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A REMARK ON 'SOME NUMERICAL RESULTS IN COMPLEX
DIFFERENTIAL GEOMETRY’

KEFENG LiU AND XIAONAN MA

ABSTRACT. In this note we verify certain statement about the operator @ g constructed
by Donaldson in [3] by using the full asymptotic expansion of Bergman kernel obtained
in [2] and [4].

In order to find explicit numerical approximation of Kéhler-Einstein metric of pro-
jective manifolds, Donaldson introduced in [3] various operators with good properties
to approximate classical operators. See the discussions in Section 4.2 of [3] for more
details related to our discussion. In this note we verify certain statement of Donald-
son about the operator Qg in Section 4.2 by using the full asymptotic expansion of
Bergman kernel derived in [2, Theorem 4.18] and [4, §3.4]. Such statement is needed
for the convergence of the approximation procedure.

As a warm up, we explain first the classical Bergman kernel on C™ [4, Remark
1.14] which will serve as a model for our problem.

Let FF = C be the trivial holomorphic line bundle on C™ with the canonical sec-
tion 1. Let hf" be the metric on F defined by |1|,r(z) := e~ 512 for 2 € C" with
|Z|? = Z?=1 |zj|2. Let g"®" be the Euclidean metric on C". Let P be the orthog-
onal projection from (L2(C", F),|| ||z2) onto the space of L2-holomorphic sections
of F, and let P(z,2') (2,2 € C™) be the smooth kernel of P with respect to the
Euclidean volume form dZ. We trivialize F' by using the unit section eZ ! *1. Then
an orthonormal basis of L2-holomorphic sections of F' under this trivialization is

(271— 1/2 7T 2 n
(1) (mmﬂ') exp( 5 )7 ﬂGN )
and the classical Bergman kernel P(z, z') (cf. [2, (4.114)], [4, (1.91)]), is

2) P(z,z)—exp< ;TZ (|zil? + 2% — 227 ))

i=1

Recall that the classical heat kernel on C™ is e 72 (z, 2') = (4wu) e~ 1212=Z'F" | Thus
from (2), we get

& (z,7).

In this note, we will establish an asymptotic version of (3) in the general case.

Let (X,w,J) be a compact Kihler manifold of dim¢ X = n, and let (L, h%) be
a holomorphic Hermitian line bundle on X. Let V% be the holomorphic Hermitian

(3) |P(z, 22 = 17771 = e~
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connection on (L, h%) with curvature RE. We assume that

Let g7X(.,-) := w(-,J-) be the Riemannian metric on TX induced by w,J. Let
dvx be the Riemannian volume form of (T'X,¢g7%X), then dvxy = w"/n!. Let dv be
any volume form on X. Let n be the positive function on X defined by

(5) dvx = ndv.
The L?-scalar product { ), on €°°(X, LP), the space of smooth sections of LP, is
given by

(6) (o1, 02}y = /X (o1(2), 02(2)) v dv ().

Let P, ,(x,z’) (z,z’ € X) be the smooth kernel of the orthogonal projection from
(€>(X,LP),{ ),) onto H°(X, LP), the space of the holomorphic sections of LP on
X, with respect to dv(z’). Note that P, ,(z,2") € LE @ L?7. Following [3, §4], set

(1) Kplw,2) = |Pv,p(xvx/)|iw®h“’*’ Ry, := (dim H°(X, L))/ Vol(X,v),

here Vol(X,v) := [ dv. Set Vol(X,dvx) = [, dvx.
Let Qk, be the integral operator assoaated to K, which is defined for f € €>°(X),

(8) Qk, (f / Ky(z,y)f(y)dv(y).
Let A be the (positive) Laplace operator on (X, g7*) acting on the functions on

X. We denote by | |72 the L?-norm on the function on X with respect to dvx.

Theorem 0.1. There exists a constant C > 0 such that for any f € €*°(X), p € N,

'(QKP - \anp( %))f .

Gow - i ()0

C
< — 2,
_p|f|L

(9)

C
< —|flpe-
2 P e
Moreover, (9) is uniform in that there is an integer s such that if all data h*, dv
run over a set which is bounded in €*-topology and that g*X, dvx are bounded from
below, then the constant C is independent of h*, dv.

Proof. We explain at first the full asymptotic expansion of P, ,(z,z’) from [2, Theo-
rem 4.18'] and [4, §3.4]. For more details on our approach we also refer the readers
to the recent book [5].

Let E = C be the trivial holomorphic line bundle on X. Let h¥ the metric on
E defined by \e|iE = 1, here e is the canonical unity element of E. We identify
canonically LP to LP @ E by section e.

As in [4, §3.4], let hZ be the metric on E defined by |e[}, = n~'. Let (), be
the Hermitian product on (X, LP ® E) = €°°(X, LP) induced by hl hE dvx as
n (6). Then by (5),

(10) (X PR E),(),) = (€% (X, L7),( ),)
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Observe that H°(X, L? ® E) does not depend on g7, hl or hE. If P, ,(,2'),
(x,2’ € X) denotes the smooth kernel of the orthogonal projection P, , from
(¢°°(X,LP @ E),(-,-),) onto H*(X,LP @ E) = H°(X, LP) with respect to dvx(z),
from (5), as in [4, (3.38)], we have

(11) Pyp(x, ') = n(a’) P, p(x, o).
For f € € (X), set

Kop(2,2") = [Py p(x x/)‘%th®hf)m®(hL”*®hf*)w/’

12
12 Kopf)a / Kopa9) F () dox (9).

