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ON THE INTEGRAL SYSTEMS RELATED TO
HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

Fengbo Hang

Abstract. We prove all the maximizers of the sharp Hardy-Littlewood-Sobolev in-

equality are smooth. More generally, we show all the nonnegative critical functions are
smooth, radial with respect to some points and strictly decreasing in the radial direction.

In particular, we resolve all the cases left open by previous works of Chen, Li and Ou

on the corresponding integral systems.

1. Introduction

The classical Hardy-Littlewood-Sobolev inequality states that for 0 < α < n,
1 < p0, q0 <

n
α such that 1

p0
+ 1

q0
= 1 + α

n (see [10, theorem 1 on p119])∣∣∣∣∫
Rn×Rn

f (x) g (y)
|x− y|n−α dxdy

∣∣∣∣ ≤ c (n, p0, α) |f |Lp0 (Rn) |g|Lq0 (Rn) .

In [9], it was shown that the sharp constant

c (n, p0, α) = sup
{∫

Rn×Rn

f (x) g (y)
|x− y|n−α dxdy : |f |Lp0 (Rn) = 1, |g|Lq0 (Rn) = 1

}
is achieved by some functions f and g. Moreover, after multiplying some constants,
any maximizer f, g must be radial symmetric with respect to the same point, strictly
decreasing in the radial direction and satisfy the integral system

f (x)p0−1 =
∫

Rn

g (y)
|x− y|n−α dy, g (x)q0−1 =

∫
Rn

f (y)
|x− y|n−α dy.

It was also shown that when p0 = q0, we have

f (x) = g (x) = c (n, p0)

(
λ

|x− x0|2 + λ2

)n/p0

for some λ > 0 and x0 ∈ Rn.
If we let p = 1

p0−1 , q = 1
q0−1 , u = fp0−1, v = gq0−1, then the Euler-Lagrange

equation becomes

(1.1) u (x) =
∫

Rn

v (y)q

|x− y|n−α dy, v (x) =
∫

Rn

u (y)p

|x− y|n−α dy
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for nonnegative functions u ∈ Lp+1 (Rn) and v ∈ Lq+1 (Rn) and 0 < α < n, α
n−α <

p, q <∞, 1
p+1 + 1

q+1 + α
n = 1. When p = q = n+α

n−α , as observed in [9], it follows from
the fact 1

|x|n−α = c (n, α) 1

|x|n−
α
2
∗ 1

|x|n−
α
2

that u = v, then the system reduces to

(1.2) u (x) =
∫

Rn

u (y)
n+α
n−α

|x− y|n−α dy.

In [4], using an integral form of the method of moving planes ([5]), it was shown that
any nonzero nonnegative regular solution u of (1.2) must be of the form

u (x) = c (n, α)

(
λ

λ2 + |x− x0|2

)n−α
2

for some λ > 0 and x0 ∈ Rn. This solves an open problem proposed in [9] (see a
somewhat different argument in [8] and the clarifications in [4, Remark 1.3 on p332]).
In [2, 3], such kinds of analysis were extended to the system (1.1) under the additional
constraints p ≥ 1 and q ≥ 1. However the analysis does not give the regularity of
maximizer for all the Hardy-Littlewood-Sobolev inequalities. On the other hand, it
does not seem that we will have nonsmooth maximizers for the Hardy-Littlewood-
Sobolev inequality in any case. The main aim of this article is to prove the regularity
and radial symmetry of nonnegative solutions of the system (1.1) in its full range.
Another motivation comes from the study of regularity issues for a similar integral
system in [7].

Theorem 1.1. Assume 0 < α < n, α
n−α < p, q < ∞, 1

p+1 + 1
q+1 + α

n = 1, u ∈
Lp+1 (Rn) is nonnegative and does not vanish identically. If

v (x) =
∫

Rn

u (y)p

|x− y|n−α dy, u (x) =
∫

Rn

v (y)q

|x− y|n−α dy.

Then u ∈ C∞ (Rn), v ∈ C∞ (Rn). Moreover, there exists a point x0 ∈ Rn such that
both u and v are radial symmetric with respect to x0 and strictly decreasing along
radial direction.

