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ZEROS OF RANDOM POLYNOMIALS ON Cm

Thomas Bloom and Bernard Shiffman

Abstract. For a regular compact set K in Cm and a measure µ on K satisfying the
Bernstein-Markov inequality, we consider the ensemble PN of polynomials of degree N ,

endowed with the Gaussian probability measure induced by L2(µ). We show that for
large N , the simultaneous zeros of m polynomials in PN tend to concentrate around

the Silov boundary of K; more precisely, their expected distribution is asymptotic to

Nmµeq , where µeq is the equilibrium measure of K. For the case where K is the unit
ball, we give scaling asymptotics for the expected distribution of zeros as N →∞.

1. Introduction

A classical result due to Hammersley [Ha] (see also [SV]), loosely stated, is that
the zeros of a random complex polynomial

(1) f(z) =
N∑

j=0

cjz
j

mostly tend towards the unit circle |z| = 1 as the degree N →∞, when the coefficients
cj are independent complex Gaussian random variables of mean zero and variance
one. In this paper, we will prove a multivariable result (Theorem 3.1), a special case
(Example 3.5) of which shows, loosely stated, that the common zeros of m random
complex polynomials in Cm,

(2) fk(z) =
∑
|J|≤N

ckJ z
j1
1 · · · zjm

m for k = 1, . . . ,m ,

tend to concentrate on the product of the unit circles |zj | = 1 (j = 1, . . . ,m) as
N →∞, when the coefficients ckJ are i.i.d. complex Gaussian random variables.

The following is our basic setting: We let K be a compact set in Cm and let µ
be a Borel probability measure on K. We assume that K is non-pluripolar and we
let VK be its pluricomplex Green function. We also assume that K is regular (i.e.,
VK = V ∗

K) and that µ satisfies the Bernstein-Markov inequality (see §2). We give the
space PN of holomorphic polynomials of degree ≤ N on Cm the Gaussian probability
measure γN induced by the Hermitian inner product

(3) (f, g) =
∫

K

fḡ dµ .
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The Gaussian measure γN can be described as follows: We write f =
∑d(N)

j=1 cjpj ,
where {pj} is an orthonormal basis of PN with respect to (3) and d(N) = dimPN =(
N+m

m

)
. Identifying f ∈ PN with c = (c1, . . . , cd(N)) ∈ Cd(N), we have

dγN (s) =
1

πd(N)
e−|c|

2
dc .

(The measure γN is independent of the choice of orthonormal basis {pj}.) In other
words, a random polynomial in the ensemble (PN , γN ) is a polynomial f =

∑
j cj pj ,

where the cj are independent complex Gaussian random variables with mean 0 and
variance 1.

Our main result, Theorem 3.1, gives asymptotics for the expected zero current of k
i.i.d. random polynomials with respect to the Gaussian probability measure induced
by (3) (where 1 ≤ k ≤ m). In particular, the expected distribution E(Zf1,...,fm

)
of simultaneous zeros of m independent random polynomials in (PN , γN ) has the
asymptotics

(4)
1
Nm

E(Zf1,...,fm
) → µeq weak∗ ,

where µeq = ( i
π∂∂̄VK)m is the equilibrium measure of K (see (8) below). Here, E(X)

denotes the expected value of a random variable X.
We now describe some recent related results on expected distributions of zeros.

The one-dimensional case of (4) was given in [Bl2], which generalized the results in
[SZ2] for the case where K is a real-analytic domain in C (or its boundary). After this
paper was written, generalizations of (4) to weighted equilibrium measures were given
in [Bl3], and generalizations to equilibrium measures on pseudoconcave domains in
compact Kähler manifolds were given by R. Berman [Be]. It was also shown in [Bl3]
that (4) holds for certain non-Gaussian random polynomials on C. Results on the
distribution of zeros of polynomials on C with random real coefficients were given by
Shepp-Vanderbei [SV], Ibragimov-Zeitouni [IZ] and others.

