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CHEN-RUAN COHOMOLOGY OF COTANGENT ORBIFOLDS
AND CHAS-SULLIVAN STRING TOPOLOGY

Ana González, Ernesto Lupercio, Carlos Segovia, Bernardo Uribe,
and Miguel A. Xicoténcatl

Abstract. In this paper we prove that for an almost complex orbifold, its virtual orb-

ifold cohomology [16] is isomorphic as algebras to the Chen-Ruan orbifold cohomology

of its cotangent orbifold.

1. Introduction

In their seminal paper Chas and Sullivan [4] constructed a remarkable product of
degree −d on the homology of the free loop space LM of an oriented manifold M ,

•CS : H∗(LM)⊗H∗(LM) −→ H∗−d(LM).

This product is defined using only the smooth structure of M and nothing else (cf.
[6]).

Viterbo [23], Salamon-Weber [21, 24] and Abbondandolo-Schwarz [1] have con-
structed isomorphisms between a particular flavor of the Floer homology of the cotan-
gent bundle T ∗M and the ordinary homology of the free loop space

HF∗(T ∗M) ' H∗(LM).

Abbondandolo and Schwarz have proved that the pair of pants product in Floer
cohomology of the cotangent corresponds to a product in the homology of the loop
space, defined via Morse theory, which Antonio Ramirez and Ralph Cohen [7] proved
is the Chas-Sullivan product. One of the main conjectures in the field states that the
symplectic field theory on the left-hand side corresponds to the string topology on
the right-hand side. Here we should also mention that for a wide class of manifolds it
has been shown that Floer cohomology is isomorphic to Quantum cohomology [19].

Quite independently the study of orbifolds was revitalized by the introduction of
the Chen-Ruan orbifold cohomology of a symplectic orbifold [5].

In [14] the second and fourth authors have constructed a functor

L : Orbifolds −→ S1-Orbifolds, G 7→ LG,

from orbifolds to infinite dimensional orbifolds with actions of S1. This functor when
restricted to smooth manifolds becomes the ordinary free loop space functor M 7→
LM , where the S1 action is given by rotating the loops. But more interestingly, they
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have proved that the action of S1 on LG has as a fixed suborbifold Λ(G) which is
known as the inertia orbifold of G (cf. [14, 8, 15]).

The second, the fourth and the fifth authors have proved that the homology of
the loop orbifold of a global orbifold (of the form [Y/G]) has the structure of a BV-
algebra [17]. The first author [11] has generalized this theorem to a general orbifold
(C∞-Deligne-Mumford stack). In [16], the second, the fourth and the fifth authors
introduced a new version of orbifold cohomology which was called virtual orbifold
cohomology H∗

virt(ΛG). This is to be interpreted as string topology on the ghost loop
space [15]. In [16] it was proved that this cohomology is a graded associative ring. In
[11] the first author has proved that it is actually a non-compact graded Frobenius
algebra (also known as open boundary Frobenius algebra). In this paper we prove
this result again as a corollary of our main theorem (Theorem 1.1).

The main result of [16] stated that for an interesting family of orbifolds the Frobe-
nius algebra H∗

virt(ΛG) is a subalgebra of the BV-algebra H∗(LG). In [11] the first
author has proved that in general there is only an algebra homomorphism

H∗
virt(ΛG) −→ H∗(LG)

with non-trivial kernel.
Chen and Ruan in their study of orbifold quantum cohomology realized that when

they let the quantum deformation variable vanish they obtained a Frobenius algebra
H∗

CR(X ) for every almost symplectic orbifold X . In this paper we consider the case
X = T ∗G. The main result of this paper is:

Theorem 1.1. For an almost complex orbifold G we have

H∗
CR(T ∗G) ∼= H∗

virt(ΛG).

In the case when G = [Y n/Sn] is the symmetric product obtained by letting the
symmetric group Sn act on the n-fold product Y n we prove that:

Theorem 1.2. There is an embedding of algebras

H∗
CR(T ∗[Y n/Sn]) ↪→ H∗(L[Y n/Sn]).

The paper concludes with a conjecture regarding the Floer homology of certain
Hilbert schemes.