Indeed, the regularity is still true under the relatively weaker assumption u ∈
Lp+1

loc (Rn) (see Proposition 2.2). The method in [2, 3], which is basically linear in
nature, does not seem to work for the case when one of the two indices p and q is
strictly less than 1. We will develop some nonlinear approaches which work for all p
and q at once. In [7], we will apply this technique to derive the regularity for another
integral system. In Section 2 below, we will prove a local regularity result which has
the regularity part in Theorem 1.1 as a corollary. In Section 3, we will prove all the
solutions are radial.

2. Regularity issue

In this section, we will show any solution u, v to the system (1.1) must be smooth
if we assume u ∈ Lp+1

loc (Rn). Such a local integrability condition is necessary for the
smoothness because as observed in [9], system (1.1) has singular solutions as

u (x) = c (n, α, p) |x|−
n

p+1 , v (x) = c (n, α, p) |x|−
n

q+1 .
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This follows from a simple change of variable in the integrals. To achieve the regu-
larity, we start with a local result which has some similarity to [1, theorem 2] and [8,
theorem 1.3].

Proposition 2.1. Given 0 < α, β < n, 1 < a, b ≤ ∞, 1 ≤ r <∞ such that

1
ra

+
1
b

=
α

rn
+
β

n
.

Assume
n

n− β
< p < q <∞,

α

n
<
r

q
+

1
a
<
r

p
+

1
a
< 1,

u, f ∈ Lp (BR), U ∈ La (BR), V ∈ Lb (BR) are all nonnegative functions with
f |BR/2

∈ Lq
(
BR/2

)
,

|U |1/r
La(BR) |V |Lb(BR) ≤ ε (n, p, q, r, α, β, a, b) small

and

u (x) ≤
∫

BR

V (y)

|x− y|n−β

[∫
BR

U (z)u (z)r

|y − z|n−α dz

]1/r

dy + f (x)

for x ∈ BR, then u ∈ Lq
(
BR/4

)
, moreover

|u|Lq(BR/4) ≤ c (n, p, q, r, α, β, a, b)
(
R

n
q −

n
p |u|Lp(BR) + |f |Lq(BR/2)

)
.

Proof. By scaling, we may assume R = 1. First assume we have u, f ∈ Lq (B1).
Denote

v (x) =
∫

B1

U (y)u (y)r

|x− y|n−α dy for x ∈ B1.

Let p1 and q1 be the numbers defined by
1
p1

=
r

p
+

1
a
− α

n
,

1
q1

=
r

q
+

1
a
− α

n
,

then it follows from Hardy-Littlewood-Sobolev inequality that

|v|Lp1 (B1)
≤ c (n, p, r, α, a) |U |La(B1)

|u|rLp(B1)
,

|v|Lq1 (B1)
≤ c (n, q, r, α, a) |U |La(B1)

|u|rLq(B1)
.

Given 0 < s < t ≤ 1/2. For x ∈ Bs, we have

u (x) ≤
∫

B s+t
2

V (y) v (y)1/r

|x− y|n−β
dy +

∫
B1\B s+t

2

V (y) v (y)1/r

|x− y|n−β
dy + f (x)

≤
∫

B s+t
2

V (y) v (y)1/r

|x− y|n−β
dy +

c (n, β)

(t− s)n−β

∫
B1\B s+t

2

V (y) v (y)1/r
dy + f (x)

≤
∫

B s+t
2

V (y) v (y)1/r

|x− y|n−β
dy +

c (n, p, r, α, β, a, b) |u|Lp(B1)

(t− s)n−β
+ f (x) .
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Hence we have

|u|Lq(Bs) ≤ c (n, q, r, β, b) |V |Lb(B1)
|v|1/r

Lq1

„
B s+t

2

«

+
c (n, p, q, r, α, β, a, b) |u|Lp(B1)

(t− s)n−β
+ |f |Lq(B1/2) .

