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DENSITIES IN FREE GROUPS AND Zk,
VISIBLE POINTS AND TEST ELEMENTS

Ilya Kapovich, Igor Rivin, Paul Schupp, and Vladimir Shpilrain

Abstract. In this article we relate two different densities. Let Fk be the free group
of finite rank k ≥ 2 and let α be the abelianization map from Fk onto Zk. We prove

that if S ⊆ Zk is invariant under the natural action of SL(k, Z) then the asymptotic

density of S in Zk and the annular density of its full preimage α−1(S) in Fk are equal.
This implies, in particular, that for every integer t ≥ 1, the annular density of the set of

elements in Fk that map to t-th powers of primitive elements in Zk is equal to 1
tkζ(k)

,

where ζ is the Riemann zeta-function.
An element g of a group G is called a test element if every endomorphism of G which

fixes g is an automorphism of G. As an application of the result above we prove that

the annular density of the set of all test elements in the free group F (a, b) of rank two

is 1 − 6
π2 . Equivalently, this shows that the union of all proper retracts in F (a, b) has

annular density 6
π2 . Thus being a test element in F (a, b) is an “intermediate property”

in the sense that the probability of being a test element is strictly between 0 and 1.

1. Introduction

The idea of genericity and generic-case behavior in finitely presented groups was
introduced by Gromov [17, 18] and is currently the subject of much research. (See,
for example [2, 3, 4, 6, 8, 9, 10, 19, 22, 23, 24, 25, 26, 33, 34, 50].) Looking at the
properties of random groups led Gromov [19] to a probabilistic proof that there ex-
ists a finitely generated group that is not uniformly embeddable in a Hilbert space.
It also turns out that random group-theoretic objects exhibit various kinds of alge-
braic rigidity properties. In particular, Kapovich, Schupp and Shpilrain [24] proved
that a random cyclically reduced element of a free group F = F (A) is of minimal
length in its Aut(F )-orbit and that such an element has a trivial stabilizer in Out(F ).
Moreover, it turns out [24] that random one-relator groups satisfy a strong Mostow-
type rigidity. Specifically, two random one-relator groups Gr = 〈a1, . . . , ak|r〉 and
Gs = 〈a1, . . . , ak|s〉 are isomorphic if and only if their Cayley graphs on the given set
of generators {a1, . . . , ak} are isomorphic as labelled graphs where the graph isomor-
phism is only allowed to permute the label set {a1, . . . , ak}±1.

The most straightforward definition of “genericity” is based on the notion of “as-
ymptotic density”.

Definition 1.1 (Asymptotic density). Suppose that T is a countable set and that
` : T → N is a function (referred to as length) such that for every n ∈ N the set
{x ∈ T : `(x) ≤ n} is finite. If X ⊆ T and n ≥ 0, we denote ρ`(n,X) := #{x ∈ X :
`(x) ≤ n} and γ`(n,X) = #{x ∈ X : `(x) = n}.
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Let S ⊆ T . The asymptotic density of S in T is

ρT,`(S) := lim sup
n→∞

#{x ∈ S : `(x) ≤ n}
#{x ∈ T : `(x) ≤ n}

= lim sup
n→∞

ρ`(n, S)
ρ`(n, T )

,

where we treat a fraction 0
0 , if it occurs, as 0.

If the actual limit exists, we denote it by ρT,`(S) and call this limit the strict
asymptotic density of S in T . We say that S is generic in T with respect to ` if
ρT,`(S) = 1 and that S is negligible in T if ρT,`(S) = 0.

If S is T -generic then the probability that a uniformly chosen element of T of
length at most n belongs to S tends to 1 as n tends to infinity. The term “asymptotic
density” appears to originally come from number theory, but on occasion this notion
appeared in the literature under other names. Thus in [7] this notion is called “natural
density”.

It turns out that a different density, recording the proportions of a set in two
successive spheres, is sometimes more suitable for subsets of a free group.

Definition 1.2 (Annular Density). Let T, S, ` be as in Definition 1.1. The annular
density of S in T with respect to ` is:

σT,`(S) := lim sup
n→∞

1
2
(#{x ∈ S : `(x) = n− 1}
#{x ∈ T : `(x) = n− 1}

+
#{x ∈ S : `(x) = n}
#{x ∈ T : `(x) = n}

)
=

lim sup
n→∞

1
2
(γ`(n− 1, S)
γ`(n− 1, T )

+
γ`(n, S)
γ`(n, T )

)
,

where we treat a fraction 0
0 , if it occurs, as 0. Again, if the actual limit exists, we

denote this limit by σT,`(S) and call it the strict annular density of S in T with
respect to `.

Convention 1.3. Throughout this paper F = F (A) will be a free group of rank
k ≥ 2 with a fixed finite basis A = {a1, . . . , ak}. If w ∈ F then |w|A denotes the freely
reduced length of w with respect to the basis A. In discussing the density (asymptotic
or annular) of subsets of F using the notation above, we will assume that the ambient
set is T = F and that the length function `(w) is |w|A. If S ⊆ F we denote its
asymptotic and annular densities by ρA(S) and σA(S) respectively, and if the strict
asymptotic density or the strict annular density exist we denote them by ρA(S) and
σA(S) respectively. Also, we denote γA(S) := γ`(S) and ρA(n, S) := ρ`(n, S) in this
case.

For subsets of Zk a length function ` : Zk → R will usually be the restriction to
Zk of ||.||p-norm from Rk for some 1 ≤ p ≤ ∞. In this case for S ⊆ Zk we denote the
corresponding asymptotic density of S in T = Zk by ρp(S) and if the strict asymptotic
density exists, we denote it by ρp(S).

It is not hard to see that if for a subset S ⊆ F the strict asymptotic density ρA(S)
exists then the strict annular density σA(S) also exists and in fact σA(S) = ρA(S).
Namely, since the sizes of both the balls and the spheres in F (A) grow as constant
multiples of (2k − 1)n, if the strict asymptotic density ρA(S) exists, then the limit
limn→∞

γA(n,S)
γA(n,F ) exists and is equal to ρA(S). Then the definition of σA(S) implies

that the strict annular density σA(S) exists and is also equal to ρA(S). However,
as Example 1.5 below shows, it is possible that σA(S) exists while ρA(S) does not.
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Thus there are reasonable situations where the parity of the radius of a sphere or a
ball affects the outcome when measuring the relative size of a subset of a free group,
and annular density turns out to be a more suitable and relevant quantity. This is
the case when we consider a subset of Zk and the full preimage of this subset in F
under the abelianization map. Moreover, annular density and its “close relatives” also
make sense from the computational prospective. A typical experiment for generating
a “random” element in a ball B(n) of radius n in F (A) might proceed as follows.
First choose a uniformly random integer m ∈ [0, n] and then choose a uniformly
random element x from the m-sphere in F (A) via a simple non-backtracking random
walk of length m. It is easy to see that this experiment, while very natural, does
not correspond to the uniform distribution on B(n). For example, if F has rank
k = 2, then for the uniform distribution on B(n) the probability that the element x
has length n is approximately 2

3 for large n while in our experiment described above
this probability is 1/(n + 1). In fact if w ∈ B(n) then the probability of choosing
the element w in the above experiment is 1

(n+1)#S(m) where m is the freely reduced
length of w and where S(m) is the sphere of radius m in F . Thus if X ⊆ F then the
probability of choosing an element of X in the above experiment is

1
n+ 1

n∑
m=0

#(X ∩ S(m))
#S(m)

.

