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SCALAR CURVATURE OF MINIMAL HYPERSURFACES IN A
SPHERE

S1-MING WEI AND HoNG-WEI XU

ABSTRACT. We first extend the well-known scalar curvature pinching theorem due to
Peng-Terng, and prove that if M a closed minimal hypersurface in S**! (n = 6,7), then
there exists a positive constant d(n) depending only on n such that if n < S < n+4d(n),

then S = n, i.e., M is one of the Clifford torus S*(4/ %)XS”"“(, / ”T_k), k=1,2,...,n—1.
Secondly, we point out a mistake in Ogiue and Sun’s paper in which they claimed that
they had solved the open problem proposed by Peng and Terng.

1. Introduction

Let M be an n-dimensional closed minimal hypersurface in an (n + 1)-dimensional
unit sphere S™*!. Denote by S the squared length of the second fundamental form
of M and R its scalar curvature. So R =n(n — 1) — S. The famous rigidity theorem
due to Simons, Lawson, Chern, do Carmo and Kobayashi [4, 5, 10] says that if S <n,

then S =0, or S = n. i.e., M is the great sphere S™, or the Clifford torus Sk(\/%) X

Sk (4] "n;k) Further discussions in this direction have been carried out by many

other authors [1, 3, 6, 11, 12, 13, 14], etc.. On the other hand, many geometers have
been interested in the question whether there are several scalar curvature pinching
phenomena for closed minimal hypersurfaces in a unit sphere. In [8], Peng and Terng
proved that if the scalar curvature of M is a constant, then there exists a positive
constant a(n) depending only on n such that if n < S <n+ «a(n), then S = n. Later
Cheng and Yang [2] improved the pinching constant a(n) to n/3. More general, Peng
and Terng [9] obtained an important pinching theorem for minimal hypersurfaces
without assumption that the scalar curvature is a constant. Precisely, they proved
that if M"(n < 5) is a closed minimal hypersurface in S"*!, then there exists a
positive constant §(n) depending only on n such that if n < S < n + é(n), then
S = n. The following problem proposed by Peng and Terng [9] is very attractive.
Open Problem. Let M be an n-dimensional closed minimal hypersurface in
S+l n > 6. Does there exist a positive constant §(n) depending only on n such that

ifn <SS <n+dn), then S = n, i.e., M is one of the Clifford torus Sk(\/g) X

Sk 2=E) k=1,2,..,n—1?
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In this note, we solve the open problem for n = 6,7, and prove the following
pinching theorem for minimal hypersurfaces in unit spheres of dimensions 7 and 8.

Theorem. Let M be an n-dimensional closed minimal hypersurface in S"t!,n =
6,7. Then there exists a positive constant 6(n) depending only on n such that if

n < S <n+dn), then S = n, i.e., M is one of the Clifford torus Sk(\/%) X
Snk(\/2=E) k =1,2,...,n— 1. Here §(6) = & and 6(7) = 13-

Our theorem generalize the scalar curvature pinching theorem due to Peng and
Terng [9] from the case n < 5 to n < 7. Up to now, the open problem for n > 8 is
still open.

In [7], Ogiue and Sun claimed that they had solved the open problem for arbitrary
n. Unfortunately, there is a fatal mistake in their proof. In section 4, we point out
their mistake.

2. Fundamental formulas for minimal hypersurfaces in a sphere

Throughout this paper let M be an n-dimensional closed minimal hypersurface
in an (n + 1)-dimensional unit sphere S"*!. We shall make use of the following
convention on the range of indices:

1<ABC,---<n+1, 1<4,5,k,---<n.
Choose a local orthonormal frame field {e4} in S"™! such that, restricted to M, the
e;s are tangent to M. Let {wa} be the dual frame fields of {es} and {wap }
the connection 1-forms of S"*! respectively. Restricting these forms to M, we have
Wntli = Zj hijwj, hij = hj;. Let R and h be the scalar curvature and the second

fundamental form of M respectively. Denote by S the squared length of h and H the
mean curvature of M. Then we have

(2.1) h=Zhijwi®wj7 S:Zh?j
4,J

]
1
(2.2) n% hyi =0, R=n(n-1)-S5

Denote by hijr, hijri and hijiim the first, second and third covariant derivatives of
the second fundamental form tensor h;;. Then

(2.3) Vh = Z hijk w; Qwj  wg, hijk = hikj-
i,7,k
(24) hijkl = hijlk + Z hijmikl + Z himijkl-

(2.5) hijhim = ijemt + > hejiReitm + Y hirkRyjim + Y _ hijr Rygim.-

For an arbitrary fixed point x € M, we take orthonormal frames such that h;; = A;d;;
for all 7,j. Then

(2.6) =0, D N=5.

