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SCALAR CURVATURE OF MINIMAL HYPERSURFACES IN A
SPHERE

Si-Ming Wei and Hong-Wei Xu

Abstract. We first extend the well-known scalar curvature pinching theorem due to

Peng-Terng, and prove that if M a closed minimal hypersurface in Sn+1 (n = 6, 7), then

there exists a positive constant δ(n) depending only on n such that if n ≤ S ≤ n + δ(n),

then S ≡ n, i.e., M is one of the Clifford torus Sk(
q

k
n

)×Sn−k(
q

n−k
n

), k = 1, 2, ..., n−1.

Secondly, we point out a mistake in Ogiue and Sun’s paper in which they claimed that
they had solved the open problem proposed by Peng and Terng.

1. Introduction

Let M be an n-dimensional closed minimal hypersurface in an (n+1)-dimensional
unit sphere Sn+1. Denote by S the squared length of the second fundamental form
of M and R its scalar curvature. So R = n(n− 1)− S. The famous rigidity theorem
due to Simons, Lawson, Chern, do Carmo and Kobayashi [4, 5, 10] says that if S ≤ n,

then S ≡ 0, or S ≡ n. i.e., M is the great sphere Sn, or the Clifford torus Sk(
√

k
n )×

Sn−k(
√

n−k
n ). Further discussions in this direction have been carried out by many

other authors [1, 3, 6, 11, 12, 13, 14], etc.. On the other hand, many geometers have
been interested in the question whether there are several scalar curvature pinching
phenomena for closed minimal hypersurfaces in a unit sphere. In [8], Peng and Terng
proved that if the scalar curvature of M is a constant, then there exists a positive
constant α(n) depending only on n such that if n ≤ S ≤ n + α(n), then S = n. Later
Cheng and Yang [2] improved the pinching constant α(n) to n/3. More general, Peng
and Terng [9] obtained an important pinching theorem for minimal hypersurfaces
without assumption that the scalar curvature is a constant. Precisely, they proved
that if Mn(n ≤ 5) is a closed minimal hypersurface in Sn+1, then there exists a
positive constant δ(n) depending only on n such that if n ≤ S ≤ n + δ(n), then
S ≡ n. The following problem proposed by Peng and Terng [9] is very attractive.

Open Problem. Let M be an n-dimensional closed minimal hypersurface in
Sn+1, n ≥ 6. Does there exist a positive constant δ(n) depending only on n such that

if n ≤ S ≤ n + δ(n), then S ≡ n, i.e., M is one of the Clifford torus Sk(
√

k
n ) ×

Sn−k(
√

n−k
n ), k = 1, 2, ..., n− 1?
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In this note, we solve the open problem for n = 6, 7, and prove the following
pinching theorem for minimal hypersurfaces in unit spheres of dimensions 7 and 8.

Theorem. Let M be an n-dimensional closed minimal hypersurface in Sn+1, n =
6, 7. Then there exists a positive constant δ(n) depending only on n such that if

n ≤ S ≤ n + δ(n), then S ≡ n, i.e., M is one of the Clifford torus Sk(
√

k
n ) ×

Sn−k(
√

n−k
n ), k = 1, 2, ..., n− 1. Here δ(6) = 1

76 and δ(7) = 1
1126 .

Our theorem generalize the scalar curvature pinching theorem due to Peng and
Terng [9] from the case n ≤ 5 to n ≤ 7. Up to now, the open problem for n ≥ 8 is
still open.

In [7], Ogiue and Sun claimed that they had solved the open problem for arbitrary
n. Unfortunately, there is a fatal mistake in their proof. In section 4, we point out
their mistake.

2. Fundamental formulas for minimal hypersurfaces in a sphere

Throughout this paper let M be an n-dimensional closed minimal hypersurface
in an (n + 1)-dimensional unit sphere Sn+1. We shall make use of the following
convention on the range of indices:

1 ≤ A,B, C, · · · ≤ n + 1, 1 ≤ i, j, k, · · · ≤ n.

Choose a local orthonormal frame field {eA} in Sn+1 such that, restricted to M , the
e ’
i s are tangent to M . Let {ωA } be the dual frame fields of {eA} and {ωAB }

the connection 1-forms of Sn+1 respectively. Restricting these forms to M , we have
ωn+1 i =

∑
j hij ωj , hij = hji. Let R and h be the scalar curvature and the second

fundamental form of M respectively. Denote by S the squared length of h and H the
mean curvature of M . Then we have

(2.1) h =
∑
i,j

hij ωi ⊗ ωj , S =
∑
i,j

h2
ij .