If in our experiment we choose an element of S(n− 1) ∪ S(n) by first randomly and
uniformly choosing m ∈ {n− 1, n} and then choosing a uniformly random element of
S(m), then for a subset X of F the probability of picking an element of X is

1
2
(#(X ∩ S(n− 1))

#S(n− 1)
+

#(X ∩ S(n))
#S(n)

)
,

and the formulas from the definition of annular density appear.
For most of the cases where one can actually compute the asymptotic density of

the set of elements in a free group having some natural algebraic property, this set
turns out to be either generic or negligible. (Of course, a subset is negligible if and
only if its complement is generic.) The following subsets are known to be negligible
in a free group F = F (A) of rank k ≥ 2, both in the sense of asymptotic and
annular densities: the set of all proper powers [2], a finite union of conjugacy classes,
a subgroup of infinite index [48], a finite union of automorphic orbits (e.g. the set of
all primitive elements) [16, 24], the set of all elements whose cyclically reduced forms
are not automorphically minimal [24], the union of all proper free factors of F (this
follows from results of [45] and [7, 6, 24]). Examples of generic sets, again in the
sense of both the asymptotic and the annular densities, include: the set of all words
whose symmetrizations satisfy the C ′(1/6) small cancellation condition [2], the set of
words with nontrivial images in the abelianization of F (A) [48] and the set of elements
of F (A) with cyclic stabilizers in Aut(F (A)) [24]. It is therefore interesting to find
examples of natural properties of elements of free groups which are “intermediate” in
the sense that they have density different from either 0 or 1. In this article we show
that being a test element in the free group of rank two is such an example.

Convention 1.4 (The abelianization map). Recall that F is a free group of rank
k ≥ 2 with free basis A = {a1, . . . , ak}. We identify Zk with the abelianization of F
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where the abelianization homomorphism α : F → Zk is given by ai 7→ ei, i = 1, . . . , k.
Here ei is the i-th unit vector. We also denote α(w) by w.

It is easy to construct an example of a subset H of F such that the annular density
of H in F and the asymptotic density of α(H) in Zk are different. For instance, let
F = F (a, b) and consider the subgroup H = 〈a, b[a, b]〉 ≤ F . Then H has infinite
index in F and hence has both asymptotic and annular density 0 in F . On the other
hand, α(H) = α(F ) = Z2 has asymptotic density 1 in Zk with respect to any length
function on Z2.

Example 1.5. [7] Let F = F (a, b), where A = {a, b}, be free of rank two. Let
α : F → Z2 be the abelianization map. Note that for any w ∈ F the lengths |w|A
and ||α(w)||1 have the same parity, since ||α(w)||1 = |wa| + |wb|, where wa, wb are
the exponent sums on a and b in w. Let S = {z ∈ Z2 : ||z||1 is even } and let
S̃ := α−1(S) ⊆ F . Then S̃ = {w ∈ F : |w|A is even }. It is not hard to see that the
strict asymptotic density of S in Z2, with respect to ||.||p for any 1 ≤ p ≤ ∞, exists
and is equal to 1/2.

Since S̃ is exactly the union of all spheres of even radii in F , and the ratio of
the sizes of spheres of radius n and n − 1 is equal to 3, it follows that the limits
limn→∞

#{w∈eS:|w|A=n}
#{w∈F :|w|=n} and limn→∞

#{w∈eS:|w|A≤n}
#{w∈F :|w|≤n} do not exist. However, it is easy

to see that for every n ≥ 1

#{w ∈ S̃ : |w|A = n− 1}
#{w ∈ F : |w|A = n− 1}

+
#{w ∈ S̃ : |w|A = n}
#{w ∈ F : |w|A = n}

= 1,

and therefore σA(S̃) = 1
2 . Thus although the strict asymptotic density of S̃ ⊆ F does

not exist, the strict annular density does exist and is equal to the strict asymptotic
density of S ⊆ Z2. More examples of a similar nature are discussed in Remark 1.8 of
[36].

Example 1.5 demonstrates why the notion of annular density may be more suitable
for working with subsets of free groups, while asymptotic density is more suitable for
subsets of free abelian groups. Geometrically, this difference comes from the fact that
free abelian groups are amenable with balls forming a Folner sequence, while free
groups are non-amenable.

Although the counting occurs in very different places, it is interesting to ask how
the asymptotic density of a subset S ⊆ Zk, with respect to some natural length
function, and the annular density of its full preimage α−1(S) in F are related. We
shall see that there is a reasonable assumption about the set S which guarantees that
the two densities are actually equal.

To do this we need to understand the image of the uniform distribution on the
sphere of radius n in F under the abelianization map α. There is an explicit formula
for the size of the preimage of an element, and there is also a Central Limit Theorem
saying that, when appropriately normalized, the distribution converges to a normal
distribution. The methods of [38] also give a Local Limit Theorem showing that,
when working with width-two spherical shells in a free group, the densities of the
image distributions in Zk converge to a normal density. Such a result was later also
shown (by rather different methods, and in greater generality) by Richard Sharp
in [41]. Recently Petridis and Risager [36] obtained a similar Local Limit Theorem
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for counting conjugacy classes rather than elements of F . On the face of it, studying
the annular density of the set α−1(S) in F presents new challenges. The central limit
theorem by itself seems too crude a tool and a priori it would appear that one would
need very sharp error bounds in the local limit theorem. Nevertheless, we produce a
short argument solving this problem where one of the key ingredients is the ergodicity
of the SL(k,Z)-action on Rk.

We can now state our main result:

Theorem A. Let F = F (A) be a free group of rank k ≥ 2 with free basis A =
{a1, . . . , ak} and let α : F → Zk be the abelianization homomorphism.

Let S ⊆ Zk be an SL(k,Z)-invariant subset and put S̃ = α−1(S) ⊆ F .
Then
(1) For every 1 ≤ p ≤ ∞ the strict asymptotic density ρp(S) exists and, moreover,

for every 1 ≤ p ≤ ∞ we have ρp(S) = ρ∞(S).
(2) The strict annular density σA(S̃) exist and, moreover, σA(S̃) = ρ∞(S).