By the definition of the metric h”, h
e of F, we know

if we denote by e* the dual of the section

7w7

(13) 1= |e®e*|iE®hE* (x,2") = |e®e*|if®h5* (z, 2" n(x)n~ (2).

Recall that we identified (L?,h*") to (L? @ E, h*” @ h¥) by section e. Thus from (7),
(11) and (13), we get

(14) Kp(@,2') = | P p(2, )|(th®hE)T®(hLP*®hE*) , =n(z)n(z") Ky p(z,2'),
and from (5), (8) and (14),

(15) Qx ( / Ko (2, y)0(2) F(y)dox (3)-

Now for the kernel P, ,(z,z'), we can apply the full asymptotic expansion |2,
Theorem 4.18']. In fact let g

5LP®E on the Dolbeault complex Q%® (X, L? ® F) with the scalar product induced by
gTX’ hL, hE

=, dvx as in (6), and set
(16) D, = V2@ T 43,

Then H°(X,L? ® E) = Ker(D,,) for p large enough, and D, is a Dirac operator, as
g™ (-,+) = w(-, J-) is a Kihler metric on TX.

Let V¥ be the holomorphic Hermitian connection on (E,hE). Let VI¥ be the
Levi-Civita connection on (T'X, g7%). Let R¥, RTX be the corresponding curvatures.

Let d(x,y) be the Riemannian distance from x to y on (X, g7X). Let a® be the
injectivity radius of (X, g?%). We fix ¢ €]0,a*/4]. We denote by BX(z,¢) and
BT=X(0,¢) the open balls in X and T, X with center 2 and radius e. We identify
BT=X(0,¢) with BX(z,¢) by using the exponential map of (X, g7™).

We fix 29 € X. For Z € BT=0X(0,¢) we identify (Lz,h%), (Ez,hE) and (LP Q E),

0 (Lay,hE), (Eyy, hE)) and (LP ® E)4, by parallel transport with respect to the
connections VZ, V& and VL"®E along the curve vz : [0,1] 3 u — expX (uZ). Then
under our identification, P, ,(Z,Z’) is a function on Z,Z' € T, X, |Z|,|Z'| < €, we
denote it by P, .40 (Z, Z’).

Let 7 : TX xx TX — X be the natural projection from the fiberwise product of
TX on X. Then we can view P, p ,,(Z,Z') as a smooth function on TX xx T'X
with complex values (which is defined for |Z|,|Z’| < ¢€) by identifying a section S €

be the formal adjoint of the Dolbeault operator
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G (TX xx TX,mEnd(E)) with the family (S;)sex, where S, = S|;-1(4), since
End(E) = C.
We choose {w;}?; an orthonormal basis of T X, then egj—1 = %(w] + w,)

and eg; = %(w] —w;),j =1,...,n forms an orthonormal basis of T,, X. We use
the coordinates on T, X ~ R?" where the identification is given by
2n
(17) (Zla"' aZ2n) €R2n —>ZZ1€Z ETIOX.
i=1
In what follows we also introduce the complex coordinates z = (z1,- -, z,) on C" ~

R2",
By [2, Proposition 4.1], for any I[,m € N, ¢ > 0, there exists Cj,, . > 0 such that
forp>1,z,2' € X,

(18) |Pw7p(m7$/)|‘€m(X><X) < Cl,m,s pil ifd(:t, zl) > E.
Here the ¢™-norm is induced by V¥, V¥ VX and bl hF ¢TX.
By [2, Theorem 4.18'], there exist J,.(Z, Z') polynomials in Z, Z’, such that for any

k,m,m’ € N, there exist N € N, C > 0,Cy > 0 such that for a, o’ € N, |a|+]|a/| < m,
2,72 €Ty X, |Z|,|Z'| <e,xz0€ X,p>1,

glal+la’| ( 1 &
970077 \ i Lewao 220 =3 (LP)(VPZ. /o2 )p ™
0200z P r=0 & (X)

< Cp~ R4 |VpZ] + VP2 )Y exp(=Cov/plZ = Z')) + 0(p).

Here 4™ (X) is the €™ norm for the parameter 29 € X. The term @(p~°°) means
that for any 1,1; € N, there exists C;;, > 0 such that its ¥'*-norm is dominated by
Cl,llpil'

Now we claim that in (19),
(20) Jo=1, Ji(Z,Z")=0.
In fact, let dvr, x be the Riemannian volume form on (7%, X, gT=0X), and k,, be the
function defined by
(21) d’Ux(Z) = KmO(Z)dUTwOX(Z).
Then (also cf. [4, (1.31)])

(22) Kao(Z) =1+ % (RIX(Z,€:)Z, ei>w0 +0(|12%).