2. Virtual orbifold cohomology

Let S be a complex manifold and let S1 and S2 be closed submanifolds that intersect
cleanly; that is, U := S1∩S2 is a submanifold of S and at each point x of U the tangent
space of U is the intersection of the tangent spaces of S1 and S2. Let E(S, S1, S2)
be the excess bundle of the intersection, i.e., the vector bundle over U which is the
quotient of the tangent bundle of S by the sum of the tangent bundles of S1 and S2

restricted to U . Thus E(S, S1, S2) = 0 if and only if S1 and S2 intersect transversally.
In the Grothendieck group of vector bundles over U the excess bundle becomes

E(S, S1, S2) = TS |U + TU − TS1 |U − TS2 |U .
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Denote by e(S, S1, S2) the Euler class of E(S, S1, S2) and by

U
i1 //

h

  A
AA

AA
AA

A

i2

��

S1

j1

��
S2 j2

// S

(2.1)

the relevant inclusion maps. Then for any cohomology class α ∈ H∗(S1) the following
excess intersection formula [20, Prop. 3.3] holds in the cohomology ring of S2:

j∗2j1∗α = i2∗ (e(S, S1, S2)i∗1(α)) .(2.2)

Consider the orbifold [Y/G] where Y is an almost complex manifold and G acts
preserving the almost complex structure. Define the groups

H∗(Y, G) :=
⊕
g∈G

H∗(Y g)× {g}

where Y g is the fixed point set of the element g. The group G acts in the natural
way. Denote by Y g,h = Y g ∩ Y h and suppose that for every g, h ∈ G we have
cohomology classes v(g, h) ∈ H∗(Y g,h), which are G-equivariant in the sense that
w∗v(k−1gk, k−1hk) = v(g, h) where w : Y k−1gk,k−1hk → Y g,h takes x to w(x) := xk.
Define the map

× : H∗(Y g)×H∗(Y h) → H∗(Y gh)
(α, β) 7→ i∗ (α|Y g.h · β|Y g,h · v(g, h))

where i : Y g,h → Y gh is the natural inclusion.
Let us define now a degree shift σ on H∗(Y, G). We will declare that the degree of

a class αg ∈ H∗(Y g) ⊂ H∗(Y,G)[σ] is

i + σg

where
σg := 2(dimC Y − dimC Y g),

and i is the ordinary degree of αg. In this paper all dimensions and codimensions are
complex. Virtual orbifold cohomology was introduced in [16]. There it was shown
that:

Theorem 2.1. For the cohomology classes v(g, h) = e(Y, Y g, Y h) the map × defines
an associative graded product on H∗

virt(Y,G) := H∗(Y, G)[σ].

Definition 2.2. In the case when v(g, h) = e(Y, Y g, Y h), we will call the prod-
uct × in H∗(Y,G) the virtual intersection product and we will write H∗

virt(Y,G) :=
(H∗(Y, G)[σ],×). Given that H∗(Y, G; R)G ∼= H∗(I[Y/G]; R), the product × induces
a ring structure on the orbifold cohomology of [Y/G]. We will call this ring the virtual
intersection ring of a global orbifold and we will denote it by H∗

virt(Λ[Y/G]).

The definition of the virtual ring generalizes to a non-global orbifold. To do this
we use the language of groupoids, and follow the notation of Adem-Ruan-Zhang [3].
The Lemma 7.2 of [3] is the generalization of the clean intersection formula of Quillen
to the category of orbifolds. In the notation of [3] we must replace Y g and Y h by two
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copies of ΛG, and Y g,h by a copy of G2. We define in general the virtual obstruction
orbibundle V → G2 as the excess bundle of the diagram of embeddings:

G2
e1 //

h

!!C
CC

CC
CC

C
e2

��

ΛG

j1

��
ΛG

j2
// G

(2.3)

The definition of the degree shifting is local so we can use the same definition. We
set

H∗
virt(ΛG) := H∗(ΛG)[σ].

The formula for the product in general becomes

H∗
virt(ΛG)⊗H∗

virt(ΛG) −→ H∗
virt(ΛG)

given by
α× β := (e12)∗(e∗1α · e∗2β · e(V)),

where e12 : G2 → ΛG is the natural map that locally can be seen as the map Y g,h →
Y gh.

Ana González has proved in her PhD thesis the following theorem [11].

Theorem 2.3. The virtual intersection product of a general orbifold (C∞-Deligne-
Mumford stack) induces the structure of a graded commutative algebra over Q on
the rational cohomology H∗

virt(Λ(G)), and moreover, there is a natural non-compact
Frobenius algebra structure compatible with this product

We will prove this theorem by different methods in this paper.

3. Chen-Ruan Cohomology

We will give now the definition of the Chen-Ruan cohomology following [5]. First
we need to define the degree shifting and the obstruction bundle for the Chen-Ruan
theory.