That is,

lim
n→∞

1
2
(γA(n− 1, {w ∈ F : α(w) ∈ S})

γA(n− 1, F )
+
γA(n, {w ∈ F : α(w) ∈ S}

γA(n, F )
)

=

lim
n→∞

#{z : z ∈ Zk, ||z||∞ ≤ n, and z ∈ S}
#{z : z ∈ Zk, ||z||∞ ≤ n}

.

The requirement that S be SL(k,Z)-invariant essentially says that the subset S
of Zk is defined in “abstract” group-theoretic terms, not involving the specific choice
of a free basis for Zk. Note that Proposition 2.2 below gives an explicit formula for
ρ∞(S) in Theorem A.

Our main application of Theorem A concerns the case where S is the set of all
“visible” points in Zk. A nonzero point z of Zk is called visible if the greatest common
divisor of the coordinates of z is equal to 1. This terminology is standard in number
theory [37] and reflects the fact that if z is visible then the line segment between the
origin and z does not contain any other integer lattice points. For a nonzero point
z ∈ Zk being visible is also equivalent to z not being a proper power in Zk, that is, to
z generating a maximal cyclic subgroup of Zk. More generally, if t ≥ 1 is an integer,
we will say that z ∈ Zk is t-visible if z = zt

1 for some visible z1 ∈ Zk, that is, if the
greatest common divisor of the coordinates of z is equal to t.

We want to “lift” this terminology to free groups.

Definition 1.6 (Visible elements in free groups). Let F = F (A) be a free group of
rank k ≥ 2 with free basis A = {a1, . . . , ak} and let α : F → Zk be the abelianization
homomorphism, that is, α(ai) = ei ∈ Zk. We say that an element w ∈ F is visible
if α(w) is visible in Zk. Let V be the set of visible elements of F . Similarly, for an
integer t ≥ 1 an element w ∈ F is t-visible if α(w) is t-visible in Zk. We use Vt to
denote the set of all t-visible elements of F and we use Ut to denote the set of all
t-visible elements of Zk.

Note that V = V1 and that for every t ≥ 1 the definition of Vt does not depend on
the choice of the free basis A of F .
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The following proposition giving the asymptotic density of the set of t-visible points
in Zk in terms of the Riemann zeta-function is well-known in number theory [11].

Proposition 1.7. For any integer t ≥ 1 we have

ρ∞(Ut) =
1

tkζ(k)
.

The case k = 2 and t = 1 of Proposition 1.7 was proved by Mertens in 1874 [30].
(See also Theorem 332 of the classic book of Hardy and Wright [20].) Recall that
ζ(k) =

∑∞
n=1

1
nk and, in particular, ζ(2) = π2

6 .
It is therefore natural to investigate the asymptotic density of the set of visible

elements in F . As a direct corollary of Theorem A, of Proposition 2.9 below and of
Proposition 1.7 we obtain:

Theorem B. Let F = F (A) be a free group of rank k ≥ 2 with free basis A =
{a1, a2, . . . , ak}. Let t ≥ 1 be an integer. Then the strict annular density σA(Vt)
exists and

σA(Vt) =
1

tkζ(k)
.

Moreover, in this case

0 <
4k − 4

(2k − 1)2tkζ(k)
≤ lim inf

n→∞

ρA(n, Vt)
ρA(n, F )

≤

lim sup
n→∞

ρA(n, Vt)
ρA(n, F )

≤ 1− 4k − 4
(2k − 1)2

(
1− 1

tkζ(k)
)
< 1.

A result similar to Theorem B for counting conjugacy classes in Fk with primitive
images in Zk has been recently independently obtained by Petridis and Risager [36].

For the case of the free group of rank two we compute the two “spherical densities”
for the density of the set V1, corresponding to even and odd n tending to infinity:

Theorem C. Let k = 2. We have

lim
m→∞

γA(2m,V1)
γA(2m,F )

=
2

3ζ(2)
=

4
π2

and

lim
m→∞

γA(2m− 1, V1)
γA(2m− 1, F )

=
8
π2
.

Moreover, the strict asymptotic density ρA(V1) does not exist.

The above result shows that the statements of Theorem A and Theorem B cannot
be substantially improved. This fact underscores the conclusion that annular density
is the right kind of notion for measuring the sizes of subsets of free groups, where the
abelianization map is concerned.

We apply Theorem B to compute the annular density of test elements in a free
group of rank two. Recall that an element g ∈ G is called a test element if every
endomorphism of G fixing g is actually an automorphism of G. It is easy to see that
for two conjugate elements g1, g2 ∈ G the element g1 is a test element if and only if
g2 is also a test element and thus the property of being a test element depends only
on the conjugacy class of an element g. The notion of a test element was introduced



DENSITIES IN FREE GROUPS AND Zk 269

by Shpilrain [42] and has since become a subject of active research both in group
theory and in the context of other algebraic structures such as polynomial algebras
and Lie algebras. (See, for example, [15, 21, 27, 31, 32, 35, 40, 43, 46].) The idea
of a test element goes back to the classic work of Nielsen who proved that in F (a, b)
the commutator [a, b] has this property. It turns out that studying test elements in a
particular group G produces interesting information about the automorphism group
of G.

Here we prove:

Theorem D. Let F = F (a, b) be a free group of rank two with free basis A = {a, b}.
Then for the set T of all test elements in F the strict annular density exists and

σA(T ) = 1− 6
π2
.

Moreover,

0 <
4
9
(1− 6

π2
) ≤ lim inf

n→∞

ρA(n, T )
ρA(n, F )

≤

lim sup
n→∞

ρA(n, T )
ρA(n, F )

≤ 1− 8
3π2

< 1.

By a result of Turner [47], an element of F is a test element if and only if it does
not belong to a proper retract of F . Therefore Theorem D implies that the strict
annular density of the union of all proper retracts of F (a, b) is 6

π2 . In Theorem D
above we have 4

9 (1 − 6
π2 ) ≈ 0.1742, 1 − 6

π2 ≈ 0.3920 and 1 − 8
3π2 ≈ 0.7298. Thus

Theorem D shows that being a test element is an “intermediate” property in the free
group of rank two. More generally, Theorem B implies that, for every k ≥ 2 and for N
sufficiently large, the set VN of N -visible elements in Fk has strictly positive annular
density arbitrarily close to 0 while the set SN =

⋃N
t=1 Vt has annular density less than

but arbitrarily close to 1. It is well-known that every positive rational number has an
“Egyptian fraction” representation as a finite sum of distinct terms of the form 1

n . It
does not seem clear what values can be obtained as finite sums of distinct terms of
the form 1

n2 and there are excluded intervals. In particular, if such a sum uses 1, it is
at least 1 while if 1 is not used then the sum is at most π2

6 − 1. Multiplying by the
scale factor 1

ζ(2) , we see that we cannot obtain an annular density in the open interval
(1− 6

π2 ,
6

π2 ) by taking a finite union of the sets Vt (Proposition 2.2 below shows that
the same is true for infinite unions). It is interesting to note that the probabilities of
being a test element or of not being a test element are the boundary points of this
excluded interval.

