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ATKIN-SERRE TYPE CONJECTURES FOR AUTOMORPHIC
REPRESENTATIONS ON GL(2)

Jeremy Rouse

Abstract. Let H(z) be a newform of weight k ≥ 4 without complex multiplication

on Γ0(N) with normalized L-function L(H, s) =
Q

p(1 − αpp−s)−1(1 − βpp−s)−1. A

conjecture of Atkin and Serre states that for sufficiently large primes p,

(1) |αp + βp| � p−1−ε

for all ε > 0. Let π a genuine cuspidal automorphic representation on GL2(AF ), where

F is a totally real number field. Assuming GRH for the symmetric power L-functions
associated to π, we prove that

|αv + βv | ≥ q−δ
v

for all but O(x1−δ/ log x) places v with qv ≤ x provided δ ≤ 1/8. This implies a strong

form of (1) for almost all primes p.

1. Introduction and Statement of Results

Let H(z) be a normalized cuspidal newform of even weight k on Γ0(N) with trivial
Nebentypus, and denote its Fourier expansion by

H(z) =
∞∑

n=1

a(n)qn, q = e2πiz.

It is known that there is a totally real number field K with ring of integers OK so
that a(n) ∈ OK for all n. The distribution of the Fourier coefficients of such forms
is an important and classical problem. For example, see many applications of such
results in [16].

As a consequence of Deligne’s proof of the Weil conjectures, it is known that if p
is prime, then

|a(p)| ≤ 2p
k−1
2 .

In light of this result it is natural to ask how the numbers |a(p)| are distributed in
[−2p

k−1
2 , 2p

k−1
2 ]. Define θp ∈ [0, π] by a(p) = 2p

k−1
2 cos(θp).

Conjecture. Suppose that H(z) does not have complex multiplication and let f :
[0, π] → C be a continuous function. Then,

lim
x→∞

1
π(x)

∑
p≤x

f(θp) =
∫ π

0

f(θ) dµ,

where dµ is the Sato-Tate measure 2
π sin2 θ dθ.
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Sato and Tate conjectured this result for elliptic curves without complex multipli-
cation. Later, others formulated this conjecture in more general contexts (see Serre’s
article [19], Section 5.2 as well as Shahidi [22], section 3).

It is well-known that this conjecture follows from the analytic properties of the
symmetric power L-functions associated to H(z) predicted by Langlands functoriality
(see for example [22], ([7], pg. 493)).

Remark. Richard Taylor [23] has recently proven the Sato-Tate conjecture for a wide
class of elliptic curves over totally real number fields.

Another interesting question regarding the Fourier coefficients a(p) is how small
they can be. D. H. Lehmer conjectured that if

∆(z) = q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn

is the unique normalized cusp form of weight 12 for SL2(Z), then τ(n) 6= 0 for all n.
It is well-known that τ(n) = 0 only if τ(p) = 0 for some prime p|n.

Despite the fact that Lehmer’s conjecture is still open, much more is believed to
be true. For a generic newform H(z) of weight k ≥ 4 without complex multiplication,
the well-known conjectures of Lang and Trotter [12] predict that if c is fixed then
#{p : a(p) = c} is finite. Moreover, in ([20], pg. 244) Atkin and Serre conjecture the
following.

Conjecture (Atkin-Serre). If H(z) has weight at least 4 and does not have complex
multiplication, then for sufficiently large primes p we have

|a(p)| � p
k−3
2 −ε

for all ε > 0.

If H(z) has complex multiplication by an imaginary quadratic field K, it is known
([20], Exercise 6.13, pg. 255) that if ε > 0 and p is a sufficiently large prime that
splits in K, then |a(p)| � p

k−3
2 −ε.

One approach to the conjectures of Atkin-Serre and Lang-Trotter is via the `-
adic Galois representations of Deligne and Serre. In this direction, Serre proved [21],
assuming the Generalized Riemann Hypothesis (GRH), that

#{p ≤ x prime : a(p) = 0} = O(x3/4)

provided the weight of H(z) is at least 2. Moreover, for a fixed c, Serre’s result states
that

#{p ≤ x prime : a(p) = c} = O

(
x7/8

√
log x

)
.