Again the definition of the degree shifting is local so it is enough to define it in the
case of a global quotient (cf. [10]).

Consider Y an almost complex G-manifold with G a finite group. Given g ∈ G
and y ∈ Y g we define a(g, y) the age of g at y as follows. Diagonalize the action of g
in TyY to obtain

g = diag(exp(2πir1), . . . , exp(2πirn)),
with 0 ≤ ri < 1 and set

a(g, y) :=
∑

i

ri.

The age a(g, y) only depends on the connected component Y g
o of Y g in which y lies.

For this reason we can simply write a(g, Y g
o ) or even a(g) when there is no confusion.

Note that the age has the following interesting property

a(g, Y g
o ) + a(g−1, Y g

o ) = codim(Y g
o , Y ).

The Chen-Ruan degree shifting number is defined then as

sg := 2a(g).
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As a rational vector space the Chen-Ruan orbifold cohomology is

H∗
CR(Y,G) := H∗(Y, G)[s]

or more generally
H∗

CR(G) := H∗(ΛG)[s].
The definition of the obstruction bundle is modeled on the definition of the virtual

fundamental class on the moduli of curves for quantum cohomology.
Let M̄3(G) be the moduli space of ghost representable orbifold morphisms fy from

P1
3 to G, where im(f) = y ∈ G0 and the marked orbifold Riemann surface P1

3 has three
marked points, z1, z2, and z3, with multiplicities m1, m2, and m3, respectively. In [2]
it is proved that

M̄3(G) = G2.

Let us fix a connected component G2
o of G2.

To define the Chen-Ruan obstruction bundle Eo → G2
o we consider the elliptic

complex
∂̄y : Ω0(f∗y TG) −→ Ω0,1(f∗y TG).

Chen and Ruan proved that coker(∂̄y) has constant dimension along components and
forms an orbivector bundle Eo → G2

o .
The formula for the Chen-Ruan product is then

H∗
CR(G)⊗H∗

CR(G) −→ H∗
CR(G)

given by
α ? β := (e12)∗(e∗1α · e∗2β · e(E)).

The following is a theorem of Chen and Ruan [5] (cf. [13].)

Theorem 3.1. (H∗
CR(G), ?) is a graded associative algebra, moreover it has a natural

non-compact Frobenius algebra structure compatible with this product.

4. Stringy K-theory

Here we should mention that both the Chen-Ruan and the virtual orbifold theories
can be written in K-theory without much modification in the formulæ [12]. One just
needs to change the Euler classes e(V) and e(E) for the corresponding Euler classes
in K-theory λ−1(V) and λ−1(E) respectively. As Z-modules we have K∗

virt(ΛG) :=
K∗(ΛG) and K∗

JKK(G) := K∗(ΛG). The corresponding expressions for the products
in K-theory are:

V ×W := (e12)∗(e∗1V ⊗ e∗2W ⊗ λ−1(V∗)),
and

V ? W := (e12)∗(e∗1V ⊗ e∗2W ⊗ λ−1(E∗)),
respectively.

Theorem 4.1 (Jarvis-Kaufmann-Kimura [12]). There exists a stringy Chern char-
acter

ChJKK : K∗
JKK(G)⊗ C −→ H∗

CR(G, C)
that is a non-compact Frobenius algebra isomorphism

A similar argument shows:
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Theorem 4.2 (González [11]). There exists a virtual Chern character

Chvirt : K∗
virt(G)⊗ C −→ H∗

virt(G, C)

that is a non-compact Frobenius algebra isomorphism.

Note that when one has an orbifold [Y/G] one can define a G-Frobenius algebra
K∗

JKK(Y, G) in the same way that was defined for cohomology in section 2 [12].
Define the groups

K∗
JKK(Y,G) :=

⊕
g∈G

K∗(Y g)× {g}

with the natural G action given by pull-back in the first coordinate and conjugation
in the second. Define the map

? : K∗(Y g)×K∗(Y h) → K∗(Y gh)
(α, β) 7→ i∗ (α|Y g.h ⊗ β|Y g,h ⊗ λ−1(E∗))

where i : Y g,h → Y gh is the natural inclusion and E is the obstruction bundle of
Chen-Ruan. Then K∗

JKK(Y,G) becomes a G-Frobenius algebra with the ? product.
Similarly we define the corresponding K∗

virt(Y, G).