On the other hand, for x ∈ B s+t
2

, we have

v (x) =
∫

Bt

U (y)u (y)r

|x− y|n−α dy +
∫

B1\Bt

U (y)u (y)r

|x− y|n−α dy

≤
∫

Bt

U (y)u (y)r

|x− y|n−α dy +
c (n, α)

(s− t)n−α

∫
B1\Bt

U (y)u (y)r
dy

≤
∫

Bt

U (y)u (y)r

|x− y|n−α dy +
c (n, p, r, α, a) |U |La(B1)

|u|rLp(B1)

(s− t)n−α .

This implies

|v|
Lq1

„
B s+t

2

« ≤ c (n, q, r, α, a) |U |La(B1)
|u|rLq(Bt)

+
c (n, p, q, r, α, a) |U |La(B1)

|u|rLp(B1)

(s− t)n−α .

Combine the two inequalities together, we see

|u|Lq(Bs) ≤ c (n, q, r, α, β, a, b) |U |1/r
La(B1)

|V |Lb(B1)
|u|Lq(Bt)

+
c (n, p, q, r, α, β, a, b)

(s− t)max{(n−α)/r,n−β} |u|Lp(B1)
+ |f |Lq(B1/2)

≤ 1
2
|u|Lq(Bt)

+
c (n, p, q, r, α, β, a, b)

(s− t)max{(n−α)/r,n−β} |u|Lp(B1)
+ |f |Lq(B1/2)

if ε is small enough. It follows from usual iteration procedure ([6, lemma 4.3 on p.75])
that

|u|Lq(B1/4) ≤ c (n, p, q, r, α, β, a, b)
(
|u|Lp(B1)

+ |f |Lq(B1/2)
)
.

To prove the full proposition, we note that for some function 0 ≤ η (x) ≤ 1,

u (x) = η (x)
∫

BR

V (y)

|x− y|n−β

[∫
BR

U (z)u (z)r

|y − z|n−α dz

]1/r

dy + η (x) f (x) .

We may define a map T by

T (ϕ) (x) = η (x)
∫

BR

V (y)

|x− y|n−β

[∫
BR

U (z) |ϕ (z)|r

|y − z|n−α dz

]1/r

dy.

Note that we have

|T (ϕ)|Lp(B1)
≤ c (n, p, r, α, β, a, b) |U |1/r

La(B1)
|V |Lb(B1)

|ϕ|Lp(B1)
≤ 1

2
|ϕ|Lp(B1)

and

|T (ϕ)|Lq(B1)
≤ c (n, q, r, α, β, a, b) |U |1/r

La(B1)
|V |Lb(B1)

|ϕ|Lq(B1)
≤ 1

2
|ϕ|Lq(B1)
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if ε is small enough. Moreover, for any ϕ,ψ ∈ Lp (B1), it follows from Minkowski’s
inequality that

|T (ϕ) (x)− T (ψ) (x)| ≤ T (|ϕ− ψ|) (x) for x ∈ B1,

hence

|T (ϕ)− T (ψ)|Lp(B1)
≤ |T (|ϕ− ψ|)|Lp(B1)

≤ 1
2
|ϕ− ψ|Lp(B1)

.

Similarly, we have for any ϕ,ψ ∈ Lq (B1),

|T (ϕ)− T (ψ)|Lq(B1)
≤ 1

2
|ϕ− ψ|Lq(B1)

.

For k ∈ N, let fk (x) = min {f (x) , k}, then it follows from contraction mapping
theorem that we may find a unique uk ∈ Lq (B1) such that

uk (x) = T (uk) (x) + η (x) fk (x)

= η (x)
∫

BR

V (y)

|x− y|n−β

[∫
BR

U (z) |uk (z)|r

|y − z|n−α dz

]1/r

dy + η (x) fk (x) .

Applying the apriori estimate to uk, we see

|uk|Lq(B1/4) ≤ c (n, p, q, r, α, β, a, b)
(
|uk|Lp(B1)

+ |f |Lq(B1/2)
)
.

Now observe that
u (x) = T (u) (x) + η (x) f (x) .