This latter result was improved to

#{p ≤ x prime : a(p) = c} = O

(
x4/5

log1/5 x

)
by M. Ram Murty, V. Kumar Murty, and N. Saradha in [14]. Also, they prove on
GRH that for any ε > 0

#{p ≤ x prime : |a(p)| < p1/4−ε} = o

(
x

log x

)
.
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V. Kumar Murty proved in [15] that if H(z) corresponds to an elliptic curve E
then

#{p ≤ x prime : a(p) = c} = O(x3/4
√

log x),
assuming the GRH holds for the symmetric power L-functions corresponding to E.

In light of Taylor’s work on the Sato-Tate conjecture and the symmetric power
L-functions associated to elliptic curves, we wish to explore some of the implications
of the conjectured properties of the symmetric power L-functions for higher weight
modular forms. We consider implications for the Atkin-Serre conjecture.

Theorem 1.1. Assume that H(z) is a cuspidal newform of even weight k ≥ 4 on
Γ0(N) with trivial character and without complex multiplication. Assume also that
the symmetric power L-functions of H are automorphic and satisfy the Riemann
hypothesis. If 0 ≤ α ≤ 1/8, then

#{p ≤ x prime : |a(p)| ≤ p(
k−1
2 −α)} � x1−α

log x
.

Remark. An improved bound on the conductors of the symmetric power L-functions
would yield the same result for α < 1/4, and for α = 1/4 gives

#{p ≤ x prime : |a(p)| ≤ p
k−1
2 − 1

4 log1/2 p} � x3/4

√
log x

.

In particular, if c is fixed then

#{p ≤ x prime : a(p) = c} = O

(
x3/4

√
log x

)
.

Remark. One may view Theorem 1.1 as a strong form of the predicted equidistribu-
tion. In particular, if F : [0, π] → C is a continuous function with F (0) = F (π), one
may ask for precise bounds on

1
π(x)

∑
p≤x

F (θp)−
∫ π

0

F (θ) dµ.

Similar arguments to those used in the proof of Theorem 1.1 can address this question.

At present, it is not possible to extend Theorem 1.1 to say that the set of numbers
n for which a(n) is “too small” has density zero. Indeed, if p is a prime for which
a(p) = 0 and gcd(m, p) = 1, then by the multiplicativity of the coefficients, a(mp) = 0.
In particular, the density of n for which a(n) = 0 is positive in this case. However, it
is possible to demonstrate that, subject to a(n) 6= 0, a(n) is not small very often. In
this direction, Murty, Murty and Saradha proved [14] under GRH that if H(z) has
(rational) integral Fourier coefficients, then there is a constant c > 0 so that

{n : a(n) = 0 or |a(n)| > nc}
has density 1. Under the same assumptions of Theorem 1.1, this may be improved.

Corollary 1.2. Suppose K is a number field with a(n) ∈ OK for all n, and let
d = [K : Q]. If the assumptions of Theorem 1.1 are satisfied, 0 ≤ α ≤ 1/8 and
0 < λ < 1, then we have

#{n ≤ x : a(n) 6= 0 and |NK/Q(a(n))| ≤ nd(1−λ)( k−1
2 −α)} = O(x1−αλ logC x).
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Here, C is some constant depending only on α and F .

Theorem 1.1 will follow as a consequence of the following general result about
cuspidal automorphic representations on GL2(AF ). To state this result, we first fix
some notation. Let F/Q be a totally real number field. Let π be an irreducible
cuspidal automorphic representation of GL2(AF ) (see [1] for definitions and basic
facts). We assume that π has trivial central character and that π is genuine (in the
sense of Shahidi [22], see section 2 for a precise definition). Let

L(π, s) =
∏
v

(1− αvq
−s
v )−1(1− βvq

−s
v )−1

be the L-function associated to π, where the product is over all (finite) places v of F
and qv is the cardinality of the residue field. Then, we have the following result.

Theorem 1.3. Assume the notation above. If the symmetric power L-functions of π
are automorphic and satisfy the Riemann hypothesis, then for 0 ≤ α ≤ 1/8 we have

#{v : qv ≤ x, |αv + βv| ≤ q−α
v } � x1−α

log x
.

2. Symmetric Power L-Functions

Let F/Q be a totally real number field and let π be a cuspidal automorphic repre-
sentation of GL2(AF ) with trivial central character. Then, π has a factorization

π = ⊗vπv

over all places of F . We must require that the representation π is genuine in the sense
of Shahidi ([22], pg. 162). This means that π is not a twist by an idèle class char-
acter of a monomial representation or a representation of Galois type. A monomial
representation ρ is one for which ρ⊗η ∼= ρ for some nontrivial character η of F×/A×F .
A representation ρ is of Galois type if for every archimedean place v of F , ρv factors
through the Galois group of F v/Fv.

