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ALMOST RATIONAL TORSION POINTS AND THE CUSPIDAL
TORSION PACKET ON FERMAT QUOTIENT CURVES

PAVLOS TZERMIAS

1. Introduction

Let Q denote a fixed algebraic closure of the field Q of rational numbers. Let p
be a prime with p ≥ 11 and ζ a primitive p-th root of 1 in Q. Let K = Q(ζ). For
a ∈ {1, 2, ..., p − 2}, consider a smooth projective model Fp,a of the affine curve

vp = ua(1 − u).

The curves Fp,a are cyclic quotients of the Fermat curve of degree p and are called Fer-
mat quotient curves. The curve Fp,a has genus (p−1)/2 and its Jacobian Jp,a admits
complex multiplication by Z[ζ] which is induced by the automorphism ζ : (u, v) �→
(u, ζv) of Fp,a. By Section IV in [4], we know that the curve Fp,a is hyperelliptic if
and only if a ε {1, (p − 1)/2, p − 2}. We will denote by S the set of values of a such
that 1 ≤ a ≤ p − 2 and Fp,a is not hyperelliptic. The cusps on Fp,a are the elements
of the set Cp,a = {(0, 0), (1, 0),∞}. Since the divisors of the rational functions u and
1 − u are p((0, 0) −∞) and p((1, 0) −∞), respectively, it follows that the difference
of two points in Cp,a is a torsion point on Jp,a (we refer the reader to the work of
Gross and Rohrlich in [9], where some deep related results are proven). For the rest
of this paper, we fix a cusp c and the Albanese embedding of Fp,a in Jp,a given by
P �→ [P − c]. The cuspidal torsion packet on Fp,a is the set Tp,a = Fp,a ∩ (Jp,a)tors,
whose elements are called cuspidal torsion points. By the Manin-Mumford conjecture
(first proved by Raynaud in [14]), Tp,a is a finite set.

The purpose of this paper is to establish the following theorem:

Theorem 1.1. Let p be a prime such that p ≥ 11 and let a ∈ S. Then

Tp,a = Cp,a.

It was proven by Coleman, Tamagawa and the author in [6] that Theorem 1.1
is valid for certain a under certain conditions on p related to Vandiver’s conjecture.
Although the results of [6] were strong enough to establish the analogue of Theorem
1.1 for any Fermat curve of degree at least 4, the problem for the Fermat quotient
curves remained open in general, since the Vandiver-type restrictions given in [6]
were difficult to remove. The analogue of Theorem 1.1 for the hyperelliptic Fermat
quotients was proven by Grant and Shaulis in [7]. Their method utilized the powerful
theory of almost rational points introduced by Ribet (see [15] and [2] for a good
account of the theory and its numerous ramifications). In this paper, which has been
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largely inspired by [2], [3], [6] and [7], we prove Theorem 1.1 by using Ribet’s theory
in conjunction with some of the results in [3], [6] and [7]. In the process, we also
obtain partial results on the set of almost rational torsion points on Jp,a (see Section
3 below).

For the case of modular curves, the analogue of Theorem 1.1 was conjectured by
Coleman, Kaskel and Ribet in [5]; it was established by Baker ([1]) and, independently,
by Tamagawa ([16]). New proofs of the Manin-Mumford conjecture, the Coleman-
Kaskel-Ribet conjecture and some of Tamagawa’s results are given in [2].

2. Galois action on torsion points

From now on, fix p ≥ 11 and a ∈ S. We write F instead of Fp,a and J instead of
Jp,a. Let λ denote the endomorphism of J given by λ = ζ −1. Also, let A be the ring
of integers in K and let Ap be its completion at the prime above p. We denote by
M the maximal ideal of Ap. The element λ ∈ M is a uniformizer for Ap. Combining
results of Coleman ([4]), Greenberg ([8]), Gross-Rohrlich ([9]) and Kurihara ([10]), we
get that

(1) J(Q)tors = J [λ],
(2) J(K)tors = J [λ3]. In particular, J [l∞](K) = {0}, for primes l with l 	= p.

