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BOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS
ASSOCIATED WITH k-PLANES

Richard Oberlin

Abstract. A (d, k) set is a subset of Rd containing a translate of every k-dimensional

plane. Bourgain showed that for k ≥ kcr(d), where kcr(d) solves 2kcr−1 + kcr = d,

every (d, k) set has positive Lebesgue measure. We give a short proof of this result
which allows for an improved Lp estimate of the corresponding maximal operator, and

which demonstrates that a lower value of kcr could be obtained if improved mixed-norm
estimates for the x-ray transform were known.

1. Introduction

A measurable set E ⊂ R
d is said to be a (d, k) set if it contains a translate of

every k-dimensional plane in R
d. Once the definition is given, the question of the

minimum size of a (d, k) set arises. This question has been extensively studied for
the case k = 1, the Kakeya sets. It is known that there exist Kakeya sets of measure
zero, and these are called Besicovitch sets. It is conjectured that all Besicovitch sets
have Hausdorff dimension d. For k ≥ 2, it is conjectured that (d, k) sets must have
positive measure, i.e. that there are no (d, k) Besicovitch sets. These size estimates
are related to Lp bounds on two maximal operators which we define below.

Let G(d, k) denote the Grassmannian manifold of k-dimensional linear subspaces
of R

d. For L ∈ G(d, k) we define

N k[f ](L) = sup
x∈Rd

∫
x+L

f(y)dy

where we will only consider functions f supported on the unit ball B(0, 1) ⊂ R
d.

A limiting and rescaling argument shows that if N k is bounded for some p < ∞
from Lp(Rd) to L1(G(d, k)), then (d, k) sets must have positive measure. By testing
N k on the characteristic function of B(0, δ), χB(0,δ), one sees that such a bound may
only hold for p ≥ d

k . For L in G(d, k) and a ∈ R
d define the δ plate centered at

a, Lδ(a), to be the δ neighborhood in R
d of the intersection of B(a, 1

2 ) with L + a.
Fixing L, considering N kχLδ(0), and using the fact that the dimension of G(d, k) is
k(d − k), we see that a bound into Lq(G(d, k)) can only hold for q ≤ kp. This leads
to the following conjecture, where the case k = 1 is excluded due to the existence of
Besicovitch sets.

Conjecture 1.1. For 2 ≤ k < d, p > d
k , 1 ≤ q ≤ kp

‖N kf‖Lq(G(d,k)) � ‖f‖Lp(Rd).
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It is also useful to consider a generalization of the Kakeya maximal operator,
defined for L ∈ G(d, k) by

Mk
δ [f ](L) = sup

a∈Rd

1
Ld(Lδ(a))

∫
Lδ(a)

f(y)dy

where Ld denotes Lebesgue measure on R
d. Using an argument analogous to that in

Lemma 2.15 of [2], one may see that a bound

(1) ‖Mk
δf‖L1(G(d,k)) � δ

−α
p ‖f‖Lp(Rd)

where α > 0 and p < ∞, implies that the Hausdorff dimension of any (d, k) set is at
least d − α. Considering Mk

δχB(0,δ) and Mk
δχLδ(0), we formulate

Conjecture 1.2. For k ≥ 1, p < d
k , q ≤ (d − k)p′

‖Mk
δf‖Lq(G(d,k)) � δk− d

p ‖f‖Lp(Rd).

In [6] Falconer showed that, for any ε > 0, N k is bounded from L
d
k +ε(Rd) to

L1(G(d, k)) when k > d
2 . Later, in [2], Bourgain used a Kakeya maximal operator

bound combined with an L2 estimate of the x-ray transform to show that N k is
bounded from Lp(Rd) to Lp(G(d, k)) for (d, k, p) = (4, 2, 2+ε) and (d, k, p) = (7, 3, 3+
ε). He then showed, using a recursive metric entropy estimate, that for d ≤ 2k−1 + k,
N k is bounded for a large unspecified p. Substituting in the proof Katz and Tao’s
more recent bound for the Kakeya maximal operator from [7]

(2) ‖M1
δf‖Ln+ 3

4 (G(n,1))
� δ−( 3(n−1)

4n+3 +ε)‖f‖
L

4n+3
7 (Rn)

one now sees that this holds for k > kcr(d) where

(3) kcr(d) solves d =
7
3
2kcr−2 + kcr.

By Hölder’s inequality, the following is true for any k-plate Lδ and positive f∫
Lδ

f dx � δ
d−k

r′

(∫
L⊥

(∫
L+y

f(x) dLk(x)
)r

dLd−k(y)
) 1

r

.