We see

|uk − u|Lp(B1)
≤ |T (uk)− T (u)|Lp(B1)

+ |fk − f |Lp(B1)

≤ 1
2
|uk − u|Lp(B1)

+ |fk − f |Lp(B1)
.

Hence |uk − u|Lp(B1)
≤ 2 |fk − f |Lp(B1)

→ 0 as k →∞. Taking a limit process in the
apriori estimate for uk, we get the proposition. �

Now we are ready to derive the full regularity for the system (1.1). Such regularity
under the additional assumption p ≥ 1 and q ≥ 1 was proved in [2, 8].

Proposition 2.2. Assume 0 < α < n, α
n−α < p, q < ∞, 1

p+1 + 1
q+1 + α

n = 1,
u ∈ Lp+1

loc (Rn) is nonnegative and does not vanish identically. If

v (x) =
∫

Rn

u (y)p

|x− y|n−α dy, u (x) =
∫

Rn

v (y)q

|x− y|n−α dy.

Then u, v ∈ C∞ (Rn). Moreover if we know u ∈ Lp+1 (Rn), then u (x) → 0 and
v (x) → 0 as |x| → ∞.

Proof. Since u ∈ Lp+1
loc (Rn), we see u (x) <∞ a.e. x ∈ Rn. It follows that v (x) <∞

a.e. x ∈ Rn. For any R > 0, we may find x0 ∈ BR such that v (x0) <∞. This gives
us
∫

Rn\BR

u(y)p

|x0−y|n−α dy <∞. It follows that
∫

Rn\BR

u(y)p

|y|n−α dy <∞. Now

v (x) =
∫

BR

u (y)p

|x− y|n−α dy +
∫

Rn\BR

u (y)p

|x− y|n−α dy,
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it follows from the Hardy-Littlewood-Sobolev inequality that the first term lies in
Lq+1 (Rn). On the other hand, for x ∈ BθR with 0 < θ < 1, we have∫

Rn\BR

u (y)p

|x− y|n−α dy ≤
1

(1− θ)n−α

∫
Rn\BR

u (y)p

|y|n−α dy.

It follows that v ∈ Lq+1
loc (BR). Since R is arbitrary, we have v ∈ Lq+1

loc (Rn).
Let

fR (x) =
∫

Rn\BR

v (y)q

|x− y|n−α dy,

gR (x) =
∫

Rn\BR

u (y)p

|x− y|n−α dy,

then we know

u (x) =
∫

BR

v (y)q

|x− y|n−α dy + fR (x) ,

v (x) =
∫

BR

u (y)p

|x− y|n−α dy + gR (x) ,

and fR ∈ Lp+1 (BR) ∩ L∞loc (BR), gR ∈ Lq+1 (BR) ∩ L∞loc (BR).
To continue, we observe that by symmetry, we may assume p ≥ q, then p ≥ n+α

n−α

and p − α
n (p+ 1) ≥ 1. On the other hand, it follows from 1

p+1 + 1
q+1 + α

n = 1 that
pq − 1 = α

n (p+ 1) (q + 1). Hence[
p− α

n
(p+ 1)

]
q − 1 =

α

n
(p+ 1) > 0,

and this implies q−1 < p− α
n (p+ 1). Choose r such that

1 ≤ r ≤ p− α

n
(p+ 1) and q−1 ≤ r,

for example, we may take r = p− α
n (p+ 1), then

v (x)1/r ≤
(∫

BR

u (y)p

|x− y|n−α dy

)1/r

+ gR (x)1/r
.

We have

u (x) =
∫

BR

v (y)q−r−1

v (y)1/r

|x− y|n−α dy + fR (x)

≤
∫

BR

v (y)q−r−1

|x− y|n−α

(∫
BR

u (z)p−r
u (z)r

|y − z|n−α dz

)1/r

dy + hR (x) .

Here

hR (x) =
∫

BR

v (y)q−r−1

gR (y)1/r

|x− y|n−α dy + fR (x) .