Let Φa be the reflex type of the CM type of J with respect to A (see [13]) given by

Φa =
p−1∑
t=1

(r(t) − 1)σ−1
−t ,

where r(t) = 〈at/p〉 + 〈t/p〉 + 〈−(1 + a)t/p〉, 〈x〉 denotes the fractional part of the
real number x and σt is the element of Gal(Qp(ζ)/Qp) = Gal(Q(ζ)/Q) defined by
σt(ζ) = ζt. Observe that r(t) − 1 ∈ {0, 1}, for all t. Since r(t) + r(p − t) = 3, we get
that r(t)−1 = 1, for exactly (p−1)/2 values of t ∈ {1, ..., p−1} and that r(t)−1 = 1
if and only if r(p − t) − 1 = 0. Let X be the set of all t ∈ {1, · · · , p − 1} such that
r(t) − 1 = 1. It follows that for t, s ∈ X, we have t2 ≡ s2 (mod p) if and only if
t = s. Also note that

σ−1
−t (λ) ≡ −t−1λ (mod λ2),

so
σ−1
−t (λm) ≡ (−t−1)mλm (mod λm+1),

for all m ≥ 1. The following proposition is in the spirit of Lang ([12]) and Coleman-
Kaskel-Ribet ([5]):

Proposition 2.1. Let m be an integer such that m ≥ 2 and∑
t∈X

t−m 	≡ 0 (mod p).

Then m is either odd or divisible by p − 1 and there exist τ ∈ Gal(K(J [p∞])/K) and
r ∈ Zp[ζ]× such that

τ(y) = (1 + rλm)y,

for all y ∈ J [p∞].
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Proof. Suppose that m is not divisible by p − 1. As explained before, the set {t2 :
t ∈ X} is a complete set of non-zero quadratic residues (mod p). Therefore, if m is
even, then ∑

t∈X

t−m =
(p−1)/2∑

i=1

i−m =
1
2

p−1∑
i=1

i−m ≡ 0 (mod p),

a contradiction. So m is odd. Now, exactly as in the proof of Proposition 2 in [6], it
suffices to show that there exists x ∈ 1 + M2 such that

x−Φa = 1 + sλm + γ,

where s ∈ Zp[ζ]× and γ ∈ Mm+1 (if this is the case, then we can set r = s + γλ−m).
Now let x = 1 + λm. Then

x−Φa ≡
∏
t∈X

(1 + (−1)m+1t−mλm) ≡ 1 + (−1)m+1

(∑
t∈X

t−m

)
λm (mod λm+1),

and this is what we wanted to show. �

We will also need the following easy lemma:

Lemma 2.2. If Y is a set of (p−1)/2 consecutive positive integers, then some m ∈ Y
satisfies ∑

t∈X

t−m 	≡ 0 (mod p).

Proof. If this is not the case, then the system of (p − 1)/2 equations in (p − 1)/2
unknowns y1, y2, · · · , y(p−1)/2 given by∑

ti∈X

t−m
i yi ≡ 0 (mod p),

where m ∈ Y , has the non-trivial solution (1, · · · , 1). The determinant of the coeffi-
cient matrix is a non-zero multiple of a non-zero Vandermonde determinant (mod p),
so it is non-zero (mod p), and this is a contradiction. �

3. Almost rational torsion points

Following Ribet, we call a point D ∈ J(K) almost rational over K if, for all
σ, τ ∈ Gal(K/K), the relation σ(D) + τ(D) = 2D implies σ(D) = τ(D) = D. Note
that, since F is not hyperelliptic, its gonality exceeds 2, therefore the image of every
point of F (K) in J(K) is almost rational. Now let Σ denote the set of torsion points
on J which are almost rational over K.

Lemma 3.1. Let l be a prime and δ a positive integer.
(1) J(K(J [lδ])) ∩ J [l∞] = J [lδ].
(2) If l = p and m is an integer such that m ≥ 2 and∑

t∈X

t−m 	≡ 0 (mod p),

then
J(K(J [λm])) ∩ J [p∞] = J [λm].
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Proof. (1) There exists τ ∈ Gal(K(J [l∞])/K) which acts on the l-adic Tate module
of J as multiplication by 1 + lδ. For l = p, this follows from observing that the proof
of Proposition 2 in [6] (for 1 + p) also works for 1 + pδ; for l 	= p, this follows from
Lemma 3.3 in [7] (we should point out that, although Lemma 3.3 in [7] is only stated
for the hyperelliptic Fermat quotients, the same proof makes it valid for all Fermat
quotients). Let D ∈ J(K(J [lδ])) ∩ J [l∞]. Then τ(y) = y, for all y ∈ J [lδ], so τ fixes
K(J [lδ]), hence it also fixes J(K(J [lδ])). In particular, τ(D) = D, so lδD = 0, i.e.
D ∈ J [lδ]. The reverse inclusion is obvious.