Let S denote the set of places v for which πv is ramified. The representation π has
an L-function

L(π, s) =
∏
v 6∈S

(1− αvq
−s
v )−1(1− βvq

−s
v )−1

∏
v∈S

Lv(π, s),

where the product is over the finite places, and qv is the cardinality of the residue
field of the local ring Ov ⊆ Fv. The Lv(π, s) are appropriate local factors at the
ramified places. It is known that L(π, s) converges absolutely for Re(s) > 1 and
hence |αv| < qv. Also, αvβv = 1 since π has trivial central character.

Langlands functoriality predicts, for all m ≥ 2, that there is an automorphic rep-
resentation denoted Symmπ on GLm+1(AF ) with an L-function

L(Symmπ, s) =
∏
v

Lv(Symmπ, s).

For v 6∈ S the local factor is given by

Lv(Symmπ, s) =
m∏

j=0

(1− αj
vβ

m−j
v q−s

v )−1.
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In particular, L(Symmπ, s) is a degree m+ 1 L-function over F , and hence a degree
(m+ 1)[F : Q] L-function over Q.

There are other appropriate local factors Lv(Symmπ, s) for v ∈ S. These local
factors, together with the local factor at infinity, are predicted by the local Langlands
correspondence. The existence of such a Symmπ has been established unconditionally
form ≤ 4 by work of Gelbart, Jacquet, Kim and Shahidi ([5], [10], [11], [9]). (Ifm = 1,
then Symmπ = π and if m = 0, we take L(Symmπ, s) = ζF (s), the Dedekind zeta
function of F ).

When π is genuine, L(Symmπ, s) is predicted to have an analytic continuation to
all of C and a functional equation of the usual type. If we let

Λ(Symmπ, s) = qs/2
m γ(Symmπ, s)L(Symmπ, s),

where qm is the conductor, γ(Symmπ, s) is the prescribed gamma factor, and εm is
the prescribed root number, then

Λ(Symmπ, s) = εmΛ(Symmπ, 1− s).

The distribution of the zeroes of L(Symmπ, s) is governed by γ(Symmπ, s) and qm.
In [13], Moreno and Shahidi work out the predictions of Langlands functoriality for

the symmetric powers of a representation π∞ of PGL(2,R). An explicit description
of the gamma factors γ(Symmπ, s) follows from this. It follows that

γ(Symmπ, s) = π−(m+1)[F :Q]s/2

(m+1)[F :Q]∏
j=1

Γ
(
s+ κj,m

2

)
,

where κj,m is a complex number with Re(κj,m) ≤ 0 and |κj,m| ≤ (m+1) maxj{|κj,1|}.

Remark. Serre ([19], equation (32)) gives the form of the gamma factors of the sym-
metric power L-functions associated to ∆(z) = q

∏∞
n=1(1−qn)24, the unique newform

of weight 12 for SL2(Z).

Now, we will bound the conductor qm by considering certain Rankin-Selberg con-
volutions.

Lemma 2.1. Assume that for all m ≥ 1, L(Symmπ, s) is the L-function of a cuspidal
automorphic representation of GLm+1(AF ). Then, qm = O(qam3

1 ) for some constant
a.

Proof. Jacquet, Piatetski-Shapiro and Shalika have shown [8] that if f and g are
cuspidal automorphic representations on GLm(AF ) and GLn(AF ) with conductors
q(f) and q(g) respectively, then they admit a Rankin-Selberg convolution L(f ⊗ g, s)
where if

Lv(f, s) =
m∏

i=1

(1− αi,vq
−s
v )−1,

and

Lv(g, s) =
n∏

j=1

(1− βj,vq
−s
v )−1,
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then for a place v at which neither f nor g is ramified then

Lv(f ⊗ g, s) =
m∏

i=1

n∏
j=1

(1− αi,vβj,vq
−s
v )−1.

For other v, appropriate local factors exist, but they are not necessarily given by the
above equation.

For v with qv - q(f)q(g), one can easily see that

Lv(π ⊗ Symmπ, s) = Lv(Symm+1π, s)Lv(Symm−1π, s).