7
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Following [4, 9], we have

(2.7) %AS = |Vh]*+ S(n—29).

1 3
(2.8) 5A(|Vh|2) = |V?h|? + (2n+3 — S)|Vh|* + 3(2B — A) — 5|VS|2.

2.9 A2 — AN < 7&7“5, <i k<n.
k 2
VIT+1
(2.10) 3(A—2B) < #S\vm?,
3 , 3 9 )
(2.11) (S — 20— 5)[VA[* + 5(A — 2B) + ¢ [VS[)|dM >0,
M

where A = %:k hfjk)\? and B = i%:k h?jk/\i/\j'
3. Proof of Theorem

The crucial point in our proof is to give a sharper pointwise estimate of 3(A — 2B)
in terms of S and |Vh|? by using new method. The following lemmas will be used in
the proof of the theorem.

Lemma 3.1. Let M be an n-dimensional closed minimal hypersurface in the unit
sphere S"t1 . n > 6. Suppose that

(3.1) 3(A - 2B) < t(n)S|Vh|?,

where t(n) is a number depending only on n satisfying 0 < t(n) < 2+ % Then there
exists a positive constant §(n) such that if n < .S <n+d(n), then S =n.

Proof. By the assumption, we have

6 — [2t(n) —
2000) 4 _
9
We choose a positive constant d(n) depending only on n satisfying
6 —[2t(n) —4
(3.2) 0<d(n) < W

It follows from the assumption n < S(x) < n + d that

(3.3) / |VS|2dM = 2/ [S%(S —n) — S|VhA[*|dM < 2/ (n+8— 8)|Vh*dM.
M M M

From (2.11), (3.1) and (3.3), we obtain

(3.4) 0< /M(Qt(”i —hg bz - 90\ | h2ant.

Since
3
n

N | Ot

t(n) <2+ —-<

)
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we get

0< [ [(2t(n) —5)S — (6 —n —95(n)])|Vh|>dM

(3.5) / M
< [ (2t~ O+ 93(n) - 0 T,
M

which implies
(3.6) / |Vh|?dM < 0.
M

Hence |Vh|? = 0. It’s easy to see from (2.7) that S = n. O

Remark 1. Under the assumption of Lemma 3.1, if ¢(n) = 2, then the pinching
constant 6(n) = 2, which is a universal positive constant independent of n.

Lemma 3.2. Let M be a closed minimal hypersurface in a 7-dimensional unit sphere
S7. Then

(3.7) Zh”kcb i k) < 2.498 - Zh”k, 1<k<6,
where

‘ A2 — AN, i K
(I’(Z’k)_{zg ' zik

Proof. Without loss of generality, we suppose that k = 1. If ®(i,1) < 2.49S5 for any
i, or Zhul = 0, it is easy to get (3.7). Otherwise, without loss of generality, we

suppose that ®(2,1) > 2.49S5. Then

VIT+1, _ VIT+1
52— ()

(3:8) > A7 —2( 7\/1772_ 1)\1)( 7\/17724_ 1/\2)

=®(2,1) > 2.49S.
This implies
2.49

8
. 2 < — 2 2 —_— = = .
(3.9) Ny SS (N +X) <8 - T8 =55 m=3,4,5,6

By (3.9) we have

(3.10) B(m,1) =A% =AM A, < S+4- \/2575 VS8 <28, m=3,4,5,6.
Since M is a minimal hypersurface, we have ), h;; = 0. Hence
hao1 = — Z hiia,
i#2
which implies

h2
(3.11) > hiy > 221.

i#£2
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It follows from (3.8), (3.10) and (3.11) that

2.495 Z h2, > 2.49Sh2,, +0.49S - 221 + ) hE, P
(3.12) 1#£2

> th@ i,1).
U

Lemma 3.3. Let M be a closed minimal hypersurface in an 8-dimensional unit sphere
S8. Then

(3.13) Zh“k<1> i k) < 2.4285 - Zh“k, 1<k<T,

where
N P VA DY) VR o
(i, k) = { 1.625, i=k.

