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UNBOUNDED PLANAR DOMAINS WHOSE SECOND NODAL
LINE DOES NOT TOUCH THE BOUNDARY

Pedro Freitas and David Krejčiř́ık

Abstract. We show the existence of simply-connected unbounded planar domains for

which the second nodal line of the Dirichlet Laplacian does not touch the boundary.

1. Introduction

Consider the eigenvalue problem

(1)
{−Δu = λu in Ω ,

u = 0 on ∂Ω ,

where Ω is a domain (i.e. open connected set) in R
2. We interpret (1) in a weak sense

as the eigenvalue problem for the Dirichlet Laplacian −ΔΩ
D acting in the Hilbert

space L2(Ω), and recall that −ΔΩ
D is the non-negative self-adjoint operator associated

with the quadratic form

QΩ
D[v] := ‖∇v‖2

L2(Ω) , v ∈ D(QΩ
D) := H1

0(Ω) .

We denote by {λk(Ω)}∞k=1 the non-decreasing sequence of numbers corresponding
to the spectral problem of −ΔΩ

D according to the Rayleigh-Ritz variational formula [4,
Sec. 4.5]. Each λk(Ω) represents either a discrete eigenvalue or the threshold of the
essential spectrum (if Ω is not bounded). All the eigenvalues below the essential
spectrum of the boundary-value problem (1) may be characterized by this variational
principle.

The nodal line of a real eigenfunction u of the problem (1) is defined by

N (u) = {x ∈ Ω : u(x) = 0} ,

and the connected components into which Ω is divided by N (u) are called the nodal
domains of u. By the Courant nodal domain theorem an eigenfunction corresponding
to the kth eigenvalue below the essential spectrum has at most k nodal domains
(see [1] for the proof in the bounded case, the generalization to the unbounded case
being straightforward). In particular, since the first eigenvalue below the essential
spectrum is always simple and the corresponding eigenfunction can be chosen to be
positive, any eigenfunction corresponding to the second eigenvalue below the essential
spectrum will have exactly two nodal domains.
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Apart from this result, very little is known regarding the structure of the nodal
lines, but much work has been developed over the last three decades around a conjec-
ture of Payne’s which states that a second eigenfunction of the above problem cannot
have a closed nodal line. This conjecture is also quite often stated as follows:

Nodal Line Conjecture. The nodal line of any second eigenfunction of the Lapla-
cian intersects the boundary ∂Ω at exactly two points.

The most general result obtained so far was given by Melas in 1992, who showed
that the above conjecture holds in the case of bounded planar convex domains [13].
This followed a string of results obtained under some symmetry restrictions by several
authors (Payne himself included) – see, for instance, [6] and the references therein.

On the other hand, several counterexamples have also been presented, of which
the most significant is that in [9] showing that the result does not hold for multiply
connected planar domains in general. Other counterexamples have been given illus-
trating other ways in which the conjecture may not hold. These include adding a
potential ([12]) and the case of simply-connected surfaces ([6]).

The purpose of this note is to give examples showing that if one does not require
the domain to be bounded, then the nodal line need not touch the boundary even
under the same assumptions that have been previously used in the bounded case to
prove the conjecture. More precisely we will prove the following

Theorem. There exists a simply-connected unbounded planar domain Ω which is
convex and symmetric with respect to two orthogonal directions, and for which the
nodal line of a second eigenfunction does not touch the boundary ∂Ω.

This domain can be chosen as one of the following two types:
(i) the distance between the nodal line of a second eigenfunction and the boundary

∂Ω is bounded away from zero, but the spectrum is not purely discrete;
(ii) the spectrum consists only of discrete eigenvalues, but the infimum of the

distance between a point on the nodal line of a second eigenfunction and the
boundary ∂Ω is zero.

The idea behind both examples is to start from a bounded convex domain Ω0 which
is invariant under reflections through two orthogonal lines r and r⊥, and which we
will assume to be sufficiently long in the direction r⊥, such that its second eigenvalue
is simple and any corresponding eigenfunction is antisymmetric with respect to r. In
fact, its second nodal line will be given by the closure of Ω0 ∩ r. We then append two
sufficiently thin semi-infinite strips to Ω0 in neighbourhoods of the points where its
second nodal line touches the boundary, in such a way that the nodal line coincides
with the axis r and thus stays within these strips without touching the boundary –
see Figure 1.

In order to establish case (i), we will consider domains which are asymptotically
cylindrical – see the classification of Euclidean domains in [7, § 49], where these sets
are called quasi-cylindrical. This means that there will also exist essential spectrum,
and so it will be necessary to prove that the domain does indeed possess a second
discrete eigenvalue in this case. In order for condition (ii) to be satisfied, we will need
to consider what are referred to in [7] as quasi-bounded domains. This means that
the domains are asymptotically narrow and thus, although the nodal line does not
touch the boundary, it does get asymptotically close to it.
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(i) (ii)

Figure 1. Typical domains for which the nodal line of the second
eigenfunction does not touch the boundary.