It follows that the L-functions

F (s) = L(π ⊗ Symmπ, s)

and
G(s) = L(Symm+1π, s)L(Symm−1π, s)

are equal up to the factors at the ramified places. Then, G(s)/F (s) is a finite product
of ratios of local factors at the ramified places. Let N(T, F ) and N(T,G) denote the
number of zeroes of F andG, respectively, in the set {β+iτ : 0 ≤ β ≤ 1,−T ≤ τ ≤ T}.
Let S denote the set of ramified places and for v ∈ S let k(v) denote the number of
local factors occurring in F (s) that do not occur in G(s). Then,

N(T,G) = N(T, F ) + T
∑
p∈S

k(v) log qv
π

+O(1).

From Iwaniec and Kowalski Theorem 5.8 ([7], pg. 104), it follows that for an
L-function L(f, s) of degree d and conductor q(f),

N(T, f) =
T

π
log

q(f)T d

(2πe)d
+O(log T ).

In particular,

lim
T→∞

exp
(
π

T
N(T, f)− d log

T

2πe

)
= q(f).

It follows from this that if p is a prime, then we have

ordp(q(G)) ≤ ordp(q(F )) +
∑
v|p

k(v) ≤ ordp(q(F )) + 2m[F : Q].

Bushnell and Henniart [3] derive a bound on the conductor of a Rankin-Selberg con-
volution. In this situation, it gives that q(π ⊗ Symmπ) divides q(π)m+1q(Symmπ)2.
Hence

ordp(qm+1qm−1) ≤ 2ordp(qm) + (m+ 1)ordp(q1) + 2m[F : Q].
Rewriting this, we obtain

ordp(qm) ≤ 2ordp(qm−1)− ordp(qm−2) +m (ordp(q1) + 2[F : Q])− 2[F : Q].

It follows easily by induction that

ordp(qm) ≤ (ordp(q1) + 2[F : Q])
(
m+ 2

3

)
− 2[F : Q]

(
m+ 1

2

)
,

and the result follows from this. �
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Remark. The result of Lemma 2.1 can probably be improved to qm = O(qam
1 ) using

the local Langlands correspondence to compute the local factors of L(Symmπ, s) at
all the ramified places. See Section 5 for improvements on this Lemma in certain
special cases.

Define the numbers Λm(n) by

−L
′(Symmπ, s)
L(Symmπ, s)

=
∞∑

n=1

Λm(n)
ns

.

Then,

(2) Λm(n) =
∑

v
qk

v=n

m∑
i=0

αk
i,v log(qv).

Here, α1,v, . . . , αm,v are the appropriate local roots for a place qv. By the existence of
a Rankin-Selberg convolution of Symmπ with itself, it follows that |αv| < q

1/2
v , which

will be used later. In particular, if n is not a power of qv for any v ∈ S then (2) can
be written as

Λm(n) =
∑

v
qk

v=n

m∑
i=0

αki
v β

k(m−i)
v log(qv).

By the absolute convergence of L(Symmπ, s) for Re(s) > 1 it follows that |αm
v | < qv.

Since this is true for all m, it follows that |αv| ≤ 1. Since αvβv = 1 and |βv| ≤ 1, it
follows that |αv| = |βv| = 1, so the Ramanujan-Petersson conjecture holds for π (at
least at the unramified places).

Since αvβv = 1 and |αv| = |βv| = 1, it follows that there is a number θv ∈ [0, π]
so that αv = eiθv and βv = e−iθv . If p is prime and πv is unramified for all v with
qv = p, then

(3) Λm(p)− Λm−2(p) =
∑

v
qv=p

2 cos(mθv).

Here, the m− 2 term is omitted if m = 0, 1.

3. Preliminary Lemmas

Throughout, we assume that π is an irreducible cuspidal automorphic representa-
tion of GL2(AF ), where F is a totally real number field. We assume that π is genuine
and has trivial central character. We assume that the symmetric power L-functions
associated to π are automorphic.

To analyze the distribution of places v for which |αv +βv| is small we wish to study
the sum ∑

x≤qv≤2x
|θv−π

2 |<z

log qv.

Here, 0 < z ≤ 1/10 and will be chosen later as a function of x.
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Following Sarnak [17], we smooth this sum by introducing certain test functions.
Let f(y) be an infinitely-differentiable, even function supported on [0, 1]. Let

fz(y) = f

(
y + π/2

z

)
+ f

(
y − π/2

z

)
.

Hence fz(y) is even and fz(y) 6= 0 only on (−π/2− z,−π/2 + z)∪ (π/2− z, π/2 + z).
Let g(y) be an infinitely differentiable, non-negative function supported in [1/2, 5/2]

with g(y) = 1 on [1, 2]. Let gx(y) = g(y/x). Then, gx(y) is supported on [x, 2x]. We
study the smoothed sum

(4)
∑

v

fz(θv)gx(qv) log qv.