Proof. Without loss of generality, we suppose that k = 1. If ®(i,1) < 2.428S for any
i, or Y hZ%; = 0, it is easy to get (3.13). Otherwise, without loss of generality, we

suppose that ®(2,1) > 2.428S. Then
\/17+1S> VIT+1
2 - 2

(AT +A3)
> A7 — 4\ N > 2.4288.

(3.14)

It follows from the above that

2.428 67
S —

. 2 < _ 2 2 e
(3.15) A S8 =M+ X)) < 85— 5508 = 1579

where 3 < m < 7. On the other hand, we have
M (A2 F402) > 22— 4 g > 2.4288S.

This implies

2.4288 — 2(A\2 + \2)

(3.16) M<S-A<S— 5 < 0.7868.
From (3.15) and (3.16) we have
(3.17) ®(m, 1) = A} — 4\ )\, < 0.786S + 4 - 57 . V0.7865 < 1.628S,

1281
where 3 < m < 7. Since M is a minimal hypersurface, we have ). h;; = 0, which

implies

h3
(3.18) > hiy > 221

i#£2
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From (3.14), (3.17) and (3.18) we obtain

2. 42852 h2, > 2.4285h2,, + 0.808S - 221 +) h3,®(i,1)
(3.19) 72

> Z h‘nl

Now we are in a position to give the proof of our theorem.
Proof of Theorem. (i) When n = 6, it follows from Lemma 3.2 that

33 (AR — 4AN) +th (—3X2)
i#£k

_32 Zh“k ))—3;hkk 25+th —3)2)

< 2.498 - Z 3hZ, — 2-4952 2h 1

=2. 495 Z hnk Z huz

i#£k

(3.20)

This together with (2.11) implies

A=2B)= > hLRATHX+X) = N+ A+ )7

(N
dinstinct
+3> hZ (A7 — ) + Z h2,(—3)2)
(3.21) i#k
<28 Z h% +2.498(3>  hZy + th
irjik ik

dinstinct

< 2.498|Vh|*.

Notice that §(6) = == and ¢(6) = 2.49, we conclude from Lemma 3.1 and (3.21) that

§'=6, Le., M is one of the Clifford torus S(y/%) x $9¥(,/558) k= 1,2, .5,
(ii) When n = 7, it follows from Lemma 3.3 that

33 (A — 4N\ +th (—3X2)
i#£k

_32 Zh“k (i,k)) = 3> hipy- 1625+th (—3X2)
k

< 2.428.- Z 3h%, — 2.42852 2021,

= 2.428 32 hZ, + Z hZ,).

i#£k

(3.22)
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This together with (2.11) implies

B(A=2B)= > K207 + A7+ A7) — (N + A + M)
i,5,k
dinstinct

+3) R (A% — A + Z h2,(—3\2)
(3.23) i#k

<25 Y h%, +242853 %, + Z hi;)

0,5,k i#k
dinstinct

< 2.4285|Vh|?.

Notice that §(7) = 1755 and ¢(7) = 2.428, we conclude from Lemma 3.1 and (3.23)
that S =7, i.e., M is a Clifford torus. This completes the proof of the theorem. [J

4. Notes on Ogiue and Sun’s proof

n [7], Ogiue and Sun claimed that they improved Peng and Terng’s pinching the-
orem for n(< 5)-dimensional minimal hypersurfaces [9] to the case of arbitrary n:

Let M be an n-dimensional closed minimally immersed hypersurface in S™1.
Then there exists a constant e(n) = 2n%(n+4)/[3(n+2)?] such that ifn < S < n+e(n),
then S =n so that M is a Clifford torus.

If the claim were true, definitely it would have been an important contribution to
the theory of minimal submanifolds. Unfortunately, there is a fatal mistake in the
proof of the key lemma in [7]. Put g3 = Z”k hijhjkhii, g2 = Zi’jym hijhjkhiih.
This lemma and the sketch of its proof is cited as follows.