Nathan Dunfield and Dylan Thurston recently proved [13] that for a two-generator
one-relator group being free-by-cyclic is an intermediate property. While they do
not provide an exact value for the asymptotic density (nor do they prove that either
the strict asymptotic density or the strict annular density exist), they show that it
is strictly between 0 and 1. Computer experiments by Kapovich and Schupp, by
Mark Sapir and by Dunfield and Thurston indicate that in the two-generator case
this asymptotic density is greater than 0.9.
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2. Comparing densities in Zk and in Fk

Convention 2.1. Throughout this section let S ⊆ Zk be as in Theorem A and let
δ := ρ∞(S).

We can now prove that for every SL(k,Z)-invariant subset S of Zk the strict as-
ymptotic density ρ∞(S) exists. Recall that Proposition 1.7 stated in the introduction
gives the precise value of the strict asymptotic density of the set of all t-visible ele-
ments in Zk. The crucial points of the proof below are that the complement of an
SL(k,Z)-invariant set is also SL(k,Z)-invariant and that

∑∞
t=1

1
tkζ(k)

= 1.

Proposition 2.2. Let Y ⊆ Zk be a nonempty SL(k,Z)-invariant subset that does
not contain 0 ∈ Zk. Let I be the set of all integers t ≥ 1 such that there exists a
t-visible element in Y . Then

(1) Y = ∪t∈IUt.
(2) The strict asymptotic density ρ∞(Y ) exists and

ρ∞(Y ) =
∑
t∈I

ρ(Ut) =
∑
t∈I

1
tkζ(k)

.

Proof. Observe first that

∞∑
t=1

1
tkζ(k)

=
1

ζ(k)

∞∑
t=1

1
tk

=
ζ(k)
ζ(k)

= 1.

Since k ≥ 2, two nonzero elements z, z′ ∈ Zk lie in the same SL(k,Z)-orbit if and
only if the greatest common divisors of the coordinates of z and of z′ are equal. Thus
every SL(k,Z)-orbit of a nonzero element of Zk has the form Ut for some t ≥ 1. This
implies part (1) of Proposition 2.2.

Let I ′ := {t ∈ Z : t ≥ 1, t 6∈ I}. If either I or I ′ is finite, part (2) of Proposition 2.2
follows directly from proposition 1.7. Suppose now that both I and I ′ are infinite and
let Y ′ := Zk − (Y ∪ {0}) = ∪t∈I′Ut.

For every finite subset J ⊆ I let YJ := ∪t∈JUt. Since YJ ⊆ Y , it follows that

lim inf
n→∞

#{z ∈ Y : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

≥ ρ∞(YJ) =
∑
t∈J

1
tkζ(k)

.

Since this is true for every finite subset J of I, we conclude that

lim inf
n→∞

#{z ∈ Y : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

≥
∑
t∈I

1
tkζ(k)

.

The same argument applies to the SL(k,Z)-invariant set Y ′ and therefore:

lim inf
n→∞

#{z ∈ Y ′ : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

≥
∑
t∈I′

1
tkζ(k)

.
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This implies

1− lim inf
n→∞

#{z ∈ Y ′ : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

≤ 1−
∑
t∈I′

1
tkζ(k)

⇒

lim sup
n→∞

(
1− #{z ∈ Y ′ : ||z||∞ ≤ n}

#{z ∈ Zk : ||z||∞ ≤ n}

)
≤ 1−

∑
t∈I′

1
tkζ(k)

⇒

lim sup
n→∞

#{z ∈ Y : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

≤ 1−
∑
t∈I′

1
tkζ(k)

=
∑
t∈I

1
tkζ(k)

.

Hence

lim
n→∞

#{z ∈ Y : ||z||∞ ≤ n}
#{z ∈ Zk : ||z||∞ ≤ n}

=
∑
t∈I

1
tkζ(k)

,

as required. �

Recall that S ⊆ Zk is an SL(k,Z)-invariant subset and that δ = ρ∞(S). Proposi-
tion 2.2 implies that in fact δ = ρ∞(S).

It is well known that if Ω ⊆ Rk is a “nice” bounded open set then the Lebesgue
measure λ(Ω) can be computed as

λ(Ω) = lim
r→∞

#(Zk ∩ rΩ)
rk

.

Here we say that a bounded open subset of Rk is “nice” if its boundary is piecewise
smooth.

We need a similar formula for counting the points of S. For a real number r ≥ 1
and a nice bounded open set Ω ⊆ Rk let

µr,S(Ω) :=
#(S ∩ rΩ)

rk
.

Proposition 2.3. For any nice bounded open set Ω ⊆ Rk we have

lim
r→∞

µr,S(Ω) = δλ(Ω).

Proof. Each µr,S can be regarded as a measure on Rk. We prove the theorem by
showing that the µr,S weakly converge to δλ as r → ∞, where λ is the Lebesgue
measure.

By Helly’s theorem there exists a sequence (ri)∞i=1 with lim
i→∞

ri = ∞ such that

the sequence µr1,S , µr2,S , . . . is weakly convergent to some limiting measure. We now
show that for every such convergent subsequence of µri,S the limiting measure is
indeed equal to δλ, where λ is the Lebesgue measure.

Indeed, suppose that σ = (ri)∞i=1 is a sequence with lim
i→∞

ri = ∞ such that the

sequence µri,S converges to the limiting measure µσ = lim
i→∞

µri,S . Every µri,S is

invariant with respect to the natural SL(k,Z)-action since this action preserves the
set S and also commutes with homotheties of Rk centered at the origin. Therefore
the limiting measure µσ is also SL(k,Z)-invariant.
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Moreover, the measures µr,S are dominated by the measures λr defined as λr(Ω) =
#(Zk∩rΩ)

rk . Since, as observed earlier, the measures λr converge to the Lebesgue mea-
sure λ, it follows that µσ is absolutely continuous with respect to λ. It is known that
the natural action of SL(k,Z) on Rk is ergodic with respect to λ. (See, for example,
Zimmer’s classic monograph [49].) Therefore µσ is a constant multiple cλ of λ. The
constant c can be computed explicitly for a set such as the open unit ball B in the
||.||∞ norm on Rk defining the length function ` on Zk.

By assumption we know that

lim
r→∞

#{z ∈ Zk : z ∈ S ∩ rB}
#{z ∈ Zk : z ∈ rB}

= δ.

We also have

lim
r→∞

#{z ∈ Zk : z ∈ rB}
rk

= λ(B)

and hence

lim
r→∞

#{z ∈ Zk : z ∈ S ∩ rB}
rk

= δλ(B).

Therefore c = δ and µσ = δλ. The above argument in fact shows that every convergent
subsequence, with r →∞, of µr,S converges to δλ and therefore lim

r→∞
µr,S = δλ.