(2) Suppose that D ∈ J(K(J [λm]))∩J [p∞]. Choose τ as in Proposition 2.1. Then
τ(y) = y, for all y ∈ J [λm], so τ fixes K(J [λm]), hence it also fixes J(K(J [λm])). In
particular, τ(D) = D, therefore, rλmD = 0. Since r is invertible in Zp[ζ], it follows
that D ∈ J [λm]. The reverse inclusion is obvious. �

Proposition 3.2. Let l be a prime. Let δ = 1, for l odd, and δ = 2, for l = 2.
(1) Σ ∩ J [l∞] ⊆ J [lδ]. If, in addition, l 	= 3, p, then Σ ∩ J [l∞] = {0}.
(2) If l = p, let m be the smallest integer in {(p − 1)/2, · · · , p − 2} such that∑

t∈X

t−m 	≡ 0 (mod p)

(such m exists, by Lemma 2.2). Then Σ ∩ J [p∞] ⊆ J [λm]. In particular, if
p ≡ 3 (mod 4), then Σ ∩ J [p∞] ⊆ J [λ(p−1)/2].

Proof. (1) The first assertion follows by combining Proposition C in [3] (with Ω = {l}
and L = lδ) and Part (1) of Lemma 3.1.

Now suppose that l 	= 3, p and l is odd. Then both (1 + l)/2 and (3 + l)/2 are
units in Zl. By Lemma 3.3 in [7], we can find σ, τ ∈ Gal(K(J [l∞])/K) acting as the
homotheties (1 + l)/2, (3 + l)/2 on the l-adic Tate module of J . If D is a non-trivial
l-torsion point on J , it follows that

σ(D) + τ(D) =
1 + l

2
D +

3 + l

2
D = 2D.

However σ(D) 	= τ(D), so D /∈ Σ.
Next suppose that l = 2. Let D be a non-trivial 4-torsion point on J . Since p ≥ 11,

we see that D is not K-rational (by (2) at the beginning of Section 2). If the order
of D equals 2, choose σ ∈ Gal(K(J [2∞])/K) such that σ(D) 	= D. Since

σ(D) + σ(D) = σ(2D) = 0 = 2D,

D is not in Σ. If the order of D equals 4, choose, again by Lemma 3.3 in [7],
σ ∈ Gal(K(J [2∞])/K) acting as the homothety 3 on the 2-adic Tate module of J .
Then σ(D) + σ(D) = 2D, but σ(D) 	= D, so D /∈ Σ.

(2) Let D ∈ Σ ∩ J [p∞]. By Part (1), we get that D ∈ J [p] = J [λp−1]. Let
σ be any element of Gal(K(J [p∞])/K(J [λm])). We claim that σ(D) = D. Note
that λmD ∈ J [λp−1−m]. Since σ fixes K(J [λm]) and p − 1 − m ≤ m, it follows
that σ fixes J [λp−1−m], so it fixes λmD. Since σ commutes with λ, it follows that
σ(D) − D ∈ J [λm]. But then σ(D) − D is fixed by σ, i.e. σ2(D) + D = 2σ(D).
Since D is almost rational over K, so is σ(D), therefore σ(D) = D, and this proves
the claim. This holds for all σ fixing K(J [λm]), so D is defined over the latter field,
i.e. D ∈ J(K(J [λm])). By Part (2) of Lemma 3.1, we get D ∈ J [λm]. In particular,
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suppose that p ≡ 3 (mod 4). Then (p − 1)/2 is odd and t(p−1)/2 = ±1, for all t ∈ X.
This shows that m = (p − 1)/2 in this case. �

4. The cuspidal torsion packet

We are now ready to prove Theorem 1.1. Note that, by Theorem 9 in [4], all
cuspidal torsion points are of p-power order. By the first paragraph of Section 3, they
are also almost rational over K.

Suppose that p ≡ 3 (mod 4). By Part (2) of Proposition 3.2, we see that the
cuspidal torsion packet is contained in F ∩ J [λ(p−1)/2]. By Proposition 3 in [6], we
have 	(F ∩ J [λ(p−1)/2]) ≤ p(p − 1)/2. If there exists a point in F ∩ J [λ(p−1)/2] which
is not K-rational, then, by [8], its field of definition over K has degree at least p,
hence, by Lemma 2 in [6], we have 	(F ∩J [λ(p−1)/2]) ≥ p2, and this is a contradiction.
Therefore, F ∩ J [λ(p−1)/2] ⊆ J [λ3]. By Proposition 4 in [6], it follows that

F ∩ J [λ(p−1)/2] ⊆ F ∩ J [λ] = {(0, 0), (1, 0),∞},
where the latter equality follows from the proof of Theorem 3 in [6], and this proves
the assertion. This is not a new result; the same result is also obtained in [6] (see the
Remark following Theorem 3 in [6]).