Lemma([7]). Let M be an n-dimensional closed minimally immersed hypersurface
in 8"t If S > n, then we have

zgzk:lh”kl ii;S(S—n)Q _ %SQ(S—n) +3(Sgs — g% — 5?).
Proof. Since M is minimal, we have E hi; = 0 and Z hijighi; = 0.

From(1.1)[7] we get Ah;; = (n — S)hii and Z hiijjhii = S(n—8).

Let fi; = hjij. We consider f Z —|— 3 Z 5+ 62( Zhii)fij as a
function of f;;. Solve the following problem for the condltlonal extremum:

Z S3Y +6Z —hZhii) fi F A fighii—S(n—=8)+p1 Y fijhis,
1#] 4,J (]

(2.1)[7]

where A and p are the Lagrange multipliers. It is clear that the critical point of F' is
the minimum point of f. Taking derivatives of F' with respect to f;;, we get

Fy,, = 6fij + 6(h3hi; — hiihj;) + Ahgi + phj; =0, i # j, (2.3)[7



430 SI-MING WEI AND HONG-WEI XU

and they satisfy

Zhnfu =0 Zh”fm =S(n— Zh =53 hi=0. (2.4)[7]

and so, in view of (2.4)[7]

Zf121+3z +62 - u JJ)flj

i#£j i#£]
= 32(]7‘?]]7‘“ _]] fz] )\Zhufu
i#]
=3 (h3;hii — hiihi;) fij + 55(5 —n). (2.10)[7]
i#]
_ S+ oy _Sg (2.15)[7]
- n(n+4) n '

(2.10)[7] and (2.15)[7] show that

Z +3Z +6Z - u JJ)fU

i#£j i#£j
~ 3(n+2) 9 3 2(
= n(n+4)S(S n) nS n +3Z hii zz hjj) fizs
i#£j
and so,
+2) — 2 5(S —n)?— §S2 —n)— —
Z hu“ +3 Z hzgzg = 4) ( n) n 7’L 3 Z ’LZ ]])fU
i#] i#]
3(n+2) 2 3o 2 Q2
= —7= — - — —n)— — g5 — . 2.1
gy 8(5 = m)? = 25%(5 = m) = 8(Sgs — ¢ - 57) (216)[7
Combining (1.4)[7] and (2.16)[7], we get the Lemma. O

We see from the above sketch that the key lemma in [7] is derived by computing
the minimal value of the function

f= Z L3> f7 +62 hii = h;hii) fig
i#]
in the domain

{(f11, fizs oo frns for, oo fon) | Zhijfij = O,Zhiifij =S(n-9)}
1,7 1,3
Let Py = ((f11)0, (f12)0s - - - (f1n)o, (f21)0, - - - (fnun)o) be the point where f attains it’s
minimal value. We see that the exact meaning of the equation above (2.16)[7] is:
(4.1) Flpo = C(n, S) + 3> (h3;hii — h3hyi)(fii)o,
i#]
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where

This implies
Z 3 S +62 — hiihij) fij
i#]

ZC(TL,S)-‘F?)Z 3 u_thz jj)(fij)0~
i#£]

(4.2)

We notice that f;; on the left hand side is different from (f;;)o on the right hand
side. Unfortunately, (2.16)[7] is derived from (4.2) under the additional assumption
that f;; = (fij)o. This is a fatal mistake. In fact, the key lemma [7] is derived from
the following assertion.

For fi1, fi2, -+ fins fo1, -+« fan and hi1, hoo, . .. hyn satisfying the conditions
(4.3) thf”fo Zh”f”fSn— Zh =8, Y hi =0,

we always have

(4.4) Z L3> £ > C(n,S) +3(Sgs — g3 — 7).
i#£]

Unfortunately, we have the following counter example for the assertion above.

Example 4.1. Set
hir = —has = —/ 3 hii =0, > 3.

S—n

n

1 .
fiz = 5(hai = hjj) (L + hiihys) — m(hu +hjs), i #J
3
fz‘i = n+4(5 - n)h”

It is easy to see that f;; and h;; satisfy (4.3). On the other hand, we have

3 S3
Z L T3)_ [ =Cn,8) +5(S91— g3 — ) < C(n, §) +3(Sgs — g3 — 57).
i#]
This contradicts with (4.4).
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