It follows from the fact that gR ∈ Lq+1 (BR) ∩ L∞loc (BR) that hR ∈ Lp+1 (BR) ∩
Lq

loc (BR) for all q <∞. Let

a =
p+ 1
p− r

, b =
q + 1
q − r−1

,
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then calculation shows 1
ra + 1

b = α
rn + α

n , moreover we have

r

p+ 1
+

1
a

=
p

p+ 1
< 1,

and
1
a
− α

n
=
p− α

n (p+ 1)− r

p+ 1
≥ 0.

Hence for any p + 1 < q < ∞, when R is small enough, it follows from Proposition
2.1 (by choosing α, β, p, q, r, a, b, u, U , V and f in Proposition 2.1 as α, α, p+ 1, q,
r, p+1

p−r , q+1
q−r−1 , u, up−r, vq−r−1

and hR respectively) that u ∈ Lq
(
BR/4

)
. Since every

point may be viewed as a center, we see u ∈ Lq
loc (Rn). This implies v ∈ L∞loc (Rn)

and then u ∈ L∞loc (Rn). Now observe that fR, gR ∈ C∞ (BR), it follows from the
usual bootstrap method that u, v ∈ C∞ (Rn). The fact u, v ∈ L∞ (Rn) under the
assumption u ∈ Lp+1 (Rn) follows from carefully going through the above argument
and applying Holder’s inequality when needed. Note that

u =
χB1 (x)
|x|n−α ∗ vq +

χRn\B1 (x)

|x|n−α ∗ vq.

By interpolation we know v ∈ Ls (Rn) for all q + 1 ≤ s ≤ ∞, hence vq ∈ Ls for
q+1

q ≤ s ≤ ∞. Since q+1
q < n

α , it follows form the fact χB1 (x)

|x|n−α ∈ L
n

n−α−ε (Rn) and
χRn\B1 (x)

|x|n−α ∈ L
n

n−α +ε (Rn) for ε > 0 small that u (x) → 0 as |x| → ∞. The fact
v (x) → 0 as |x| → ∞ follows similarly. �

3. All solutions are radial

In this section, we will use the integral form of the method of moving plane (de-
veloped in [4]) to prove the radial symmetry of solutions to the integral system. Such
radial property was derived in [3, 4, 8] under the further assumptions that both p and
q are at least 1. Our approach works for both this case and the case when p or q is
strictly less than 1. We will need the following basic inequality: assume 0 < θ ≤ 1,
a ≥ b ≥ 0, c ≥ 0, then

(a+ c)θ − (b+ c)θ ≤ aθ − bθ.

Indeed for x ≥ 0, let f (x) = (a+ x)θ−(b+ x)θ, then for x > 0, f ′ (x) = θ (a+ x)θ−1−
θ (b+ x)θ−1 ≤ 0. The inequality follows.

For ξ ∈ Rm and s > 0, we denote

|ξ|ls =

(
m∑

i=1

|ξi|s
)1/s

.

Proof of Theorem 1.1. By Proposition 2.2, we know u, v ∈ C∞ (Rn), u (x) → 0 and
v (x) → 0 as |x| → ∞. It follows from Hardy-Littlewood-Sobolev inequality that
v ∈ Lq+1 (Rn). Without losing of generality, we may assume p ≥ q, then we know
p ≥ n+α

n−α and p > q−1. Hence we may find a number r such that 1 ≤ r < p and
q−1 ≤ r.
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For λ ∈ R, we denote Hλ = {x ∈ Rn : x1 < λ}. For x = (x1, x
′) ∈ Rn, let xλ =

(2λ− x1, x
′). We also denote uλ (x) = u (xλ), vλ (x) = v (xλ),

Bu
λ = {x ∈ Hλ : uλ (x) > u (x)} ,

Bv
λ = {x ∈ Hλ : vλ (x) > v (x)} .

Note that by a change of variable, we have

u (x) =
∫

Rn

v (y)q

|x− y|n−α dy

=
∫

Hλ

v (y)q

|x− y|n−α dy +
∫

Hλ

v (yλ)q

|xλ − y|n−α dy.

Hence

u (xλ) =
∫

Hλ

v (yλ)q

|x− y|n−α dy +
∫

Hλ

v (y)q

|xλ − y|n−α dy.