As we only work on €°(X,LP ® E), by [2, (4.115)], we get the first equation in
(20).

Recall that in the normal coordinate, after the rescaling Z — Z/¢ with t = %,
we get an operator .%; from the restriction of DZ on (X, LP ® E) which has the
following formal expansion (cf. [2, (4.104)], [4, Theorem 1.4]),

(23) L=L+> Ot

r=1
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Now, from [2, Theorem 5.1] (or [4, (1.87), (1.98)]),
(24) & = Z L +7%) (252 +7z), Q1 =0.

(In fact, P(Z, Z") is the smooth kernel of the orthogonal projection from L?*(C™) onto
Ker(.Z)). Thus from [2, (4.107)] (cf. [4, (1.111)]), (22) and (24) we get the second
equation of (20).

Note that | Py p 2o (Z, Z')|? = Pupwo(Z, 2" )Py p 2o (Z, Z'), thus from (12), (19) and
(20), there exist J.(Z, Z") polynomials in Z, Z’ such that

(25)

p2n+1AZ( w2, Z") (1+Zp—r/2jl N AN )) —wp\z—z'|2)

€0(X)
< Cp MV 4 | pZ| + |VpZ )Y exp(=Cov/plZ — Z')) + 6 (p~™).

For a function f € €°(X), we denote it as f;,(Z) a family (with parameter z)
of function of Z in the normal coordinate near xy. Now, for any polynomial A, (Z'),
we define the operator

(26) (Apf) (o) = 5" / Au(VBZe ™2, (2)dox (2).

|27 <e

Then we observe that there exists C; > 0 such that for any p € N, f € €°°(X), we
have

(27) |Apflr2 < Cilf]re.
In fact, there exist C’,C > 0 independent on p such that

@8) Mol < [ ot {p([ 1A WB e P (2)
<[ AW | (2P (2)
<0 [ x| 1A B2 o (2 Pex ()

< Chlfl3e.
Observe that in the normal coordinate, at Z =0, Ay = — Z] 1 822 Thus
(29) (Age ™1Z=2'% |, o = dxp(n — mp|Z')2)e 0121,
Thus from (3), (18), (19), (20), (25) and (27), we get
(30)
-n n —7p|Z'|? / ’ g
p Kw,pf —-p € fwo(Z )dUX(Z ) |f|L2 )
|Z'|<e 12 TP
—n— n —7 "2 C
’p "AK, pf — 4mp / (n—mp|Z'?)e ™V f,(Z))dvx (Z) — | fl=-
|2/ <e Lo p
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Recall that n € €°°(X) was defined in (5). Set
Ky wp(,y) = (@), do Koo p (7)) grx,
(K)o / Koo .9 f(0)dox 1),

Then from (19), (20) and (27), we get

(31)

(32)
2n ) C
P Kl =20 [ e 0020 (22 < e
127|<e =1 12 p

here C' is taken large enough so that both (30) and (32) hold and is independent on
.

Let e %A (z, ) be the smooth kernel of the heat operator e~"2 with respect to
dvx (z'). By the heat kernel expansion in [1, Theorems 2.23, 2.26], there exist ®;(x,y)
smooth functions on X x X such that when u — 0, we have the following asymptotic

expansion

(33)
' —uA —n : i —Ld(z,y)? k—n—l—2+1
W(e (z,y) — (47u) Zu D, (z,y)e” 2T ) =0(u 2T
1=0 Em(XxX)
and
(34) Po(2,y) = 1.

If we still use the normal coordinate, then by (33), there exist ¢; 5, (Z’) := ®;(0, Z")
such that uniformly for 2o € X, 7’ € T,,, X, |Z’'| < €, we have the following asymptotic
expansion when u — 0,

(35)
8l

W _ ﬁ>(uk—n—l+1)7

(e_“A‘(O7 Z" — (4mu)” (1 + Zu i ( )e wlZ’ ‘2>

€0(X)

and

(36) ‘ (dn(o), dpye ") jr-x (0, Z')

2n

! k 2
— (dmu) " Z(a%n)(xo, 0 (1+ Z Wiy (27)) ) 717

i=1

= OuF 7).

— (47u)”™ Zu (dn(z0), (duy ®:)(0, Z"))e™ 1z o

1=1

Observe that

(37) %Aexp ( — A) = _}(%e—UA)
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Now from (27), (30)—(37) with k =n + 1, we get

) Ep‘”Kw,p —exp ( - ﬁp»i” < % flz2 s
‘p(p”AKw,p —Aexp ( - m))f LS S,
and
(3) (7" Ky = e )1 < S
Note that

(40)  (A(MKwp))(z,y) = (An) (@) Ko p(,y) + n(z) A Ko p(, y)

- 2<d7](17)7 d.’EKw,p(Iv y)>gT*X )
and R, = YgUUL) 4 ¢/(p"=1). From (15), (38)-(40), we get (9).
To get the last part of Theorem 0.1, as we noticed in [2, §4.5], the constants in (19)
will be uniformly bounded under our condition, thus we can take C' in (9), (38)and
(39) independent of k%, dv. O
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