It should be stressed here that while the nodal line in both our examples does not
touch the boundary, it is not closed.

2. The Proof

Let Ω0 be a bounded open convex subset of R
2 which is simultaneously invariant

under the reflection through the coordinate axes r := {0}×R and r⊥ := R×{0}, i.e.,

∀(x1, x2) ∈ R
2, (x1, x2) ∈ Ω0 =⇒

{
(x1,−x2) ∈ Ω0 ,

(−x1, x2) ∈ Ω0 .

Of course, the first eigenvalue λ1(Ω0) > 0 is simple and the corresponding eigenfunc-
tion can be chosen to be positive. We assume that also the second eigenvalue λ2(Ω0)
is simple and that the nodal line of the corresponding eigenfunction is the closure
of Ω0 ∩ r (by [10, 8] and the symmetry, these always happen if Ω0 is sufficiently long
in the direction r⊥).

Let h : [0,+∞) → (0, 1] be a convex function. For any ε > 0, we define an open
tubular neighbourhood of the axis r by

Tε :=
{
(x1, x2) ∈ R

2 : |x1| < ε h(|x2|)
}

,

and introduce the unbounded open connected set

(2) Ωε := Ω0 ∪ Tε .

Note that Ωε is invariant both under the reflections through r and r⊥, and convex
both along r and r⊥. It is also worth to notice that the boundary ∂Ωε is necessarily
at least of class C0,1, cf [5, Sec. V.4.1].

Using the minimax principle and a Dirichlet-Neumann bracketing argument, it is
easy to see that

(3) inf σess(−ΔΩε

D ) ≥ π2/(2ε)2
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and that one can produce an arbitrary number of eigenvalues below the essential
spectrum by making ε small enough. Furthermore, if h tends to zero at infinity then
σess(−ΔΩε

D ) = ∅ and the spectrum of −ΔΩε

D consists of discrete eigenvalues only. In
any case, one has the following convergence result.

Lemma 1. ∀k ∈ N\{0}, lim
ε→0

λk(Ωε) = λk(Ω0).

Proof. It follows from [3] that −ΔΩε

D converges to −ΔΩ0
D in the generalized sense of

Kato [11], which implies, in particular, continuity of eigenvalues below the essential
spectrum. �

In view of (3) and Lemma 1, λ1(Ωε) and λ2(Ωε) are discrete simple eigenvalues
for all sufficiently small ε. Since the eigenfunction corresponding to λ1(Ωε) can be
chosen to be positive, the eigenfunction u2,ε corresponding to λ2(Ωε) has to change
sign in Ωε. We now prove a result which will give us immediately the conclusions of
the Theorem.

Proposition 1. ∃ε0 > 0, ∀ε ∈ (0, ε0), N (u2,ε) = r.

Proof. Let ε be so small that λ2(Ωε) is a simple discrete eigenvalue. Due to the
symmetry of Ωε, the corresponding eigenfunction u2,ε must be symmetric or antisym-
metric with respect to r, and symmetric or antisymmetric with respect to r⊥. This
observation and the Courant nodal domain theorem yield that the nodal set N (u2,ε)
is either the closure of r⊥ ∩ Ω0, the axis r or a closed loop. The last possibility is
excluded by mimicking the argument given in [2] (see also [14]) for bounded domains
with the required symmetry and convexity. We will exclude the first possibility by
using the fact that the second eigenvalue of a domain is the first eigenvalue of any
of the nodal subdomains. Let us assume that there is a positive sequence {εj}j∈N,
converging to zero as j → ∞, such that N (u2,εj

) = r⊥ ∩ Ω0 for all j ∈ N. Then

λ2(Ωεj ) = λ1

(
Ωεj ∩ [R × (0,+∞)]

)
−→ λ1

(
Ω0 ∩ [R × (0,+∞)]

)
as j → ∞

by a convergence argument analogous to Lemma 1. On the other hand, we know that

λ2(Ωεj
) −→ λ2(Ω0) = λ1

(
Ω0 ∩ [(0,+∞) × R]

)
as j → ∞

by Lemma 1 and the assumption we have made about Ω0. This implies that λ2(Ω0)
is degenerate (there is one eigenfunction antisymmetric with respect to r and one
eigenfunction antisymmetric with respect to r⊥), a contradiction. �

It follows that the nodal line N (u2,ε) does not touch the boundary of Ωε for all
sufficiently small ε > 0. Furthermore, if we choose h ≡ 1 then the distance between
the nodal line and the boundary is equal to ε, which establishes part (i) of the Theo-
rem. Part (ii) follows by taking a function h which tends to zero at infinity.
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