(2.2) H =
1
n

∑
i

hii = 0, R = n(n− 1)− S.

Denote by hijk, hijkl and hijklm the first, second and third covariant derivatives of
the second fundamental form tensor hij . Then

(2.3) ∇h =
∑
i,j,k

hijk ωi ⊗ ωj ⊗ ωk, hijk = hikj .

(2.4) hijkl = hijlk +
∑
m

hmjRmikl +
∑
m

himRmjkl.

(2.5) hijklm = hijkml +
∑

r

hrjkRrilm +
∑

r

hirkRrjlm +
∑

r

hijrRrklm.

For an arbitrary fixed point x ∈ M , we take orthonormal frames such that hij = λiδij

for all i, j. Then

(2.6)
∑

i

λi = 0,
∑

i

λ2
i = S.
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Following [4, 9], we have

(2.7)
1
2
4S = |∇h|2 + S(n− S).

(2.8)
1
2
4(|∇h|2) = |∇2h|2 + (2n + 3− S)|∇h|2 + 3(2B −A)− 3

2
|∇S|2.

(2.9) λ2
k − 4λiλk <

√
17 + 1

2
S, 1 ≤ i, k ≤ n.

(2.10) 3(A− 2B) ≤
√

17 + 1
2

S|∇h|2,

(2.11)
∫

M

[(S − 2n− 3
2
)|∇h|2 +

3
2
(A− 2B) +

9
8
|∇S|2]dM ≥ 0,

where A =
∑

i,j,k

h2
ijkλ2

i and B =
∑

i,j,k

h2
ijkλiλj .

3. Proof of Theorem

The crucial point in our proof is to give a sharper pointwise estimate of 3(A− 2B)
in terms of S and |∇h|2 by using new method. The following lemmas will be used in
the proof of the theorem.

Lemma 3.1. Let M be an n-dimensional closed minimal hypersurface in the unit
sphere Sn+1, n ≥ 6. Suppose that

(3.1) 3(A− 2B) ≤ t(n)S|∇h|2,

where t(n) is a number depending only on n satisfying 0 ≤ t(n) < 2 + 3
n . Then there

exists a positive constant δ(n) such that if n ≤ S ≤ n + δ(n), then S ≡ n.

Proof. By the assumption, we have

6− [2t(n)− 4]n
9

> 0.

We choose a positive constant δ(n) depending only on n satisfying

(3.2) 0 < δ(n) <
6− [2t(n)− 4]n

9
.

It follows from the assumption n ≤ S(x) ≤ n + δ that

(3.3)
∫

M

|∇S|2dM = 2
∫

M

[S2(S − n)− S|∇h|2]dM ≤ 2
∫

M

(n + δ − S)|∇h|2dM.

From (2.11), (3.1) and (3.3), we obtain

(3.4) 0 ≤
∫

M

(
2t(n)− 5

4
S − 6− n− 9δ(n)

4
)|∇h|2dM.

Since
t(n) < 2 +

3
n
≤ 5

2
,
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we get

0 ≤
∫

M

[(2t(n)− 5)S − (6− n− 9δ(n)])|∇h|2dM

≤
∫

M

[(2t(n)− 4)n + (9δ(n)− 6)]|∇h|2dM,

(3.5)

which implies

(3.6)
∫

M

|∇h|2dM ≤ 0.

Hence |∇h|2 = 0. It’s easy to see from (2.7) that S ≡ n. �

Remark 1. Under the assumption of Lemma 3.1, if t(n) = 2, then the pinching
constant δ(n) = 2

3 , which is a universal positive constant independent of n.

Lemma 3.2. Let M be a closed minimal hypersurface in a 7-dimensional unit sphere
S7. Then

(3.7)
∑

i

h2
iikΦ(i, k) ≤ 2.49S ·

∑
i

h2
iik, 1 ≤ k ≤ 6,

where

Φ(i, k) =
{

λ2
k − 4λiλk, i 6= k,

2S, i = k.