The reader may notice that the distributions of zeros for the measures on PN

considered here are quite different from those of the SU(m+1) ensembles studied, for
example, in [SZ1, SZ4, BSZ1, BSZ2, DS]. The Gaussian measure on the SU(m + 1)
polynomials is based on the inner product

〈f, g〉N =
∫

S2m+1
FN GN ,

where FN , GN ∈ C[z0, z1, . . . , zm] denote the degree N homogenizations of f and g
respectively. It follows easily from the SU(m+1)-invariance of the inner product that
the expected distribution of simultaneous zeros equals Nm

πm ωm (exactly), where ω is
the Fubini-Study Kähler form (on Cm ⊂ CPm). We note that, unlike (3), this inner
product depends on N ; indeed, ‖zJ‖2

N = m!(N−|J|)!j1!···jm!
(N+m)! [SZ1, (30)].

In this paper, we also give scaling limits for the expected zero density in the case
of the unit ball in Cm (Theorem 4.1). An open problem is to find scaling limits for
more general sets in Cm.
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2. Background

We let L denote the Lelong class of plurisubharmonic (PSH) functions on Cm of
at most logarithmic growth at ∞. That is

(5) L := {u ∈ PSH(Cm) | u(z) ≤ log+ ‖z‖+O(1)}
For K a compact subset of Cm, we define its pluricomplex Green function VK(z) via

(6) VK(z) = sup{u(z) | u ∈ L, u ≤ 0 on K}.
We will assume K is regular, that is by definition, VK is continuous on Cm (and
so VK = V ∗

K , its uppersemicontinuous regularization). The function VK is a locally
bounded PSH function on Cm and, in fact

(7) VK − log+ ‖z‖ = O(1) .

By a basic result of Bedford and Taylor [BT1] (see [Kl]), the complex Monge-Ampère
operator (ddc)m = (2i∂∂̄)m is defined on any locally bounded PSH function Cm and
in particular on VK . The equilibrium measure of K [BT1, BT2, Le, NZ, Ze] (see also
[Kl, Cor. 5.5.3]) is defined by

(8) µeq(K) :=
(
i

π
∂∂̄VK

)m

Since VK satisfies (7), it is a positive Borel measure, here normalized to have mass
1. The support of the measure µeq(K) is the Silov boundary of K for the algebra
of entire analytic functions [BT2]. In one variable, i.e. K ⊂ C, VK is the Green
function of the unbounded component of C \ K with a logarithmic pole at ∞, and
µeq(K) = 1

2π ∆VK , where ∆ is the Laplacian [Ra].
Let µ be a finite positive Borel measure on K. The measure µ is said to satisfy a

Bernstein-Markov (BM) inequality, if, for each ε > 0 there is a constant C = C(ε) > 0
such that

(9) ‖p‖K ≤ Ceε deg(p)‖p‖L2(µ)

for all holomorphic polynomials p. Essentially, the BM inequality says that the L2

norms and the sup norms of a sequence of holomorphic polynomials of increasing
degrees are “asymptotically equivalent”.

The question arises as to which measures actually satisfy the BM inequality. It is
a result of Nguyen-Zeriahi [NZ] combined with [Kl, Cor. 5.6.7] that for K regular,
µeq(K) satisfies BM. This fact is used in Examples 3.5–3.6. In [Bl1, Theorem 2.2], a
“mass-density” condition for a measure to satisfy BM was given. (See also [BL].)

Our proof uses the probabilistic Poincaré-Lelong formula for the zeros of random
functions (Proposition 2.1 below). Considering a slightly more general situation, we
let g1, . . . , gd be polynomials with no common zeros on a domain U ⊂ Cm. (We are
interested in the case where U = Cm and {gj} is an orthonormal basis of PN with
respect to the inner product (3), as discussed above.) We let F denote the ensemble of
random polynomials of the form f =

∑
cj gj , where the cj are independent complex

Gaussian random variables with mean 0 and variance 1. We consider the Szegő kernel

SF (z, w) =
d∑

j=1

gj(z) gj(w) .
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For the case where the gj are orthonormal with respect to an inner product on O(U),
SF (z, w) is the kernel for the orthogonal projection onto the span of the gj .

Under the assumption that the gj have no common zeros, it is easily shown us-
ing Sard’s theorem (or Bertini’s theorem) that for almost all f1, . . . , fk ∈ F , the
differentials df1, . . . , dfk are linearly independent at all points of the zero set

loc(f1, . . . , fk) := {z ∈ U : f1(z) = · · · = fk(z) = 0} .

This condition implies that the complex hypersurfaces loc(fj) are smooth and in-
tersect transversely, and hence loc(f1, . . . , fk) is a codimension k complex subman-
ifold of U . We then let Zf1,...,fk

∈ D′k,k(U) denote the current of integration over
loc(f1, . . . , fk):(

Zf1,...,fk
, ϕ

)
=

∫
loc(f1,...,fk)

ϕ , ϕ ∈ Dm−k,m−k(U) .