�

Remark 2.4. Let 1 ≤ p ≤ ∞. Then the open unit ball in Rk with respect to ||.||p is
”nice”. Proposition 2.3, applied to Ω being this ball, implies that ρp(S) = ρ∞(S) = δ.

Convention 2.5. As always, F = F (a1, . . . , ak) is the free group of rank k ≥ 2 with
free basis A = {a1, . . . , ak} and α : F → Zk is the abelianization homomorphism
sending ai to ei in Zk. We will denote α(w) by w. For n ≥ 1, BF (n) denotes the set
of all w ∈ F with |w|A ≤ n. Also, for a point x = (x1, . . . , xk) ∈ Rk we denote by

||x|| the ||.||2-norm of x, that is ||x|| =
√∑k

i=1 x
2
i .

Notation 2.6. For an integer n ≥ 1 and a point x ∈ Rk let

pn(x) =
γA(n− 1, {f ∈ F : α(f) = x

√
n})

2γA(n− 1, F )
+
γA(n, {f ∈ F : α(f) = x

√
n})

2γA(n, F )
.

Thus pn is a distribution supported on finitely many points of 1√
n

Zk.
We need the following facts about the sequence of distributions pn. Of these the

most significant is part (2) which is a local limit theorem in our context. It was
obtained by Rivin [38] and, independently and via different methods, by Sharp [41]
(specifically, we use Theorem 1 of [41] for part (2) of Proposition 2.7 below).

Proposition 2.7. [38, 41] Let k ≥ 2 and let pn be as above. Then:
(1) The sequence of distributions pn converges weakly to a normal distribution N,

with density n.
(2) We have

sup
x∈Zk/

√
n

|pn(x)nk/2 − n(x)| → 0 as n→∞.
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(3) We have

lim
c→∞

∑
{pn(x) : x ∈ Zk/

√
n and ||x|| ≥ c} = 0.

Recall that convergence in distribution for a sequence of probability measures µn to
a probability measure µ means that for any bounded continuous function, the integral
with respect to µn converges to the integral with respect to µ. A local limit theorem
is a statement saying that the probability densities converge pointwise. We refer the
reader to the book of Feller [14] for the background information on these notions.

Theorem 2.8. Let Ω ⊆ Rk be a nice bounded open set. Then

lim
n→∞

∑
x∈S∩

√
nΩ

pn(x/
√
n) = δN(Ω).

Proof. We have ∑
x∈Zk

t∩
√

nΩ

pn(x/
√
n) =

∑
y∈ 1√

n
S∩Ω

pn(y) =

n−k/2
∑

y∈ 1√
n

S∩Ω

n(y) + n−k/2
∑

y∈ 1√
n

S∩Ω

(nk/2pn(y)− n(y)).

The local limit theorem in part (2) of Proposition 2.7 tells us that, as n → ∞,
each summand nk/2pn(y)− n(y) of the second sum in the last line of equation above
converges to zero and hence so does their Cesaro mean. Proposition 2.3 implies that,
as n→∞, the first summand n−k/2

∑
y∈ 1√

n
S∩Ω

n(y) converges to

δ

∫
Ω

ndλ = δN(Ω).

�

We can now compute the strict asymptotic density of S̃ = α−1(S) in F and obtain
Theorem A.

Proof of Theorem A. Recall that S ⊆ Zk is an SL(k,Z)-invariant set and that δ =
ρ∞(S). Proposition 2.2 implies that in fact ρ∞(S) exists and δ = ρ∞(S). Moreover,
as we have seen in Remark 2.4, for every 1 ≤ p ≤ ∞ the strict asymptotic density
ρp(S) exists and ρp(S) = δ = ρ∞(S). This proves part (1) of Theorem A.

To prove part (2) of Theorem A we need to establish that the strict annular density
σA(S) exists and that σA(S) = δ.

For c > 0 denote Ωc := {x ∈ Rk : ||x|| < c}. Then lim
c→∞

N(Ωc) = 1. Let ε > 0 be
arbitrary. Choose c > 0 such that

|N(Ωc)− 1| ≤ ε/3

and such that

lim
n→∞

∑
{pn(x) : x ∈ Zk/

√
n and ||x|| ≥ c} ≤ ε/6.
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By Theorem 2.8 and the above formula there is some n0 ≥ 1 such that for all
n ≥ n0 we have ∣∣∣∣∣∣

∑
x∈S∩

√
nΩc

pn(x/
√
n)− δN(Ωc)

∣∣∣∣∣∣ ≤ ε/3

and ∑
{pn(x) : x ∈ Zk/

√
n and ||x|| ≥ c} ≤ ε/3.

Let

Q(n) :=
γA(n− 1, {w ∈ F : w ∈ S})

2γA(n− 1, F )
+
γA(n, {w ∈ F : w ∈ S})

2γA(n, F )
.

For n ≥ n0 we have

Q(n) =

#{w ∈ F : w ∈ S, |w|A = n− 1 and ||w|| < c
√
n}

2γA(n− 1, F )
+

#{w ∈ F : w ∈ S, |w|A = n and ||w|| < c
√
n}

2γA(n, F )
+

#{w ∈ F : w ∈ S, |w|A = n− 1 and ||w|| ≥ c
√
n}

2γA(n− 1, F )
+

#{w ∈ F : w ∈ S, |w|A = n and ||w|| ≥ c
√
n}

2γA(n, F )
=∑

x∈S∩
√

nΩc

pn(x/
√
n) +

∑
x∈S∩(Rk−

√
nΩc)

pn(x/
√
n).

In the last line of the above equation, the first sum differs from δN(Ωc) by at most
ε/3 since n ≥ n0 and the second sum is ≤ ε/3 by the choice of c and n0. Therefore,
again by the choice of c, we have |Q(n) − δ| ≤ ε. Since ε > 0 was arbitrary, this
implies that lim

n→∞
Q(n) = δ, as claimed. �

The following observation shows how to estimate the asymptotic density in terms
of the annular density.

Proposition 2.9. Let Y ⊆ F be a subset such that the strict annular density δ =
σA(Y ) exists. Then

4k − 4
(2k − 1)2

δ ≤ lim inf
n→∞

ρA(n, S)
ρA(n, F )

≤ lim sup
n→∞

ρA(n, S)
ρA(n, F )

≤ 1− 4k − 4
(2k − 1)2

(1− δ).

In particular, if 0 < δ < 1 then

0 < lim inf
n→∞

ρA(n, S)
ρA(n, F )

≤ lim sup
n→∞

ρA(n, S)
ρA(n, F )

< 1.