Proof. Without loss of generality, we suppose that k = 1. If Φ(i, 1) ≤ 2.49S for any
i, or

∑
i

h2
ii1 = 0, it is easy to get (3.7). Otherwise, without loss of generality, we

suppose that Φ(2, 1) > 2.49S. Then
√

17 + 1
2

S ≥
√

17 + 1
2

(λ2
1 + λ2

2)

≥ λ2
1 − 2(

√√
17− 1

2
λ1)(

√√
17 + 1

2
λ2)

= Φ(2, 1) > 2.49S.

(3.8)

This implies

(3.9) λ2
m ≤ S − (λ2

1 + λ2
2) < S − 2.49

2.57
S =

8
257

S, m = 3, 4, 5, 6.

By (3.9) we have

(3.10) Φ(m, 1) = λ2
1 − 4λ1λm < S + 4 ·

√
8

257
S ·

√
S < 2S, m = 3, 4, 5, 6.

Since M is a minimal hypersurface, we have
∑

i hii = 0. Hence

h221 = −
∑
i 6=2

hii1,

which implies

(3.11)
∑
i 6=2

h2
ii1 ≥

h2
221

5
.
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It follows from (3.8), (3.10) and (3.11) that

2.49S
∑

i

h2
ii1 ≥ 2.49Sh2

221 + 0.49S · h2
221

5
+

∑
i 6=2

h2
ii1Φ(i, 1)

≥
∑

i

h2
ii1Φ(i, 1).

(3.12)

�

Lemma 3.3. Let M be a closed minimal hypersurface in an 8-dimensional unit sphere
S8. Then

(3.13)
∑

i

h2
iikΦ(i, k) ≤ 2.428S ·

∑
i

h2
iik, 1 ≤ k ≤ 7,

where

Φ(i, k) =
{

λ2
k − 4λiλk, i 6= k,

1.62S, i = k.

Proof. Without loss of generality, we suppose that k = 1. If Φ(i, 1) ≤ 2.428S for any
i, or

∑
i

h2
ii1 = 0, it is easy to get (3.13). Otherwise, without loss of generality, we

suppose that Φ(2, 1) > 2.428S. Then
√

17 + 1
2

S ≥
√

17 + 1
2

(λ2
1 + λ2

2)

≥ λ2
1 − 4λ1λ2 > 2.428S.

(3.14)

It follows from the above that

(3.15) λ2
m ≤ S − (λ2

1 + λ2
2) < S − 2.428

2.562
S =

67
1281

S,

where 3 ≤ m ≤ 7. On the other hand, we have

λ2
1 + (λ2

1 + 4λ2
2) ≥ λ2

1 − 4λ1λ2 > 2.428S.

This implies

(3.16) λ2
1 ≤ S − λ2

2 < S − 2.428S − 2(λ2
1 + λ2

2)
2

≤ 0.786S.

From (3.15) and (3.16) we have

(3.17) Φ(m, 1) = λ2
1 − 4λ1λm < 0.786S + 4 ·

√
67

1281
S ·

√
0.786S ≤ 1.62S,

where 3 ≤ m ≤ 7. Since M is a minimal hypersurface, we have
∑

i hii = 0, which
implies

(3.18)
∑
i 6=2

h2
ii1 ≥

h2
221

6
.
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From (3.14), (3.17) and (3.18) we obtain

2.428S
∑

i

h2
ii1 ≥ 2.428Sh2

221 + 0.808S · h2
221

6
+

∑
i 6=2

h2
ii1Φ(i, 1)

≥
∑

i

h2
ii1Φ(i, 1).

(3.19)

�

Now we are in a position to give the proof of our theorem.

Proof of Theorem. (i) When n = 6, it follows from Lemma 3.2 that

3
∑
i 6=k

h2
iik(λ2

k − 4λkλi) +
∑

i

h2
iii(−3λ2

i )

= 3
∑

k

(
∑

i

h2
iikφ(i, k))− 3

∑
k

h2
kkk · 2S +

∑
i

h2
iii(−3λ2

i )

≤ 2.49S ·
∑
i,k

3h2
iik − 2.49S

∑
k

2h2
kkk

= 2.49S(3
∑
i 6=k

h2
iik +

∑
i

h2
iii).