We shall use the following Poincaré-Lelong formula:

Proposition 2.1. The expected zero current of k independent random polynomials
f1, . . . , fk ∈ F is given by

E(Zf1,...,fk
) =

(
i

2π
∂∂̄ logSF (z, z)

)k

.

A proof of Proposition 2.1 (for sections of holomorphic line bundles) can be found
in [SZ4]. The codimension k = 1 case was given in [SZ1]. The general case follows
from the codimension 1 case together with the fact that

(10) E(Zf1,...,fk
) = E(Zf1) ∧ · · · ∧E(Zfk

) = E(Zf )k ,

which is a consequence of the independence of the fj . The wedge product of currents
is not always defined, but Zf1 ∧· · ·∧Zfk

is almost always defined (and equals Zf1,...,fk

whenever the hypersurfaces loc(fj) are smooth and intersect transversely), and a short
argument given in [SZ3] or [SZ4] yields (10). The point case k = m of Proposition
2.1 was given by Edelman-Kostlan [EK, Th. 8.1]. We note that the expectations in
(10) are smooth forms.

3. Asymptotics of expected zero currents

We now state our main result on the expected distribution of simultaneous zeros
of random polynomials orthonormalized on a compact set:

Theorem 3.1. Let µ be a Borel probability measure on a regular compact set K ⊂ Cm,
and suppose that (K,µ) satisfies the Bernstein-Markov inequality. Let 1 ≤ k ≤ m, and
let (Pk

N , γ
k
N ) denote the ensemble of k-tuples of i.i.d. Gaussian random polynomials

of degree ≤ N with the Gaussian measure dγN induced by L2(µ). Then

1
Nk

Eγk
N

(Zf1,...,fk
) →

(
i

π
∂∂̄VK

)k

weak∗, as N →∞ ,

where VK is the pluricomplex Green function of K with pole at infinity.
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Here we say that a sequence TN of currents of order 0 converges weak∗ to T if
(TN , ϕ) → (T, ϕ) for all compactly supported test forms ϕ with continuous coeffi-
cients. Using general variance estimates given in [Sh] together with Theorem 3.1, one
can show that with probability one, a sequence {fN

1 , . . . , f
N
k }N=1,2,... of k-tuples of

random polynomials of increasing degree satisfies:

(11)
1
Nk

ZfN
1 ,...,fN

k
→

(
i

π
∂∂̄VK

)k

weak∗ .

(See [Sh]; the one-dimensional case of (11) was given in [Bl2] using potential theory.)
To prove Theorem 3.1, we consider the Szegő kernels

SN (z, w) := S(PN ,γN )(z, w) =
d(N)∑
j=1

pj(z)pj(w) ,

where {pj} is an L2(µ)-orthonormal basis for PN . Our proof is based on approxi-
mating the extremal function VK by the (normalized) logarithms of the Szegő kernels
SN (z, z) (Lemma 3.4) and then applying the Poincaré-Lelong formula of Proposition
2.1.

We begin by considering the polynomial suprema

(12) ΦK
N (z) = sup{|f(z)| : f ∈ PN , ‖f‖K ≤ 1} .

Since 1
N log f ∈ L, for f ∈ PN , it is clear that 1

N log ΦK
N ≤ VK , for all N . Pioneering

work of Zaharjuta [Za] and Siciak [Si1, Si2] established the convergence of 1
N log ΦK

N

to VK . The uniform convergence when K is regular seems not to have been explicitly
stated and we give the proof below.

Lemma 3.2. Let K be a regular compact set in Cm. Then
1
N

log ΦK
N (z) → VK(z)

uniformly on compact subsets of Cm.

Proof. We first note that 1 ≤ Φj ≤ ΦjΦk ≤ Φj+k, for j, k ≥ 0. By a result of Siciak
[Si1] and Zaharjuta [Za] (see [Kl, Theorem 5.1.7]),

(13) VK(z) = lim
N→∞

1
N

log ΦK
N (z) = sup

N

1
N

log ΦK
N (z) ,

for all z ∈ Cm.
We use the regularity of K to show that the convergence is uniform: let

ψN =
1
N

log ΦK
N ≥ 0 .