5. The cotangent orbifold

Given an orbifold represented by a groupoid G, an orbibundle over G is a pair
(E, θ) consisting of an ordinary vector bundle over the manifold of objects G0 and
an isomorphism of the pull-backs under the source and target maps of the groupoid
θ : s∗E ' t∗E. To define the cotangent bundle of a real C∞-orbifold we set E := T ∗G0,
and for every arrow g ∈ G1 we induce an isomorphism

(dg−1)T : T ∗xG0 −→ T ∗gxG0.

All these fiber isomorphisms assemble θ.
We can always choose a groupoid G that is both proper and étale [18]. For this

reason we can suppose that that action of an arrow g : x → gx extends to a neigh-
borhood of x as a smooth map. Moreover if gx = x we can further suppose that the
map g acts linearly on a neighborhood of x and therefore identify dxg with g.

In what follows we will use the notation of [2] Chapter 4 (cf. [3]).

Lemma 5.1. Given a real C∞-orbifold represented by a groupoid G then we have that
H∗(Λ(T ∗G)) ∼= H∗(Λ(G)) as vector spaces.

Proof. This is true because along a fixed component of a twisted sector, the inertia
orbifold of the cotangent bundle is a vector bundle over the corresponding component
of the twisted sector in the original orbifold. In particular, the components of Λ(T ∗G)
are in one-to-one correspondence with those of Λ(G), and are homotopy equivalent.
We also note that the dimension of a component Λ(T ∗G)o has exactly twice the
dimension of Λ(G)o. All of the above is a consequence of the orbifold isomorphism

T ∗ΛG ∼= ΛT ∗G.

�
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From now on we will assume that G is an almost complex orbifold and we will
pick a fixed (invariant) Hermitian metric on G. Such a metric induces a canonical
identification

T ∗G ∼= TG.

Lemma 5.2. Let sg be the Chen-Ruan degree shifting number for a component of
Λ(T ∗G) and σg the virtual degree shifting number for Λ(G). Then

sg = σg.

Proof. This is a local statement so it is enough to show it for a global quotient [Y/G].
The first thing to notice is that at the zero section of the cotangent bundle we have

TT ∗Y |Y ∼= TY ⊕ T ∗Y ∼= TY ⊕ TY.

Therefore the action of a group element in G becomes a matrix of the form(
g

g−1

)
From this we have

sg = 2(a(g) + a(g−1)) = 2(dimC Y − dimC Y g) = σg

as desired. �

Theorem 5.3. Let K → G2 be the orbibundle defined by

K := TG2 − e∗12TΛG
then we have that

E = V +K
in K(G2).

Proof. Let us write the proof for the global quotient [Y/G]. Let Z = TY ∼= T ∗Y
(recall that we have picked a hermitian metric).

We will use a remarkable formula for E obtained in [12] for the component Eg,h →
Zg,h (cf. Lemma 1.12 [10]).

(5.1) Eg,h = (Sg + Sh − Sgh − TZgh + TZg,h)|Zg,h

Here the bundle Sg → Zg is defined as follows. Let W g
k be the k-th eigenbundle of

the action of g on TZ|Zg with eigenvalue 0 ≤ rk < 1. Then we define Sg as the sum
over all eigenbundles:

Sg :=
⊕

k

rkW g
k .

Formula 5.1 is a non-trivial consequence of the Eichler trace formula. Similarly we
define Sg → Y g.

We need to compute Eg,h|Y g,h . For this we notice first that by equation (28) of
[12] we have:

Sg|Y g = Sg + Sg−1 = Ng = (TY − TY g)|Y g .

Similarly we can write
TZgh|Y g,h = 2TY gh|Y g,h

and
TZg,h|Y g,h = 2TY g,h.
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Putting all this back together in equation 5.1 we get

Eg,h|Y g,h = (TY − TY g + TY − TY h − TY + TY gh − 2TY gh + 2TY g,h)|Y g,h =

= (TY − TY g − TY h + TY g,h)|Y g,h + (TY g,h − TY gh)|Y g,h =

= Vg,h +Kg,h.

The proof in the general case is identical replacing Y g and Y h by ΛG and Y g,h by
G2. We leave the details to the reader.

�

With this result and Lemma 7.2 of [3] we can prove the following theorem.

Theorem 5.4. The zero-section inclusion j : ΛG → T ∗ΛG induces an isomorphism
of rings

j∗ : K∗
JKK(T ∗ΛG) −→ K∗

virt(ΛG).