(3.20)

This together with (2.11) implies

3(A− 2B) =
∑
i,j,k

dinstinct

h2
ijk[2(λ2

i + λ2
j + λ2

k)− (λi + λj + λk)2]

+ 3
∑
i 6=k

h2
iik(λ2

k − 4λkλi) +
∑

i

h2
iii(−3λ2

i )

≤ 2S
∑
i,j,k

dinstinct

h2
ijk + 2.49S(3

∑
i 6=k

h2
iik +

∑
i

h2
iii)

≤ 2.49S|∇h|2.

(3.21)

Notice that δ(6) = 1
76 and t(6) = 2.49, we conclude from Lemma 3.1 and (3.21) that

S ≡ 6, i.e., M is one of the Clifford torus Sk(
√

k
6 )× S6−k(

√
6−k
6 ), k = 1, 2, ..., 5.

(ii) When n = 7, it follows from Lemma 3.3 that

3
∑
i 6=k

h2
iik(λ2

k − 4λkλi) +
∑

i

h2
iii(−3λ2

i )

= 3
∑

k

(
∑

i

h2
iikφ(i, k))− 3

∑
k

h2
kkk · 1.62S +

∑
i

h2
iii(−3λ2

i )

≤ 2.428 ·
∑
i,k

3h2
iik − 2.428S

∑
k

2h2
kkk

= 2.428(3
∑
i 6=k

h2
iik +

∑
i

h2
iii).

(3.22)
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This together with (2.11) implies

3(A− 2B) =
∑
i,j,k

dinstinct

h2
ijk[2(λ2

i + λ2
j + λ2

k)− (λi + λj + λk)2]

+ 3
∑
i 6=k

h2
iik(λ2

k − 4λkλi) +
∑

i

h2
iii(−3λ2

i )

≤ 2S
∑
i,j,k

dinstinct

h2
ijk + 2.428S(3

∑
i 6=k

h2
iik +

∑
i

h2
iii)

≤ 2.428S|∇h|2.

(3.23)

Notice that δ(7) = 1
1126 and t(7) = 2.428, we conclude from Lemma 3.1 and (3.23)

that S ≡ 7, i.e., M is a Clifford torus. This completes the proof of the theorem. �

4. Notes on Ogiue and Sun’s proof

In [7], Ogiue and Sun claimed that they improved Peng and Terng’s pinching the-
orem for n(≤ 5)-dimensional minimal hypersurfaces [9] to the case of arbitrary n:

Let M be an n-dimensional closed minimally immersed hypersurface in Sn+1.
Then there exists a constant ε(n) = 2n2(n+4)/[3(n+2)2] such that if n ≤ S ≤ n+ε(n),
then S ≡ n so that M is a Clifford torus.

If the claim were true, definitely it would have been an important contribution to
the theory of minimal submanifolds. Unfortunately, there is a fatal mistake in the
proof of the key lemma in [7]. Put g3 =

∑
i,j,k hijhjkhki, g4 =

∑
i,j,k,l hijhjkhklhli.

This lemma and the sketch of its proof is cited as follows.
Lemma([7]). Let M be an n-dimensional closed minimally immersed hypersurface
in Sn+1. If S ≥ n, then we have∑

i,j,k,l

h2
ijkl ≥

3(n + 2)
n(n + 4)

S(S − n)2 − 3
n

S2(S − n) + 3(Sg4 − g2
3 − S2).

Proof. Since M is minimal, we have
∑
i

hii = 0 and
∑

i,j hijijhjj = 0.

From(1.1)[7] we get ∆hii = (n− S)hii and
∑
i,j

hiijjhii = S(n− S).

Let fij = hijij . We consider f =
∑
i

f2
ii + 3

∑
i 6=j

f2
ij + 6

∑
i,j

(h2
jjhii − h2

iihjj)fij as a

function of fij . Solve the following problem for the conditional extremum:

F =
∑

i

f2
ii+3

∑
i 6=j

f2
ij +6

∑
i,j

(h2
jjhii−h2

iihjj)fij +λ[
∑
i,j

fijhii−S(n−S)]+µ
∑
i,j

fijhij ,

(2.1)[7]
where λ and µ are the Lagrange multipliers. It is clear that the critical point of F is
the minimum point of f . Taking derivatives of F with respect to fij , we get

Ffij
= 2fii + λhii + µhii = 0, i = j, (2.2)[7]

Ffij
= 6fij + 6(h2

jjhii − h2
iihjj) + λhii + µhjj = 0, i 6= j, (2.3)[7]
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and they satisfy∑
i,j

hjjfij = 0,
∑
i,j

hiifij = S(n− S),
∑

i

h2
ii = S,

∑
i

hii = 0. (2.4)[7]