Thus for N, k ≥ 1, j ≥ 0, we have

Nk ψNk + j ψj ≤ (Nk + j)ψNk+j .

Since ψN ≤ ψNk, we then obtain the inequality

(14) ψNk+j ≥
Nk

Nk + j
ψN +

j

Nk + j
ψj ≥

Nk

Nk + j
ψN .
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Fix ε > 0. For each a ∈ Cm, we choose Na ∈ Z+ such that

VK(a)− ψNa
(a) < ε and

VK(a)
Na

< ε ,

and then choose a neighborhood Ua of a such that

|VK(z)− VK(a)| < ε, ψNa
(z) ≥ ψNa

(a)− ε,
VK(z)
Na

< ε, for z ∈ Ua .

Now let N ≥ N2
a , and write N = Nak+ j, where k ≥ Na, 0 ≤ j < Na. By (13)–(14),

we have

(15) 0 ≤ VK−ψN ≤ VK−
Nak

Nak + j
ψNa ≤ VK−

Na

Na + 1
ψNa ≤ VK−ψNa+

1
Na + 1

VK .

Hence, for all N ≥ N2
a and for all z ∈ Ua, we have

0 ≤ VK(z)− ψN (z)(16)
< VK(z)− ψNa

(z) + ε

= [VK(a)− ψNa
(a)] + [VK(z)− VK(a)] + [ψNa

(a)− ψNa
(z)] + ε

< 4ε .

Hence for each compact A ⊂ Cm, we can cover A with finitely many Uai
, so that we

have by (16),
‖VK − ψN‖A ≤ 4ε ∀ N ≥ max

i
N2

ai
.

�

Lemma 3.3. For all ε > 0, there exists C = Cε > 0 such that

1
d(N)

≤ SN (z, z)
ΦK

N (z)2
≤ C eεNd(N).

Proof. Let f ∈ PN with ‖f‖K ≤ 1. Then

|f(z)| =
∣∣∣∣∫

K

SN (z, w)f(w) dµ(w)
∣∣∣∣ ≤

∫
K

|SN (z, w)| dµ(w)

≤
∫

K

SN (z, z)
1
2SN (w,w)

1
2 dµ(w) = SN (z, z)

1
2 ‖SN (w,w)

1
2 ‖L1(µ)

≤ SN (z, z)
1
2 ‖1‖L2(µ) ‖SN (w,w)

1
2 ‖L2(µ) = SN (z, z)

1
2 d(N)

1
2 .

Taking the supremum over f ∈ PN with ‖f‖K ≤ 1, we obtain the left inequality of
the lemma.

To verify the right inequality, we let {pj} be a sequence of L2(µ)-orthonormal
polynomials, obtained by applying Gram-Schmid to a sequence of monomials of non-
decreasing degree, so that {p1, . . . pd(N)} is an orthonormal basis of PN (for each
N ∈ Z+). By the Bernstein-Markov inequality (9), we have

‖pj‖K ≤ C eε deg pj

and hence

|pj(z)| ≤ ‖pj‖K ΦK
deg pj

(z) ≤ C eε deg pj ΦK
deg pj

(z) ≤ C eεN ΦK
N (z) , for j ≤ d(N).
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Therefore,

SN (z, z) =
d(N)∑
j=1

|pj(z)|2 ≤ d(N)C2 e2εNΦK
N (z)2 .

�

Lemma 3.4. Under the hypotheses of Theorem 3.1, we have
1

2N
logSN (z, z) → VK(z)

uniformly on compact subsets of Cm.

Proof. Let ε > 0 be arbitrary. Recalling that d(N) =
(
N+m

m

)
, we have by Lemma 3.3,

−m
N

log(N +m) ≤ 1
N

log
(
SN (z, z)
ΦK

N (z)2

)
≤ logC

N
+ ε+

m

N
log(N +m) .

Since ε > 0 is arbitrary, we then have

(17)
1
N

log
(
SN (z, z)
ΦK

N (z)2

)
→ 0 .

The conclusion follows from Lemma 3.2 and (17). �

Remark: The asymptotic behavior of the orthonormal polynomials {pj} was first
studied by A. Zeriahi [Ze], who showed that

(18) lim sup
j→∞

1
deg pj

log |pj(z)| = VK(z) , for all z ∈ Cm r K̂ ,

where K̂ denotes the polynomially convex hull of K. Zeriahi’s formula (18) follows
immediately from Lemma 3.4.