This implies

u (xλ)− u (x)

=
∫

Hλ

(v (yλ)q − v (y)q)
(

1
|x− y|n−α − 1

|xλ − y|n−α

)
dy.

In particular, for x ∈ Bu
λ, we have

0 ≤ u (xλ)− u (x)

≤
∫
Bv

λ

(v (yλ)q − v (y)q)
(

1
|x− y|n−α − 1

|xλ − y|n−α

)
dy

≤
∫
Bv

λ

((
v (yλ)1/r

)qr

−
(
v (y)1/r

)qr) 1
|x− y|n−α dy

≤ qr

∫
Bv

λ

v (yλ)q−r−1
(
v (yλ)1/r − v (y)1/r

) 1
|x− y|n−α dy.

It follows from Hardy-Littlewood-Sobolev inequality that

|uλ − u|Lp+1(Bu
λ)

≤ c (n, α, q, r)
∣∣∣vq−r−1

λ

(
v
1/r
λ − v1/r

)∣∣∣
L

q+1
q (Bv

λ)

≤ c (n, α, q, r)
∣∣∣vq−r−1

λ

∣∣∣
L

q+1
q−r−1 (Bv

λ)

∣∣∣v1/r
λ − v1/r

∣∣∣
L(q+1)r(Bv

λ)

= c (n, α, q, r) |vλ|q−r−1

Lq+1(Bv
λ)

∣∣∣v1/r
λ − v1/r

∣∣∣
L(q+1)r(Bv

λ)
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On the other hand, for x ∈ Bv
λ, we have

v (xλ) =
∫
Bu

λ

u (yλ)p

|x− y|n−α dy +
∫
Bu

λ

u (y)p

|xλ − y|n−α dy

+
∫

Hλ\Bu
λ

u (yλ)p

|x− y|n−α dy +
∫

Hλ\Bu
λ

u (y)p

|xλ − y|n−α dy

≤
∫
Bu

λ

u (yλ)p

|x− y|n−α dy +
∫
Bu

λ

u (y)p

|xλ − y|n−α dy

+
∫

Hλ\Bu
λ

u (y)p

|x− y|n−α dy +
∫

Hλ\Bu
λ

u (yλ)p

|xλ − y|n−α dy.

Since

v (x) =
∫
Bu

λ

u (y)p

|x− y|n−α dy +
∫
Bu

λ

u (yλ)p

|xλ − y|n−α dy

+
∫

Hλ\Bu
λ

u (y)p

|x− y|n−α dy +
∫

Hλ\Bu
λ

u (yλ)p

|xλ − y|n−α dy,

it follows that

0 ≤ v (xλ)1/r − v (x)1/r

≤

(∫
Bu

λ

u (yλ)p

|x− y|n−α dy +
∫
Bu

λ

u (y)p

|xλ − y|n−α dy

)1/r

−

(∫
Bu

λ

u (y)p

|x− y|n−α dy +
∫
Bu

λ

u (yλ)p

|xλ − y|n−α dy

)1/r

=

(∫
Bu

λ

∣∣∣∣∣
(

u (yλ)p/r

|x− y|(n−α)/r
,

u (y)p/r

|xλ − y|(n−α)/r

)∣∣∣∣∣
r

lr

dy

)1/r

−

(∫
Bu

λ

∣∣∣∣∣
(

u (y)p/r

|x− y|(n−α)/r
,

u (yλ)p/r

|xλ − y|(n−α)/r

)∣∣∣∣∣
r

lr

dy

)1/r

≤

(∫
Bu

λ

∣∣∣∣∣
(
u (yλ)p/r − u (y)p/r

|x− y|(n−α)/r
,
u (y)p/r − u (yλ)p/r

|xλ − y|(n−α)/r

)∣∣∣∣∣
r

lr

dy

)1/r

≤ 2

∫
Bu

λ

(
uλ (y)p/r − u (y)p/r

)r

|x− y|n−α dy

1/r

≤ 2p
r

(∫
Bu

λ

uλ (y)p−r (uλ (y)− u (y))r

|x− y|n−α dy

)1/r

.
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It follows from Hardy-Littlewood-Sobolev inequality that∣∣∣v1/r
λ − v1/r