Proof. Note that for n ≥ 1 we have γA(n, F ) = 2k(2k − 1)n−1 and that, up to an
additive constant, ρA(n, F ) = k

k−1 (2k − 1)n. Denote an = γA(n, Y ). We have

δ = lim
n→∞

1
2
( an−1

2k(2k − 1)n−2
+

an

2k(2k − 1)n−1

)
=

1
2

lim
n→∞

an−1
2k−1
2k−2 + an

1
2k−2

k
k−1 (2k − 1)n−1

.
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Therefore

lim inf
n→∞

ρA(n, Y )
ρA(n, F )

= lim inf
n→∞

a1 + · · ·+ an

k
k−1 (2k − 1)n

≥ lim inf
n→∞

an−1 + an

k
k−1 (2k − 1)n

=

2k − 2
2k − 1

lim inf
n→∞

an−1
2k−1
2k−2 + an

2k−1
2k−2

k
k−1 (2k − 1)n

≥ 2k − 2
2k − 1

lim inf
n→∞

an−1
2k−1
2k−2 + an

1
2k−2

k
k−1 (2k − 1)n

=

4k − 4
(2k − 1)2

lim inf
n→∞

1
2
·
an−1

2k−1
2k−2 + an

1
2k−2

k
k−1 (2k − 1)n−1

=
4k − 4

(2k − 1)2
δ.

Applying the same argument to the set F − Y , we get

lim inf
n→∞

ρA(n, F − Y )
ρA(n, F )

≥ 4k − 4
(2k − 1)2

(1− δ).

Therefore

lim sup
n→∞

ρA(n, Y )
ρA(n, F )

= 1− lim inf
n→∞

ρA(n, F − Y )
ρA(n, F )

≤ 1− 4k − 4
(2k − 1)2

(1− δ).

�

3. Spherical densities

In this section we will prove Theorem C from the Introduction and, for the case of
k = 2, compute the “spherical densities”

lim
m→∞

γA(2m,V1)
γA(2m,F )

and

lim
m→∞

γA(2m− 1, V1)
γA(2m− 1, F )

.

This is done by computing the “spherical densities” for the set V ev
1 ⊆ F consisting of

all points of V1 of even length and comparing it with the strict asymptotic density of
the set Uev

1 ⊆ Zk of all elements of Zk of even ||.||∞-length. The key point is that for
n = 2m we have γA(2m− 1, V ev

1 ) = 0 and γA(2m,V1) = γA(2m,V ev
1 ). Therefore for

the quantities from the definition of annular density we have

1
2
(γA(2m,V ev

1 )
γA(2m,F )

+
γA(2m− 1, V ev

1 )
γA(2m− 1, F )

)
=
γA(2m,V ev

1 )
2γA(2m,F )

=
γA(2m,V1)
2γA(2m,F )

.

This allows us to essentially repeat the proof of Theorem A, applied to the sets Uev
1

and V ev
1 = α−1(Uev

1 ), except that instead of ergodicity of the action of SL(k,Z) we
use the ergodicity of the action on Rk of a congruence subgroup of SL(k,Z) that
leaves Uev

1 invariant.

Convention 3.1. We say that an element z = (z1, . . . , zk) ∈ Zk is even if ||z||1 =
|z1| + · · · + |zk| is even and that z is odd if ||z||1 is odd. Similarly, w ∈ F is even if
|w|A is even and w ∈ F is odd if |w|A is odd. Note that w ∈ F is even if and only if
α(w) ∈ Zk is even.

Let Gk be the set of all M ∈ SL(k,Z) such that M = Ik in SL(k,Z/2Z). Thus
Gk is a finite index subgroup of SL(k,Z) also known as the 2-congruence subgroup.
Denote by Zk,ev the set of all even elements in Zk. Also denote Uev

1 := U1 ∩ Zk,ev.
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Observe that Zk,ev and Uev
1 are Gk-invariant and that V ev

1 = α−1(Uev
1 ). (The actual

set-wise stabilizer of Zk,ev in SL(k,Z) contains Gk as a subgroup of finite index.)

Lemma 3.2. Let Y ⊆ F . Then the following hold:

(1) If ρA(Y ) exists then σA(Y ) and limn→∞
γA(n,Y )
γA(n,F ) exist and

ρA(Y ) = σA(Y ) = lim
n→∞

γA(n, Y )
γA(n, F )

.

(2) If limn→∞
γA(n,Y )
γA(n,F ) exists then ρA(Y ) and σA(Y ) exist (and hence, by part (1),

all three of these quantities are equal).

Proof. For two sequences xn, yn of real numbers we will write xn ∼′ yn if

lim
n→∞

(xn − yn) = 0.

Denote η := 2k− 1. Then γA(n, F ) = η+1
η ηn and ρA(n, F ) = η+1

η−1η
n − η+1

η−1 . Hence
γA(n,F )
ρA(n,F ) ∼

′ η−1
η . Now,

γA(n, Y )
γA(n, F )

=
ρA(n, Y )− ρA(n− 1, Y )

γA(n, F )
=
ρA(n, Y )
γA(n, F )

− ρA(n− 1, Y )
γA(n, F )

=

ρA(n, Y )
γA(n, F )

− ρA(n− 1, Y )
ηγA(n− 1, F )

∼′ ρA(n, Y )
η−1

η ρA(n, F )
− ρA(n− 1, Y )
η η−1

η ρA(n− 1, F )

=
η

η − 1
ρA(n, Y )
ρA(n, F )

− 1
η − 1

ρA(n− 1, Y )
ρA(n− 1, F )

.

Therefore if the strict asymptotic density δ := ρA(Y ) = limn→∞
ρA(n,Y )
ρA(n,F ) exists then

lim
n→∞

γA(n, Y )
γA(n, F )

=
η

η − 1
δ − 1

η − 1
δ =

η − 1
η − 1

δ = δ.

By definition of σA(Y ) it follows that σA(Y ) exists and σA(Y ) = 1
2 (δ + δ) = δ. This

proves part (1) of the lemma.
For (2) suppose that the limit limn→∞

γA(n,Y )
γA(n,F ) exists. Recall that by Stolz’ The-

orem (see, for example [44]), if xn, yn are sequences of real numbers with yn < yn+1

and limn→∞ yn = ∞ and if the limit

lim
n→∞

xn − xn−1

yn − yn−1

exists and is finite then limn→∞
xn

yn
also exists and

lim
n→∞

xn

yn
= lim

n→∞

xn − xn−1

yn − yn−1
.

Put yn = ρA(n, F ) and xn = ρA(n, Y ). Then yn−yn−1 = γA(n, F ) and xn−xn−1 =
γA(n, Y ) and Stolz’ Theorem implies part (2) of the lemma. �
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Proposition 3.3. Let S ⊆ Zk be a subset such that δ = ρ∞(S) exists and such that
S is Gk-invariant. Then for every bounded nice open set Ω ⊆ Rk we have

lim
r→∞

µr,S(Ω) = δλ(Ω).