We write fz as an absolutely convergent Fourier series, and switching the order of
summation we obtain

∞∑
m=0

am(z)
∑

v

cos(mθv)gx(qv) log qv,

where the am(z) are the Fourier coefficients of fz(y). The relation (3) provides a
relationship with the symmetric power L-functions.

The first step is to derive bounds on the Fourier coefficients of fz(y). This is
equivalent to bounding the Fourier transform of f . Recall that the Fourier transform
of a function φ is defined by

φ̂(y) =
∫ ∞

−∞
φ(x)e−2πixy dx.

Lemma 3.1. Assume the notation above and write

fz(y) =
∞∑

n=0

an(z) cos(ny).

If α and β are non-negative integers, then for 0 < z ≤ 1/10 we have
∞∑

n=0

|an(z)|nα logβ n = O

(
1
zα

logβ(1/z)
)
.

Proof. The Fourier coefficients of fz(y) are given by

an(z) =

{
1
2π

∫ π

−π
fz(y) dy n = 0

1
π

∫ π

−π
fz(y) cos(ny) dy n > 0.

Plugging in the definition of fz(y) and using that z ≤ 1/10 gives

an(z) =
1

π(1 + δn,0)

∫ ∞

−∞
f(y/z) cos(ny) cos

(nπ
2

)
dy,

and hence

|an(z)| ≤ 1
π

∣∣∣∣∫ ∞

−∞
f(y/z)einy dy

∣∣∣∣ .
Setting u = y/z, du = 1

zdy we get

|an(z)| ≤ z

π

∣∣∣∣∫ ∞

−∞
f(u)einuz dz

∣∣∣∣ = z

π

∣∣∣∣f̂ (−nz2π

)∣∣∣∣ .
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Now, taking the equation

f̂(y) =
∫ ∞

−∞
f(x)e−2πixy dx,

and integrating by parts r times gives

|f̂(y)| ≤ 1
(2π)ryr

∫ ∞

−∞
|f (r)(x)| dx.

Taking r = α+ 2 shows that there is a constant C so that

|an(z)|nα logβ n ≤ C logβ n

n2πzα+1
.

Now,
∑

n≥(1/z) |an(z)|nα logβ n is bounded by

C

πzα+1

∑
n≥(1/z)

logβ n

n2
= O

(
1

zα+1

(
z(log(1/z)β + 1)

))
= O

(
1
zα

log(1/z)β

)
.

Now,
∑

n≤(1/z) |an(z)|nα logβ n is bounded by(
z

π

∫ ∞

−∞
|f(x)| dx

) ∑
n≤(1/z)

nα logβ n = O

(
1
zα

logβ(1/z)
)
,

and the desired result holds. �

Next, we bound the error in changing from a sum over all places v to the sum in
equation (2).

Lemma 3.2. Assume the notation above. Then,
∞∑

n=1

Λm(n)gx(n)−
∑

v

(cos(mθv)− cos((m− 2)θv)) gx(v) log qv = O(m
√
x).

Again, if m = 0, 1 the m− 2 term is omitted.

Proof. From equation (2), the difference is at most∑
pα≤(5/2)x

qv|pα with πv ramified

[F : Q](m+ 1)pα/2 log p+
∑

pα≤(5/2)x
α≥2

[F : Q](m+ 1) log p

≤ O((m+ 1)[F : Q]
√
x) + [F : Q](m+ 1)ψ(

√
5x/2) = O([F : Q]m

√
x).

Here ψ(x) =
∑

n≤x Λ(n), and ψ(x) = O(x). �

Now, we will prove a version of the explicit formula.

Lemma 3.3. Assume the notation above. Let Gx(s) =
∫∞
0
gx(y)ys dy

y . For m ≥ 0
and x > 1 we have

(5)
∞∑

n=1

Λm(n)gx(n) = δm,0Gx(1)−
∑

ρ

Gx(ρ),

where the sum is over the zeroes of L(Symmπ, s).
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Proof. First, note that the Mellin transform is simply a change of variables of the
Fourier transform, and hence we have the Mellin inversion formula

gx(y) =
1

2πi

∫ 2+i∞

2−i∞
Gx(s)y−s ds,

(see equation (4.106) on pg. 90 of [7]). Since −L′(Symmπ,s)
L(Symmπ,s) converges absolutely for

Re(s) ≥ 2, the left hand side of (5) equals

(6)
∞∑

n=1

Λm(n)
ns

∫ 2+i∞

2−i∞
Gx(s) ds =

∫ 2+i∞

2−i∞

−L′(Symmπ, s)
L(Symmπ, s)

Gx(s) ds.