Similarly the zero section j : Y → T ∗Y induces a ring isomorphism

j∗ : K∗
JKK(T ∗Y, G) −→ K∗

virt(Y, G).

Proof. We are using again the notations from [3]. Consider the following commutative
diagram of natural inclusions:

ΛG × ΛG

j×j

��

G2∆oo

j′

��

ι // ΛG

j

��
T ∗ΛG × T ∗ΛG T ∗G2∆τ

oo ιτ
// T ∗ΛG,

(5.2)

where ∆τ := de1 × de2, ∆ := e1 × e2,ι := e12, and ιτ = de12.
The excess intersection bundle of the right hand side square is:

TT ∗ΛG + TG2 − TΛG − TT ∗G2 = 2TΛG + TG2 − TΛG − 2TG2 = −K.

Then we have:

j∗(α ? β) = j∗ιτ∗(∆
τ ∗(α, β)⊗ λ−1(E∗)) = ι∗j

′∗(∆τ ∗(α, β)⊗ λ−1(E∗)⊗ λ−1(−K∗)) =

= ι∗(∆∗(j∗α, j∗β)⊗ λ−1(j′
∗V∗)) = j∗(α)× j∗(β).

This proves the first part of the theorem. For the second part of the theorem we just
need to consider the following diagram:

Y g × Y h

j×j

��

Y g,h
∆oo

j′

��

ι // Y gh

j

��
TY g × TY h TY g,h

∆τ
oo ιτ

// TY gh.

(5.3)

We leave the details to the reader. �

Writing this proof again in cohomology, or using Lemma 5.2 and the Chern char-
acter, we obtain Theorem 1.1.
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6. Final remarks

We have several immediate consequences of Theorem 1.1. The following one is a
property that H∗

virt(ΛG) inherits from the Chen-Ruan theory.

Corollary 6.1. H∗
virt(ΛG) has the structure of a graded non-compact Frobenius alge-

bra. In the case G = [Y/G] we have that H∗
virt(Y,G) has the structure of a non-compact

G-Frobenius algebra.

Proof. This is a consequence of the results of Kaufmann [13] and of Jarvis-Kaufmann-
Kimura [12] for Chen-Ruan theory. �

Ana González has proved this theorem directly in her PhD dissertation [11].
The following two examples follow from the corresponding statements for the Chen-

Ruan theory.

Example 6.2. When G = {1} and the orbifold is actually a manifold, the virtual
intersection ring coincides with the usual intersection ring of a smooth manifold, which
is a Frobenius algebra. Here the statement of Theorem 1.1 states that

H∗(T ∗M) ∼= H∗(M)

which is true by the homotopy invariance of cohomology.

Example 6.3. When Y = {•} is a point, the virtual intersection ring becomes
the Dijkgraaf-Witten Frobenius algebra associated to a finite group [9]. Here the
cotangent orbifold equals the original orbifold and the statement of Theorem 1.1 is a
tautology.

Example 6.4. This is a more interesting example. Consider the global orbifold

G = [Y n/Sn],

namely the n-th symmetric product of a complex manifold.
A theorem of Fantechi-Göttsche [10] and Uribe [22] states that when X is a com-

plex projective surface with trivial canonical class the Chen-Ruan cohomology of the
symmetric product orbifold is isomorphic to the ordinary cohomology of the Hilbert
scheme (which is a resolution of singularities) X [n], namely

H∗
CR([Xn/Sn]) ∼= H∗(X [n]).

The main theorem of [16] states that there is an embedding of rings from virtual
orbifold cohomology to orbifold string topology of the loop orbifold L[Y n/Sn],

H∗
virt(Λ[Y n/Sn]) ↪→ H∗(L[Y n/Sn])

where the right hand side carries the product defined in [17].
Combining these results with theorem 1.1 we obtain:

Theorem 6.5. There is an embedding of algebras

H∗
CR(T ∗[Y n/Sn]) ↪→ H∗(L[Y n/Sn]).
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We end this paper with a conjecture. We believe that when Y is a complex curve
there is an isomorphism

FH∗((T ∗Y )[n]) ∼= H∗(L[Y n/Sn]).

between the Floer homology of the Hilbert scheme of T ∗Y and the orbifold string
topology of the loop symmetric product. For a general complex manifold Y it is
reasonable to believe that

FH∗
CR(T ∗[Y n/Sn]) ∼= H∗(L[Y n/Sn]),

where the left hand side is the yet to be defined Chen-Ruan version of Floer homology.
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