Proof. The proof is the same as for Proposition 2.3. The only difference is that instead
of ergodicity of the SL(k,Z)-action on Rk we use ergodicity of the Gk-action on Rk

with respect to the Lebesgue measure (see [49] for the proof of this ergodicity). �

Let pn(x) be defined exactly as in Notation 2.6.

Theorem 3.4. Let Ω ⊆ Rk be a nice bounded open set. Let S ⊆ Zk be a Gk-invariant
subset such that δ := ρ∞(S) exists.

Then
lim

n→∞

∑
x∈S∩

√
nΩ

pn(x/
√
n) = δN(Ω).

Proof. The proof is exactly the same as that of Theorem 2.8, with the only change
that instead of Proposition 2.3 we use Proposition 3.3. �

Convention 3.5. From now and until the end of this section we assume that k = 2.

Proposition 3.6. We have

ρ∞(Uev
1 ) =

1
3
ρ∞(U1) =

1
3ζ(2)

.

Proof. Let r, s ≥ 1 be real numbers. For X,Y ∈ {A,O,E} we denote by XY (r, s)
the number of all z = (z1, z2) ∈ U1 such that 0 ≤ z1 < r, 0 ≤ z2 < s and such that
the parity of z1 is X and the parity of z2 is Y . Here A stands for “any”, E stands for
“even” and O stands for “odd”.

Let n� 1,m� 1 be integers. We will also use =′ to signify the equality up to an
additive error term that is o(nm). Note that EE(n,m) = 0. Then we have

EO(n,m) = AO(n/2,m) = AA(n/2,m)−AE(n/2,m) =

AA(n/2,m)−OE(n/2,m) =′ AA(n/2,m)− EO(n/2,m) =′

1
2
AA(n,m)− 1

2
EO(n,m).

Therefore
3
2
EO(n,m) =′ 1

2
AA(n,m) ⇒ EO(n,m) =′ OE(n,m) =′ 1

3
AA(n,m).

Hence EO(n,m) +OE(n,m) =′ 2
3AA(n,m) which implies

OO(n,m) = OO(n,m) + EE(n,m) =′ 1
3
AA(n,m).

Since ρ∞(U1) = 1
ζ(2) , we have

lim
n→∞

AA(n, n)
n2

=
1
ζ(2)
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Therefore

lim
n→∞

EE(n, n) +OO(n, n)
n2

=
1

3ζ(2)
,

which implies ρ∞(Uev
1 ) = 1

3ζ(2) , as required. �

We can now compute the limits for the spherical densities of the set of visible points
for even and odd n tending to infinity for the case k = 2.

Theorem 3.7. Let k = 2. We have

lim
m→∞

γA(2m,V1)
γA(2m,F )

=
2

3ζ(2)
=

4
π2

and

lim
m→∞

γA(2m− 1, V1)
γA(2m− 1, F )

=
8
π2
.

Moreover, ρA(V1) does not exist.

Proof. The proof is essentially the same as that of Theorem A. We present the details
for completeness.

For c > 0 denote Ωc := {x ∈ R2 : ||x|| < c}. Then lim
c→∞

N(Ωc) = 1. Let ε > 0 be
arbitrary. Choose c > 0 such that

|N(Ωc)− 1| ≤ ε/3

and such that

lim
n→∞

∑
{pn(x) : x ∈ Z2/

√
n and ||x|| ≥ c} ≤ ε/6.

By Theorem 3.4, Proposition 3.6 and the above formula there is some n0 ≥ 1 such
that for all n ≥ n0 we have∣∣∣∣∣∣

∑
x∈∩

√
nΩc

pn(x/
√
n)− 1

3ζ(2)
N(Ωc)

∣∣∣∣∣∣ ≤ ε/3

and ∑
{pn(x) : x ∈ Zk/

√
n and ||x|| ≥ c} ≤ ε/3.

For an even n ≥ 2 let

Q(n) :=

γA(n− 1, {w ∈ F : w ∈ Uev
1 })

2γA(n− 1, F )
+
γA(n, {w ∈ F : w ∈ Uev

1 })
2γA(n, F )

=

γA(n, {w ∈ F : w ∈ Uev
1 })

2γA(n, F )
.

In the above equality we use the fact that n is even and all the points of Uev
1 are even.
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For an even n ≥ n0 we have

Q(n) =

#{w ∈ F : w ∈ Uev
1 , |w|A = n− 1 and ||w|| < c

√
n}

2γA(n− 1, F )
+

#{w ∈ F : w ∈ Uev
1 , |w|A = n and ||w|| < c

√
n}

2γA(n, F )
+

#{w ∈ F : w ∈ Uev
1 , |w|A = n− 1 and ||w|| ≥ c

√
n}

2γA(n− 1, F )
+

#{w ∈ F : w ∈ Uev
1 , |w|A = n and ||w|| ≥ c

√
n}

2γA(n, F )
=∑

x∈Uev
1 ∩

√
nΩc

pn(x/
√
n) +

∑
x∈Uev

1 ∩(Rk−
√

nΩc)

pn(x/
√
n).

In the last line of the above equation, the first sum differs from 1
3ζ(2)N(Ωc) by

at most ε/3 since n ≥ n0, and the second sum is ≤ ε/3 by the choice of c and n0.
Therefore, again by the choice of c, we have |Q(n) − 1

3ζ(2) | ≤ ε. Since ε > 0 was

arbitrary, this implies that lim
m→∞

Q(2m) =
1

3ζ(2)
. Therefore

lim
m→∞

γA(2m,V1)
γA(2m,F )

= 2 lim
m→∞

Q(2m) =
2

3ζ(2)
=

4
π2
.

Together with the conclusion of Theorem B this implies that

lim
m→∞

γA(2m− 1, V1)
γA(2m− 1, F )

=
8
π2
,

as claimed.
Since 4

π2 6= 8
π2 , it follows that the limit limn→∞

γA(n,V1)
γA(n,F ) does not exist. Hence by

Lemma 3.2 the strict asymptotic density ρA(V1) does not exist. �

4. Test elements in the free group of rank two

A subgroup H of a group G is called a retract of G if there exists a retraction
from G to H, that is, an endomorphism φ : G → G such that H = φ(G) and that
φ|H = IdH . A retract H ≤ G is proper if H 6= G and H 6= 1.

The following result is due to Turner [47]:

Proposition 4.1. Let F be a free group of finite rank k ≥ 2 and let w ∈ F . Then w
is a test element in F if and only if w does not belong to a proper retract of F .

If F is a free group of rank two, then a proper retract of F is necessarily cyclic. The
following explicit characterization of retracts in this case is actually Exercise 25 on
page 103 of Magnus, Karrass, Solitar [29]. We present a proof here for completeness.

Lemma 4.2. Let F be a free group of rank two and let H = 〈h〉 ≤ F be an infinite
cyclic subgroup of F .