∣∣∣
L(q+1)r(Bv

λ)

≤ 2p
r

∣∣∣∣∣
∫
Bu

λ

uλ (y)p−r (uλ (y)− u (y))r

|x− y|n−α dy

∣∣∣∣∣
1/r

Lq+1(Bv
λ)

≤ c (n, α, p, r)
∣∣up−r

λ (uλ − u)r∣∣1/r

L
p+1

p (Bu
λ)

≤ c (n, α, p, r)
∣∣up−r

λ

∣∣1/r

L
p+1
p−r (Bu

λ)
|(uλ − u)r|1/r

L(p+1)/r(Bu
λ)

= c (n, α, p, r) |uλ|
p−r

r

Lp+1(Bu
λ) |uλ − u|Lp+1(Bu

λ) .

Hence we have

|uλ − u|Lp+1(Bu
λ)

≤ c (n, α, p, q, r) |uλ|
p−r

r

Lp+1(Bu
λ) |vλ|q−r−1

Lq+1(Bv
λ) |uλ − u|Lp+1(Bu

λ)

= c (n, α, p, q, r) |u|
p−r

r

Lp+1(2λe1−Bu
λ) |v|

q−r−1

Lq+1(2λe1−Bv
λ) |uλ − u|Lp+1(Bu

λ)

≤ c (n, α, p, q, r) |u|
p−r

r

Lp+1(2λe1−Bu
λ) |v|

q−r−1

Lq+1(Rn) |uλ − u|Lp+1(Bu
λ) .

Here e1 = (1, 0, · · · , 0).
After these preparations, we will use the method of moving planes to prove the

radial symmetry of the solutions.
First, we have to show it is possible to start. Indeed, for λ large enough, we know

|u|Lp+1(2λe1−Bu
λ) can be arbitrary small, this implies that

|uλ − u|Lp+1(Bu
λ) ≤

1
2
|uλ − u|Lp+1(Bu

λ) ,

and hence |uλ − u|Lp+1(Bu
λ) = 0. It follows that Bu

λ = ∅ when λ is large enough.

Next we let λ0 = inf {λ ∈ R : Bu
λ′ = ∅ for all λ′ ≥ λ}. It follows from the fact

u (x) → 0 as |x| → ∞ and u (x) > 0 for all x that λ0 must be a finite number. It
follows from the definition of λ0 that uλ0 (x) ≤ u (x) for x ∈ Hλ0 . We claim that
uλ0 = u. If this is not the case, then since

vλ0 (x)− v (x) =
∫

Hλ0

(uλ0 (y)p − u (y)p)
(

1
|x− y|n−α − 1

|xλ0 − y|n−α

)
dy

and

uλ0 (x)− u (x) =
∫

Hλ0

(vλ0 (y)q − v (y)q)
(

1
|x− y|n−α − 1

|xλ0 − y|n−α

)
dy,

we see uλ0 (x) < u (x) for x ∈ Hλ0 . This implies χ2λe1−Bu
λ
→ 0 a.e. as λ ↑ λ0. It

follows that |u|Lp+1(2λe1−Bu
λ) → 0 as λ ↑ λ0. Hence

|uλ − u|Lp+1(Bu
λ) ≤

1
2
|uλ − u|Lp+1(Bu

λ)
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when λ is close to λ0. This implies Bu
λ = ∅ for λ close to λ0 and it contradicts with the

choice of λ0. Hence when the moving plane process stops, we must have symmetry.
Moreover, uλ (x) < u (x) for x ∈ Hλ when λ > λ0. Indeed, for any λ > λ0, we can
not have uλ = u because otherwise u is periodic in the first direction and can not lie
in Lp+1. Hence uλ < u in Hλ.

By translation, we may assume u (0) = maxx∈Rn u (x), then it follows that the
moving plane process from any direction must stop at the origin, hence u must be
radial symmetric and strictly decreasing in the radial direction. It follows from the
equation that v has the same properties. �
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