Proof of Theorem 3.1: It follows from Lemma 3.4, together with continuity of the
complex Monge-Àmpere operator under uniform limits [BT1], that(

i

2πN
∂∂̄ logSN (z, z)

)k

→
(
i

π
∂∂̄VK(z)

)k

weak∗ .

The conclusion then follows from Proposition 2.1. �

Example 3.5. Let K be the unit polydisk in Cm. Then VK = maxm
j=1 log+ |zj |,

the Silov boundary of K is the product of the circles |zj | = 1 (j = 1, . . . ,m), and
dµeq = ( 1

2π )mdθ1 · · · dθm where dθj is the angular measure on the circle |zj | = 1.
The monomials zJ := zj1

1 · · · zjm
m , for |J | ≤ N , form an orthonormal basis for PN .

A random polynomial in the ensemble is of the form

f(z) =
∑
|J|≤N

cJz
J

where the cJ are independent complex Gaussian random variables of mean zero and
variance one. By Theorem 3.1, Eγm

N
(Zf1,...,fm

) → ( 1
2π )mdθ1 · · · dθm weak∗, asN →∞.

In particular, the common zeros of m random polynomials tend to the product of the
unit circles |zj | = 1 for j = 1, . . . ,m.
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Example 3.6. Let K be the unit ball {‖z‖ ≤ 1} in Cm. Then the Silov boundary of
K is its topological boundary {‖z‖ = 1}, VK(z) = log+ ‖z‖, and µeq is the invariant
hypersurface measure on ‖z‖ = 1 normalized to have total mass one.

4. Scaling limit zero density for orthogonal polynomials on S2m−1

Examples 3.5 and 3.6 both reduce to the unit disk in the one variable case. In that
case, detailed scaling limits are known (see, for example, [IZ]). For a more general
compact set K ⊂ C with an analytic boundary, scaling limits are found in [SZ2].

In this section, we consider the case where K = {z ∈ Cm : ‖z‖ ≤ 1} is the unit ball
and µ is its equilibrium measure, i.e. invariant measure on the unit sphere S2m−1.
We have the following scaling asymptotics for the expected distribution of zeros of m
random polynomials orthonormalized on the sphere:

Theorem 4.1. Let (Pm
N , γ

m
N ) denote the ensemble of m-tuples of i.i.d. Gaussian

random polynomials of degree ≤ N with the Gaussian measure dγN induced by
L2(S2m−1, µ), where µ is the invariant measure on the unit sphere S2m−1 ⊂ Cm.
Then

Eγm
N

(Zf1,...,fm
) = DN

(
log ‖z‖2

) (
i

2
∂∂̄‖z‖2

)m

,

where

1
Nm+1

DN

( u
N

)
=

1
πm

F ′′m(u)F ′m(u)m−1 +O

(
1
N

)
,

Fm(u) = log
[
dm−1

dum−1

(
eu − 1
u

)]
.

Proof. We write

zJ = zj1
1 · · · zjm

m , z = (z1, . . . , zm), J = (j1, . . . , jm) .

An easy computation yields

(19)
∫

S2m−1
|zJ |2 dµ(z) =

(m− 1)!j1! · · · jm!
(|J |+m− 1)!

=
1(|J|+m−1

m−1

)(|J|
J

) ,
where

|J | = j1 + · · ·+ jm ,

(
|J |
J

)
=

|J |!
j1! · · · jm!

.

Thus an orthonormal basis for PN on S2m−1 is:

(20) ϕJ(z) =
(
|J |+m− 1
m− 1

) 1
2
(
|J |
J

) 1
2

zJ , |J | ≤ N .

We have

SN (z, z) =
∑
|J|≤N

|ϕJ(z)|2 =
N∑

k=0

(
k +m− 1
m− 1

) ∑
|J|=k

(
k

J

)
|z1|2j1 · · · |zm|2jm

=
N∑

k=0

(
k +m− 1
m− 1

)
‖z‖2k .
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Hence

(21) SN (z, z) = gN (‖z‖2) , where gN (x) =
N∑

k=0

(
k +m− 1
m− 1

)
xk .

We note that

gN =
1

(m− 1)!
G

(m−1)
N , where GN (x) =

1− xN+m

1− x
.