Now, it is easy to see from the definition that Gx(s) is entire and that |Gx(σ+it)| ≤ xσ

for all x. Also, making the change of variables u = log y in the definition of Gx(s),
we have for s = σ + it that

Gx(s) =
∫ ∞

−∞
gx(eu)euσ(cos(tu) + i sin(tu)) du.

Integrating by parts n times shows that |Gx(s)| ≤ Cn,xt
−n for some constant Cn,x,

depending on n and x. Theorem 5.8 of [7] implies that if T is sufficiently large, there
are O(log T ) zeroes of L(Symmπ, s) with imaginary part between T and T + 1. Also,
the zeroes of L(Symmπ, s) with Re(s) < 0 arise from the gamma factor. We choose a
large real number T so that there are no zeroes with imaginary part between T − C

log T

and T+ C
log T (and no zeroes with real part between −T−C and −T+C). We add the

additional contours 2 + iT to −T + iT , −T + iT to −T − iT and −T − iT to −2− iT
to the integral in (6). From Proposition 5.7 (part 2) of [7] (pg. 103), it follows that∣∣∣∣− L′(Symm, s)

L(Symmπ, s)

∣∣∣∣ = O(log2 T )

on Im(s) = ±T for −1/2 ≤ Re(s) ≤ 2. It follows from |Gx(s)| ≤ Cn,xT
−n that the

integral along this portion of the contour tends to zero as T →∞.
Now, L′(Symmπ, s)/L(Symmπ, s) is bounded in Re(s) ≥ 3/2 and by the functional

equation, it follows that

|L′(Symmπ, s)/L(Symmπ, s)| = O(log T )

for Re(s) ≤ −1/2, the only substantial contribution coming from the Γ′/Γ terms.
Again, it follows that the integral along this contour tends to zero as T → ∞, since
|Gx(s)| ≤ Cn,xT

−n.
The last piece is Re(s) = −T . Here, we use that |Gx(s)| ≤ xσ = x−T . Since x > 1,

the integral along this piece tends to zero as T →∞. Thus, we have that∫ 2+i∞

2−i∞
−L

′(Symmπ, s)
L(Symmπ, s)

Gx(s) ds = lim
T→∞

∫
CT

−L
′(Symmπ, s)
L(Symmπ, s)

Gx(s),

where CT is the box with vertices −T ± iT and 2 ± iT . By Cauchy’s theorem, the
integral over this box is the sum of the residues of the poles. The poles come from
poles or zeroes of L′(Symmπ,s)

L(Symmπ,s) , and hence the limit is

δm,0Gx(1)−
∑

ρ
L(Symmπ,ρ)=0

Gx(ρ).
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From this, the result follows. �

Now, we estimate the errors arising from the sum over the zeroes in the explicit
formula (5).

Lemma 3.4. Assume the notation above and the Riemann hypothesis for
L(Symmπ, s). For z sufficiently small and x ≥ 2 we have

∞∑
m=0

|am(z)|
∑

ρ
L(Symmπ,ρ)=0

|Gx(ρ)| = O

(√
x

z3

)
.

Proof. First, we consider the trivial zeroes. These arise as poles of the gamma factor.
Since the κj,m all have real part less than or equal to zero, one can easily see that if
ρ is a trivial zero then |Gx(ρ)| ≤ 2xRe(ρ). It follows then that the contribution of the
trivial zeroes is at most

∞∑
n=0

2[F : Q]mx−n/2 = O(m).

Now, we will bound the contribution of the non-trivial zeroes. Theorem 5.8 of [7]
states that if N(T, f) is the number of zeroes ρ = β+ iγ of an L-function L(f, s) with
0 ≤ β ≤ 1 and |γ| ≤ T , then

(7) N(T, f) =
T

π
log

qT d

(2πe)d
+O(log q(f, iT )).

Here, d is the degree of the L-function, and q(f, s) = q(f)
∏d

j=1(|s + κj | + 3) is the
analytic conductor. The q(f) is the conductor and the κj arise in the gamma factor

γ(f, s) = π−ds/2
d∏

j=1

Γ
(
s+ κj

2

)
.