Now suppose that p ≡ 1 (mod 4) and let P be a cuspidal torsion point on F . If
P ∈ J [λ(p−1)/2], we are done by the same proof as in the case of p ≡ 3 (mod 4). So,
assume P /∈ J [λ(p−1)/2] (note that then P is not K-rational by (2) at the beginning of
Section 2). Then P ∈ J [λk] and P /∈ J [λk−1] hold for some k with (p−1)/2 < k ≤ m,
where m is as in Part (2) of Proposition 3.2. If the field of definition K(P ) of P over
K does not equal K(J [λ4]), then, by [8] and (2) at the beginning of Section 2, we
have [K(P ) : K(J [λ4])] ≥ p and [K(J [λ4]) : K] ≥ p, hence [K(P ) : K] ≥ p2. We can
therefore apply Lemma 2 in [6] and get 	(F ∩ J [p]) ≥ p3, contradicting Proposition
2 in [6]. So suppose that K(P ) = K(J [λ4]). Then, since P generates J [λk] as a
Z[λ]-module, we get

K(J [λk]) = K(J [λk−1]) = · · · = K(J [λ4]).

We consider two cases:

Case 1. Suppose that k ≥ 4+(p−1)/2. Then, since m must be odd (by Proposition
2.1), we get m ≥ 5 + (p− 1)/2. By Lemma 2.2 and the minimality of m, there exists
n such that 5 ≤ n < (p − 1)/2 such that∑

t∈X

t−n 	≡ 0 (mod p).

Now let σ be a Galois automorphism fixing K(J [λn]). Note that λnP ∈ J [λk−n].
Since n ≥ 5, k − n ≥ 4, we get K(J [λk−n]) = K(J [λn]), so σ fixes λnP , therefore
σ(P ) − P ∈ J [λn]. But then σ(P ) − P is fixed by σ, hence, by almost rationality of
P , it follows that P is fixed by σ. This works for all σ fixing K(J [λn]), which implies
that P ∈ J(K(J [λn])). By Part (2) of Lemma 3.1, we have

J(K(J [λn])) ∩ J [p∞] ⊆ J [λn],

from which it follows that P ∈ J [λn], a contradiction.
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Case 2. (p − 1)/2 < k ≤ 3 + (p − 1)/2. Let b = k − (p − 1)/2 ∈ {1, 2, 3}. The
following arguments were obtained jointly with Coleman and Tamagawa during our
collaboration in [6] (see also the last paragraph of Section 1 in [6]).

Lemma 4.1. Suppose that b = 2 or 3. Let G be the semidirect product of Gal(K/Q)
and Gal(K(P )/K) × μp with the natural action of the former group on the latter.
Then P has at least p2(p − 1)/4 G-conjugates.

Proof. The proof is very similar to the proof of Proposition 4 in [6]. Let H be the
stabilizer of P in G. By the proof of Lemma 2 in [6], no element of Gal(K(P )/K)×μp

fixes P . Therefore H embeds into Gal(K/Q). Let σ ∈ H. Suppose that σ(ζ) = ζβ .
Since the point R = λb+(p−3)/2P ∈ J [λ]\{0} is defined over Q, we get βb+(p−3)/2R =
R, so the order of β divides both b + (p − 3)/2 and p − 1. This means that the order
of β divides 4, so the image of H in Gal(K/Q) is of order at most 4. This proves the
assertion, because 	(G) = p2(p − 1). �

Lemma 4.2. Let W be the theta divisor of J . Consider the following endomorphisms
of J :

τ =
(p−1)/2∏

i=1

(ζi − ζ−i), a1 = τλ, a2 = τλ(ζ2 − 1), a3 = τλ(ζ2 − 1)(ζ3 − 1).

Let (·) denote the intersection pairing between 1-cycles and (p − 3)/2-cycles on J
modulo rational equivalence.

(1) (F · a−1
1 (W )) = p2.

(2) (F · a−1
2 (W )) = 2p2.

(3) (F · a−1
3 (W )) = 3p2.

Proof. Since ai ∈ Z[ζ], for all i, it follows from Chapter V, § 3, D4, D8 and Chapter
IV, § 3, Corollary to Theorem 7 in [11] that

(F · a−1
i (W )) = TraceK+/Q(NormK/K+(ai)),

for all i, where K+ is the maximal real subfield of K. Lemma 4.2 now follows from
a simple calculation. �

Now, if b = 2 or 3, then, by Lemma 4.1, P has at least p2(p − 1)/4 G-conjugates.
On the other hand, by Parts (2) and (3) of Lemma 4.2 and the proof of Proposition
3 in [6], we get 	(F ∩ J [λk]) ≤ 3p2. Taking into account the three Q-rational cusps,
this gives 3 + p2(p − 1)/4 ≤ 3p2, which is impossible, since p ≥ 13.

If b = 1, then, by Lemma 2 in [6], P has at least p2 conjugates over K. Taking into
account the three Q-rational cusps, this gives 	(F ∩ J [λk]) ≥ p2 + 3. By the proof of
Proposition 3 in [6], this contradicts Part (1) of Lemma 4.2.
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