· · · · · · · · · · · · · · · · · · ··
and so, in view of (2.4)[7]∑

i

f2
ii + 3

∑
i 6=j

f2
ij + 6

∑
i 6=j

(h2
jjhii − h2

iihjj)fij

= 3
∑
i 6=j

(h2
jjhii − h2

iihjj)fij −
1
2
λ

∑
i,j

hiifij

= 3
∑
i 6=j

(h2
jjhii − h2

iihjj)fij +
λ

2
S(S − n). (2.10)[7]

· · · · · · · · · · · · · · · · · · ··

λ =
6(n + 2)
n(n + 4)

(S − n)− 6
n

S. (2.15)[7]

(2.10)[7] and (2.15)[7] show that∑
i

f2
ii + 3

∑
i 6=j

f2
ij + 6

∑
i 6=j

(h2
jjhii − h2

iihjj)fij

=
3(n + 2)
n(n + 4)

S(S − n)2 − 3
n

S2(S − n) + 3
∑
i 6=j

(h2
jjhii − h2

iihjj)fij ,

and so,

∑
i

h2
iiii + 3

∑
i 6=j

h2
ijij ≥

3(n + 2)
n(n + 4)

S(S − n)2 − 3
n

S2(S − n)− 3
∑
i 6=j

(h2
jjhii − h2

iihjj)fij

=
3(n + 2)
n(n + 4)

S(S − n)2 − 3
n

S2(S − n)− 3(Sg4 − g2
3 − S2). (2.16)[7]

Combining (1.4)[7] and (2.16)[7], we get the Lemma. �

We see from the above sketch that the key lemma in [7] is derived by computing
the minimal value of the function

f =
∑

i

f2
ii + 3

∑
i 6=j

f2
ij + 6

∑
i,j

(h2
jjhii − h2

iihjj)fij

in the domain

{(f11, f12, . . . f1n, f21, . . . fnn) |
∑
i,j

hijfij = 0,
∑
i,j

hiifij = S(n− S)}.

Let P0 = ((f11)0, (f12)0, . . . (f1n)0, (f21)0, . . . (fnn)0) be the point where f attains it’s
minimal value. We see that the exact meaning of the equation above (2.16)[7] is:

(4.1) f |p0 = C(n, S) + 3
∑
i 6=j

(h2
jjhii − h2

iihjj)(fij)0,
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where

C(n, S) =
3(n + 2)
n(n + 4)

S(S − n)2 − 3
n

S2(S − n).

This implies

f =
∑

i

f2
ii + 3

∑
i 6=j

f2
ij + 6

∑
i,j

(h2
jjhii − h2

iihjj)fij

≥ C(n, S) + 3
∑
i 6=j

(h2
jjhii − h2

iihjj)(fij)0.
(4.2)

We notice that fij on the left hand side is different from (fij)0 on the right hand
side. Unfortunately, (2.16)[7] is derived from (4.2) under the additional assumption
that fij = (fij)0. This is a fatal mistake. In fact, the key lemma [7] is derived from
the following assertion.

For f11, f12, . . . f1n, f21, . . . fnn and h11, h22, . . . hnn satisfying the conditions

(4.3)
∑
i,j

hjjfij = 0,
∑
i,j

hiifij = S(n− S),
∑

i

h2
ii = S,

∑
i

hii = 0,

we always have

(4.4)
∑

i

f2
ii + 3

∑
i 6=j

f2
ij ≥ C(n, S) + 3(Sg4 − g2

3 − S2).

Unfortunately, we have the following counter example for the assertion above.
Example 4.1. Set

h11 = −h22 = −
√

S

2
; hii = 0, i ≥ 3.

fij =
1
2
(hii − hjj)(1 + hiihjj)−

S − n

2(n + 4)
(hii + hjj), i 6= j.

fii =
3

n + 4
(S − n)hii.

It is easy to see that fij and hii satisfy (4.3). On the other hand, we have∑
i

f2
ii + 3

∑
i 6=j

f2
ij = C(n, S) +

3
2
(Sg4 − g2

3 −
S3

n
) < C(n, S) + 3(Sg4 − g2

3 − S2).

This contradicts with (4.4).
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