From the form of the γ factor for L(Symmπ, s) and Lemma 2.1, it follows that

|q(Symmπ, iT )| = O(Na(d[F :Q])3(T +m[F : Q])m+1),

and hence log |q(Symmπ, iT )| = O(m3 +m(log T + logm)). It follows from (7) that
N(n+ 1,Symmπ)−N(n,Symmπ) = O(m3 +m logm+m log n).

Suppose that ρ = 1
2 +iγ is a non-trivial zero of L(Symmπ, s). Making a few changes

of variables, it follows that

Gx(ρ) =
∫ ∞

0

g(y/x)y1/2+iγ dy

y
= x1/2+iγ ĥ(−γ).

Here, h(y) = 2πg(e2πy)eπy. In particular,

|Gx(ρ)| =
√
x|ĥ(−γ)|.

Now, h(y) is a compactly supported infinitely differentiable function, and hence
|ĥ(y)| ≤ Cny

−n for all n ≥ 0 by the same argument as in Lemma 3.1. Hence,
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we have that the error from the non-trivial zeroes is bounded by

√
x

∞∑
m=0

|am(z)|
∞∑

n=0

#{n ≤ |γ| ≤ n+ 1 : L(Symmπ, 1/2 + iγ) = 0} · |ĥ(−n)|.

For n = 0 we use the bound |ĥ(0)| ≤ C0. For n > 0 we use the bound |ĥ(−n)| ≤
C2/n

2. Hence, the contribution is

O

(
√
x

∞∑
m=0

|am(z)|m3

)
.

By Lemma 3.1, this is O
(√
x(1/z)3

)
.

�

Remark. If we have the bound qm = O(qam
1 ), then the log of the analytic conductor

is bounded by O(m logm+m log T ). This gives the bound O
(√

x
z log(1/z)

)
.

We will now turn to the proof of Theorem 1.3.

4. Proof of Theorem 1.3

In this section, we combine the results of Section 3 and prove Theorem 1.3.

Proof. For x sufficiently large,∑
x≤qv≤2x
|θv−π

2 |<z

log qv ≤
∑

v

fz(θv)gx(qv) log qv.

Expanding fz as a Fourier series, we obtain
∞∑

m=0

am(z)
∑

v

cos(mθv)gx(qv) log qv.

Expressing this in terms of Λm(n) (as in Lemma 3.2), we have
∞∑

m=0

am(z)
∑

n

(Λm(n)− Λm−2(n)) gx(n) +O(m
√
x).

Plugging in the explicit formula yields

∞∑
m=0

am(z)

δm,0Gx(1)− δm,2Gx(1)−
∑

L(Symmπ,ρ)=0

Gx(ρ) +
∑

L(Symm−2π,ρ)=0

Gx(ρ)

 .

From Lemma 3.4, this quantity is

(8) (a0(z)− a2(z))Gx(1) +O(
√
xz−3).

Now,

Gx(1) =
∫ ∞

0

gx(y) dy = x

∫ ∞

0

g(u) du.
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Using the bounds |am(z)| = O(z), the first term in (8) is O(xz), giving∑
x≤qv≤2x
|θv−π

2 |<z

log qv ≤
∑

v

fz(θv)gx(qv) log qv = O(xz +
√
xz−3).

We choose z = 1
2x
−α. The error is then O(x1−α) if α ≤ 1/8. Now, if |αv + βv| < q−α

v

then 2| cos(θv)| ≤ q−α
v . This implies that | cos(θv)| ≤ 1

2q
−α
v and hence |θv − π

2 | < z.
Hence, ∑

x≤qv≤2x
|αv+βv|≤q−α

v

log qv = O(x1−α).

It follows easily then that for x sufficiently large,∑
√

x≤qv≤2x

|αv+βv|≤q−α
v

log qv = O(x1−α).

For
√
x ≤ qv ≤ x, log qv ≥ 1

2 log x and hence

#{
√
x ≤ qv ≤ x : |αv + βv| ≤ q−α

v } = O

(
x1−α

log x

)
.

There are O(x1/2) places v with qv ≤
√
x and from this, the upper bound follows. A

proof of the lower bound is analogous, but we choose g to be supported on [1, 2] with
g(y) ≤ 1. �

5. Special Cases

In this section, we consider the special case of F = Q and π corresponding to a
classical newform H(z). In particular, we will prove Theorem 1.1 and Corollary 1.2.