Then H is a retract of F if and only if there is a free basis {a, b} of F such that
h can be represented as h = ac, where c belongs to the normal closure of b in F . In
particular, if H is a retract of F then H is a maximal cyclic subgroup of F .
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Proof. Suppose first that H is a retract of F and that φ : F → F is a retraction with
φ(F ) = H. Choose a free basis x, y of F . Since H = 〈h〉 = 〈φ(x), φ(y)〉 ≤ F is infinite
cyclic, the pair (φ(x), φ(y)) is Nielsen equivalent to the pair (h, 1). Applying the same
sequence of Nielsen transformations to (x, y) we obtain a free basis (a, b) of F such
that φ(a) = h and φ(b) = 1. Then the kernel of φ is the normal closure of b in F .

Since φ is a retraction onto H, we have φ(h) = h = φ(a). Hence a−1h ∈ ker(φ)
and therefore h = ac, where c belongs to the kernel of φ, that is, to the normal closure
of b, as required.

Suppose now that for some free basis a, b of F we have h = ac where c belongs
to the normal closure of b in F . Consider the endomorphism ψ : F → F defined by
ψ(a) = h, ψ(b) = 1. Then, clearly, ψ(h) = h and ψ is a retraction from F to H. �

We can now obtain an explicit characterization of test elements in the free group
F = F (a, b) of rank two with free basis A = {a, b}. We identify the abelianization of
F with Z2 so that a = (1, 0) and b = (0, 1). If x ∈ A and w ∈ F , then wx denotes
the exponent sum on x in w when w is written as a freely reduced word in A and w
denotes the image of w in the abelianization of F . Thus w = (wa, wb).

Note that if w ∈ F = F (a, b) then w is an n-th power in Z2 for some n ≥ 2 if and
only if gcd(wa, wb) > 1. By convention we set gcd(0, 0) = ∞.

Proposition 4.3. Let F be a free group of rank two. Let w ∈ F be a nontrivial
element that is not a proper power in F .

Then w is a test element in F if and only if there exists an integer n ≥ 2 such that
w is an n-th power in Z2. That is, w is not a test element if and only if w is visible
in F .

Proof. Suppose first that w is a test element but that w cannot be represented as
an n-th power in Z2 for n ≥ 2. Then gcd(wa, wb) = 1. Hence there exist integers
p and q such that pwa + qwb = 1. Consider an endomorphism φ : F → F defined
by φ(a) = wp and φ(b) = wq. Then φ(w) = w and φ is not an automorphism of F
since φ(F ) is cyclic. Hence, by definition, w is not a test element in F , yielding a
contradiction.

Suppose now that w is an n-th power in Z2 for some n ≥ 2 but that w is not a test
element. Then by Proposition 4.1 w belongs to an infinite cyclic proper retract H of
F . Since by assumption w is not a proper power in F , it follows that w generates
H. Lemma 4.2 implies that for some free basis (a1, b1) of F we have w = a1c where
c belongs to the normal closure of b1 in F . Hence when w is expressed as a word in
a1, b1, the exponent sum on a1 in w is equal to 1, which contradicts the assumption
that w is an n-th power in the abelianization of F . �

It is well-known and easy to prove that the set of proper powers in a free group is
negligible [2]:

Proposition 4.4. Let F = F (A) be a free group of finite rank k ≥ 2 with free basis
A = {a1, . . . , ak}. Let P be the set of all nontrivial elements of F that are proper
powers.

Then

lim
n→∞

γA(n, P )
γA(n, F )

= lim
n→∞

ρA(n, P )
ρA(n, F )

= 0,
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and the convergence in both limits is exponentially fast.

Proof of Theorem D. Since ζ(2) = π2

6 , Theorem D now follows directly from Theo-
rem B, Proposition 4.3 and Proposition 4.4. �

5. Open Problems

As before, let F = F (A) be a free group of rank k ≥ 2 with free basis A =
{a1, . . . , ak} and let α : F → Zk be the abelianization homomorphism.

Problem 5.1. Let k ≥ 3. Is the set of test elements negligible in F? In view of
Proposition 4.1, this is equivalent to asking if the union of all proper retracts of F is
generic in F .

The proof of Proposition 4.3 shows that a visible element in F is never a test element
and therefore by Theorem B the asymptotic density of the set of test elements in F

is at most 1− 1
ζ(k) . For k ≥ 2 we have 0 < 1− 1

ζ(k) < 1 and lim
k→∞

1− 1
ζ(k)

= 0. Thus

the asymptotic density of the set of test elements of F tends to zero as the rank k of
F tends to infinity.

Note that every free factor of F is a retract, but the converse is not true. As
mentioned in the Introduction, the union of all proper free factors is negligible in F ,
whereas the union of all proper retracts is not since every visible element of F belongs
to a proper retract.

Problem 5.2. For k ≥ 2 find a subset S ⊆ Zk such that ρ||.||∞(S) 6= σA(α−1(S)).

Note that if such a set S exists then it is not invariant under the action of SL(k,Z)
in view of Theorem A,

Problem 5.3. For w ∈ F define T (w) = 0 if α(w) = 0 and define T (w) to be
the greatest common divisor of the coordinates of α(w) if α(w) 6= 0. Let T ′n be the
expected value of T over the sphere of radius n in F with respect to the uniform
distribution on that sphere and let Tn = (T ′n−1 +T ′n)/2. What can one say about the
behavior of Tn as n→∞?

Using the results of this paper we can show that limn→∞ Tn = ∞ for the case
k = 2. It also seems plausible that for each k ≥ 3 we have lim supn→∞ Tn < ∞ and
heuristic considerations allow us to conjecture that in fact limn→∞ Tn = ζ(k−1)

ζ(k) . A
similar question for Z2 has been studied in detail by Diaconis and Erdös [12], who
computed the precise asymptotics, as n → ∞, of the expected value for the greatest
common divisor of the coordinates, computed for the uniform distribution on the
n× n-square in Z2.

As we have seen, the set of proper powers is negligible in free groups of rank k ≥ 2
but has positive asymptotic density in free abelian groups of finite rank. This raises
the corresponding question about free groups in other varieties. It is possible to show
using Lemma A.1 of [5] that if G is a finitely generated nilpotent group and t ≥ 2
then the set of t-th powers has positive asymptotic density in G. The referee asked if
it is true that a finitely generated group is amenable if and only if the set of all proper
powers has positive asymptotic density. The answer to that question is negative. In
a cyclic group of a finite odd order every element is a square and hence the same
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is true for any group where all elements have finite odd orders. For example, let
G = B(2, 665) be the free Burnside group of rank two and of exponent 665. Then
every element of G is a square, but G is non-amenable by a theorem of Adian [1]. It
also seems plausible that there exist finitely generated amenable groups (e.g. perhaps
free metabelian groups) where the set of all proper powers has asymptotic density
zero.

Problem 5.4. Let G be a finitely generated nonabelian free solvable group. What
can be said about the asymptotic density of the set of all proper powers in G?
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