We denote by O( 1
N ) any function λ(N,u) = λN (u) : Z+ × R → R satisfying:

(22) ∀R > 0, ∀j ∈ N, ∃CRj ∈ R+ such that sup
|u|<R

|λ(j)
N (u)| < CRj

N
.

We note that

N log
(
1 +

u

N

)
= u+ u2O

(
1
N

)
(for |u| < N) ,

and hence (
1 +

u

N

)N

= eu + u2O

(
1
N

)
.

Thus we have

(23)
1
N
GN

(
1 +

u

N

)
=
eu − 1
u

+O

(
1
N

)
.

Hence

(24)
1
Nm

gN

(
1 +

u

N

)
=

1
(m− 1)!

dm−1

dum−1

(
eu − 1
u

)
+O

(
1
N

)
.

Therefore

(25) log
[
(m− 1)!
Nm

gN

(
1 +

u

N

)]
= Fm(u) +O

(
1
N

)
,

where Fm is given in the statement of the theorem.
Since the zero distribution is invariant under the SO(2m)-action on Cm, we can

write

(26) Eγm
N

(Zf1,...,fm
) = DN

(
log ‖z‖2

) (
i

2
∂∂̄‖z‖2

)m

.

Then DN ( u
N ) is the density at the point

zN :=
(

1√
m
eu/2N , . . . ,

1√
m
eu/2N

)
∈ Cm , ‖zN‖2 = eu/N .

We shall compute using the local coordinates ζj = ρj + iθj = log zj . Let

Ω =
(
i

2
∂∂̄

∑
|ζj |2

)m

.

By Proposition 2.1 and (21), we have

Eγm
N

(Zf1,...,fm
) =

(
1
2π

)m

det
(

1
2

∂2

∂ρj∂ρk
log gN

(∑
e2ρj

))
Ω .(27)
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We note that

(28) Ω = mm

[
1 +O

(
1
N

)](
i

2
∂∂̄‖z‖2

)m

at the point zN .

We let 1 denote the m ×m matrix all of whose entries are equal to 1 (and we let I
denote the m×m identity matrix). By (25) and (27)–(28), we have

DN

( u
N

)
=

(m
2π

)m
[
1 +O

(
1
N

)]
×det

(
2m−2 e2u/N (log gN )′′(eu/N )1 + 2m−1 eu/N (log gN )′(eu/N ) I

)
=

1
πm

[
1 +O

(
1
N

)]
det

(
m−1N2 F ′′m(u)1 +N F ′m(u) I

)
.

Therefore,

1
Nm+1

DN

( u
N

)
=

1
Nm+1 πm

[
1 +O

(
1
N

)]
×

{[
N F ′m(u)

]m + m
[
m−1N2 F ′′m(u)

] [
N F ′m(u)

]m−1
}

=
1
πm

F ′′m(u)F ′m(u)m−1 +O

(
1
N

)
.

�

Remark: There is a similarity between the scaling asymptotics of Theorem 4.1
and that of the one-dimensional SU(1, 1) ensembles in [BR] with the norms ‖zj‖ =(
L−1+j

j

)−1/2
, for L ∈ Z+. Then the expected distribution of zeros of random SU(1, 1)

polynomials of degree N has the asymptotics [BR, Th. 2.1]:

EN (Zf ) = D̃N

(
log |z|2

) i

2
dz ∧ dz̄ ,

where (in our notation)

1
N2

D̃N

( u
N

)
=

1
π
F ′′L−1(u) +O

(
1
N

)
.
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applications, Comment. Math. Helv. 81 (2006), 221–258.

[EK] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real? Bull.

Amer. Math. Soc. 32 (1995), 1–37.
[Ha] J. H. Hammersley, The zeros of a random polynomial. Proceedings of the Third Berke-

ley symposium on Mathematical Statistics and Probability, 1954-55, vol II, University of

California Press, California 1956, pp. 89–111.
[IZ] I. Ibragimov and O. Zeitouni, On roots of random polynomials, Trans. Amer. Math. Soc.

349 (1997), 2427–2441.

[Kl] M. Klimek, Pluripotential Theory, London Math. Soc. Monographs, New Series 6, Oxford
University Press, New York, 1991.

[Le] N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions

in Cn, Trans. Amer. Math. Soc. 289 (1985), 333–343.
[NZ] T. V. Nguyen and A. Zériahi, Famille de polynômes presque partout bornées, Bull. Sci.
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