See Chapter 7 of [2] for a discussion of the correspondence between classical new-
forms and automorphic representations. To assure that the representation π is gen-
uine with trivial central character, we assume that H(z) has even weight k with trivial
character and does not have complex multiplication.

When N > 1, the conductor bound from Lemma 2.1 is quite crude. One approach
to computing the conductor and determining the local factors at the ramified primes
is to use the local Langlands correspondence to predict them. This is done by Cogdell
and Michel for a classical newform with trivial character and squarefree level in [4].
In their case qm = qm

1 .
Another approach to computing the conductor was indicated to me by Professor

Serre. Let K be a number field with the property that the a(n) ∈ OK for all n. If p is
a prime ideal of OK then there is a continuous, semisimple Galois representation ρp

unramified outside N ·NK/Q(p) that provides p-adic information about the coefficients
of H(z). One may then compute the conductors of the symmetric power L-functions
attached to H(z) by determining the conductors of the symmetric powers of ρp. A
precise recipe for computing the conductor of p-adic Galois representations is given
in Section 2 of [18]. In this way one derives the bound ordpqm ≤ mCpordpq1, where
Cp doesn’t depend on m. It follows then that qm = O(qam

1 ) for some a.
Now, we will derive Theorem 1.1 from Theorem 1.3.
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Proof. In light of the correspondence between classical newforms and automorphic
representations, Theorem 1.3 gives that

#{p ≤ x : |αp + βp| ≤ p−α} � O

(
x1−α

log x

)
.

Now, |a(p)| = p
k−1
2 |αp + βp| and the desired result follows immediately. �

Now, we will show how Corollary 1.2 follows from Theorem 1.1.

Proof. Suppose that F (z) =
∑∞

n=1 a(n)qn is a newform with coefficients in OK , where
K is a degree d totally real extension of Q. Let σ1, . . . , σd be the embeddings of K
into R.

Let Pα = {pr : |σi(a(pr))| < pr( k−1
2 −α) for some r and some i, 1 ≤ i ≤ d}. It is

well-known that σi(F (z)) =
∑∞

n=1 σi(a(n))qn is a newform in the same space as F (z)
for all i. Applying Theorem 1.1 to σi(F (z)) for all i gives that

#{q ∈ Pα : q ≤ x} = O

(
x1−α

log x

)
.

Let Bα = {b : if pe‖b then pe ∈ Pα}. For n ≤ x, let

bα(n) =
∏
pe‖n

pe∈Pα

pe,

and let c = n/bα(n). Then, since the coefficients a(n) are multiplicative, it follows
that

|σi(a(c))| ≥ c(
k−1
2 −α),

for all i and hence

|NK/Q(a(c))| =
d∏

i=1

|σi(a(c))| ≥ cd(
k−1
2 −α).

If a(bα(n)) 6= 0, it follows that |NK/Q(a(bα(n)))| ≥ 1 and hence

|NK/Q(a(n))| = |NK/Q(a(c))||NK/Q(a(b))| ≥ cd(
k−1
2 −α).

If bα(n) ≤ nλ, then we have

|NK/Q(a(n))| ≥ cd(
k−1
2 −α) ≥ nd(1−λ)( k−1

2 −α).

The bound #{q ≤ x : q ∈ Pα} = O
(

x1−α

log x

)
implies that for s − α positive and

small, ∑
q∈Pα

1
qs

= O

(
log

1
s− α

)
.

If D is the implied constant, we have that

∑
b∈Bα

1
bs

= exp

∑
q∈Pα

1
qs

+O(1) = O

(
1

(s− α)D

)
.
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The usual inversion formulas for Dirichlet series (see for example equation A.10 on
pg. 486 of [6]) imply that

B(x) := #{b ≤ x : b ∈ Bα} = O(x1−α logD+1 x).

Now, using partial summation, we have∑
b∈Bα

xλ≤b

1
b

=
B(x)
x

− B(xλ)
xλ

+
∫ x

xλ

B(t)
1
t2
dt

= O

(
logD+1 x

xαλ

)
.

Hence, the number of x ≤ n ≤ 2x with bα(n) ≥ nλ is at most∑
b∈Bα

xλ≤b

⌊
2x
b

⌋
≤ 2x

∑
xλ≤b

1
b

= O(x1−αλ logD+1 x).

It follows that the number of n ≤ x with bα(n) ≥ nλ is O(x1−αλ logD+1 x), and the
result follows. �
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