t0)
p,∞

+ I1 + I2,

where

I1 = sup
q≤N

{
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2qσ(t)−qσ(τ)||ω(τ)||
B

σ(τ)
p,∞

dτ},
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and

I2 = sup
q>N

{
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2qσ(t)−qσ(τ)||ω(τ)||
B

σ(τ)
p,∞

dτ}.

To bound I2, we apply (8), and we conclude that

(33) I2 ≤
∫ t

t0

C||ω(τ)||
B

σ(τ)
p,∞

dτ + sup
q>N

{
∫ t

t0

C1εq2qσ(t)−qσ(τ)||ω(τ)||
B

σ(τ)
p,∞

dτ}.

To handle the second integral in (33), we integrate by parts. Letting σ(t) =
sexp(− 2C1

s εt) (this is the definition of σ(t) with C = 2C1), we let u = e
2C1

s ετ and

dv = C1εqe
− 2C1

s ετ2qσ(t)−qσ(τ)dτ . Then, substituting u and dv into the second integral
in (33), and recognizing that du and v are positive for all τ ∈ [t0, t], we write

sup
q>N

{ sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

∫ t

t0

udv} ≤ sup
q>N

{ sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

(uv|tt0)}

= sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

e
2C1

s εt 1
2 ln 2

.

(34)

We now bound the first time integral on the right-hand side of (33) by

(35) C sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

(t− t0).

Combining (35) with (34), we conclude that

(36) I2 ≤ sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

{eC
s εt 1

2 ln 2
+ C(t− t0)}.

To bound I1, we first observe that ||Sq−1∇v(τ)||L∞ ≤ q||∇v(τ)||C0
∗
. Then, bound-

ing ||∇v(τ)||C0
∗

by C(||ω0||L∞ + ||ω0||Lp0 ), for p0 ∈ (1,∞), and recognizing that
2q(σ(t)−σ(τ)) ≤ 1 for all q, we conclude that

(37) I1 ≤ CN(t− t0) sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

.

We now combine our estimates for I1 and I2 given in (36) and (37), which gives

sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

≤ ||ω(t0)||Bσ(t0)
p,∞

+ C∗ sup
τ∈[t0,t]

||ω(τ)||
B

σ(τ)
p,∞

,

where we let

(38) C∗ = e
C
s εt 1

2 ln 2
+ CN(t− t0).

To complete the proof, we must make the constant C∗ < 1. Fix t > 0. Given this

t, choose ε > 0 small enough to ensure that e
C
s

εt

2 ln 2 < 1. Depending on our choice of
t and ε, N = N(t, ε) may be very large. Given this N , make t − t0 small enough
so that C∗ < 1. Note that, under these assumptions, C∗ < 1 when we are working
on an interval of length less than or equal to t − t0, as long as the right endpoint of
the interval is less than or equal to t. We therefore break [0, t] into a finite number
M = M(t, ε) of intervals of length t − t0, and we apply a bootstrapping argument.
This gives

sup
τ∈[0,t]

||ω(τ)||
B

σ(τ)
p,∞

≤ CM ||ω0||Bs
p,∞

,
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where C = 1
1−C∗ , and CM depends on t and ε. More precisely, larger initial choice of

t and smaller choice of ε result in larger M and thus larger CM .
This completes the proof for regularity of vorticity. To show that this implies

regularity of the velocity, we need the following estimate:

Lemma 7. Let v0 ∈ Bs+1
p,∞(R2). Then there exists two positive constants C0 and C1

such that
||v(t)||

B
σ(t)+1
p,∞

≤ C0e
C1t + ||ω(t)||

B
σ(t)
p,∞

.

Proof. We refer the reader to the proof of Lemma 6.2 in [7]. �

This completes the proof of the first part of the theorem.

We now prove properties of h. We show that h(t) ∈ B
σ′(t)
p,∞ (R2), where σ′(t) =

σ(t) + 1− δ, and δ is the Holder exponent of h(t) (see Theorem 2). The proof of this
part of the theorem is similar to that for ω. However, we must deal with the extra
term which shows up in the commutator estimate given in Proposition 6.

We begin by applying Proposition 6 to (28), where, once again, we drop the de-
pendence of C1 on σ′. This gives

||∆qh(t)||Lp ≤ ||∆qh(t0)||Lp +
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2−qσ′(τ)||h(τ)||
B

σ′(τ)
p,∞

dτ

+
∫ t

t0

{
q+4∑

q′=q−4

(||h(τ)||C1−δ ||∆q′v(τ)||LpC(δ)2q′δ) + ||∆qv(τ)||Lp}dτ.

We now multiply both sides of the inequality by 2qσ′(t) and take the supremum over
q to get

||h(t)||
B

σ′(t)
p,∞

≤ ||h(t0)||Bσ′(t0)
p,∞

+ sup
q
{
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2q(σ′(t)−σ′(τ))||h(τ)||
B

σ′(τ)
p,∞

dτ}

+
∫ t

t0

{C(δ)||h(τ)||C1−δ ||v(τ)||
B

σ(τ)+1
p,∞

+ ||v(τ)||
B

σ(τ)+1
p,∞

}dτ.

Here we used the fact that σ′(t) = σ(t) + 1− δ, with δ > 0. The constant C(δ) now
depends on σ(τ), but it is uniformly bounded for all σ(τ) ∈ (0, 2).

We replace σ′(t)− σ′(τ) with σ(t)− σ(τ) in the first time integral, and we get

||h(t)||
B

σ′(t)
p,∞

≤ ||h(t0)||Bσ′(t0)
p,∞

+ J1 + J2,

where

J1 = sup
q
{
∫ t

t0

C1(C2 + ||Sq−1∇v(τ)||L∞)2q(σ(t)−σ(τ))||h(τ)||
B

σ′(τ)
p,∞

dτ},

and

J2 =
∫ t

t0

{C(δ)||h(τ)||C1−δ ||v(τ)||
B

σ(τ)+1
p,∞

+ ||v(τ)||
B

σ(τ)+1
p,∞

}dτ.
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The argument for dealing with J1 is identical to the argument we used to handle
I1 and I2 when proving the first part of Theorem 3. Following this approach, we
conclude that

sup
τ∈[t0,t]

||h(τ)||
B

σ′(τ)
p,∞

≤ ||h(t0)||Bσ′(t0)
p,∞

+ C∗ sup
τ∈[t0,t]

||h(τ)||
B

σ′(τ)
p,∞

+ J2,

where C∗ is given by (38). Arguing as we did with ω, we make C∗ < 1 on a sufficiently
short time interval and use a bootstrapping argument, as well as the fact that h(0, x) =
0, to conclude that

(39) sup
τ∈[0,t]

||h(τ)||
B

σ′(τ)
p,∞

≤ C

∫ t

0

{C(δ)||h(τ)||C1−δ ||v(τ)||
B

σ(τ)+1
p,∞

+ ||v(τ)||
B

σ(τ)+1
p,∞

}dτ.

We now observe that the right hand side of (39) is finite by Theorem 2 and by the
first part of Theorem 3. This completes the proof of the theorem. �
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