Combining this with the Lp → Lq(Lr) bounds for the k-plane transform which were
proven by Christ in Theorem A of [4], we see that Conjecture 1.2 holds when p ≤ d+1

k+1 .
Except for a factor of δ−ε, the same bound for Mk

δ was proven with k = 2 by Alvarez
in [1] using a geometric-combinatorial “bush”-type argument. Alvarez also used a
“hairbrush” argument to show that (d, 2) sets have Minkowski dimension at least
2d+3

3 . More recently, Mitsis proved a similar maximal operator bound in [11] and
showed that (d, 2) sets have Hausdorff dimension at least 2d+3

3 in [10]. In [3], Bueti
used a hairbush type argument to show that, in the setting of vector spaces over
finite fields, Conjecture 1.2 holds when p ≤ d+1+ 1

k

k+1 and k < d − 1. In [13], Rogers
gave estimates for the Hausdorff dimension of sets which contain planes in directions
corresponding to certain curved submanifolds of G(4, 2).

Our main result is the following.



BOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS 89

Theorem 1.1. Suppose 4 ≤ k < d and k > kcr(d), where kcr(d) is defined in (3).
Then

(4) ‖N kf‖Lp(G(d,k)) � ‖f‖Lp(Rd)

for f supported on the unit ball and p ≥ d−1
2 . If, additionally, we have k−j > kcr(d−j)

for some integer j in [1, k − 4], then we may take p ≥ d−1
2+j .

For k < kcr(d), we do not have a bound for N k, however our technique yields
certain bounds for Mk

δ .

Theorem 1.2.
‖Mk

δf‖Lq(G(d,k)) � δ−
α
p ‖f‖Lp(Rd)

when

(5) k ≥ 2, α = d − kp + ε, p =
d

k + 3
4

, q ≤ (d − k)
(

4(d − (k − 1))
7

)′

or

(6) k ≥ 2, α =
3(d − k)
7(2k−1)

+ ε, p =
d + 1

2
, q = d + 1

or

(7) 3 ≤ k ≤ kcr(d), α =
3(d − k)
7(2k−2)

− 1 + ε, p = q =
d

2
where ε > 0 may be taken arbitrarily small.

In (5) we have an optimal value for p relative to α, but a non-optimal value for q.
In (6) and (7) we have improved values of α at the cost of a non-optimal p. For the
“non-borderline” k, specifically when k + 1 < kcr(d + 1), (6) gives a smaller value of
α than (7).

The number p = d−1
2+j in Theorem 1.1 and the number p = d

k+ 3
4

in Theorem 1.2 are
approximate and may be slightly improved through careful numerology. Also, in (7)
we may take k = 2, but a slightly higher value of p and q is then required.

We prove (5) and (6) in Section 2 through a recursive maximal operator bound
which is derived using Drury and Christ’s bounds for the x-ray transform and which
is inspired by Bourgain’s recursive metric entropy estimates. This recursive maxi-
mal operator bound is a slight improvement of the result in [12], which will remain
unpublished, and the new bound comes with a vastly simplified proof afforded by
the explicit use of the x-ray transform. Additionally our argument reveals that with
certain adjustments of p and q, the number 2 in the definition of kcr(d) and in the
definition of α in (6) and (7) may be replaced by the ratio r̃

p̃ if the x-ray transform is
known to be bounded, for certain values of n, from Lpn(Rn) to Lqn

Sn−1(Lrn

Rn−1) for any
rn, pn, qn satisfying rn

pn
= r̃

p̃ .
We prove (7) and Theorem 1.1 in Section 3. There, we combine (5) and (6) with

the L2 method which Bourgain used to give bounds for N k when (d, k) = (4, 2) or
(7, 3).

From (6) and (7) we see that, for k ≥ 2, the Hausdorff dimension of any (d, k) set
is at least

min
(

d, max
(

d − 3(d − k)
7(2k−2)

+ 1, d − 3(d − k)
7(2k−1)

))
.



90 RICHARD OBERLIN

When (d − k) < 7, it is preferable to start with Wolff’s L
n+2

2 bound for the Kakeya
maximal operator from [15], instead of (2). A similar procedure then gives the lower
bound

min
(

d, max
(

d − d − k − 1
2k−1

+ 1, d − d − k − 1
2k

))
for the Hausdorff dimension of a (d, k) set.

It should be noted that the dimension estimates provided by applying (6) and it’s
Wolff-variant are also a direct consequence of the metric entropy estimates in [2].
However, to the best of the author’s knowledge they have not previously appeared in
the literature, even without the improvement obtained from [16] and [7].

2. A recursive maximal operator bound

We start with the definition of the measure we will use on G(d, k). Fix any L ∈
G(d, k). For a Borel subset F of G(d, k) let

G(d,k)(F ) = O({θ ∈ O(d) : θ(L) ∈ F})
where O is normalized Haar measure of the orthogonal group on R

d, O(d). By the
transitivity of the action of O(d) on G(d, k) and the invariance of O, it is clear that
the definition is independent of the choice of L. Also note that G(d,k) is invariant
under the action of O(d). By the uniqueness of uniformly-distributed measures (see
[9], pages 44-53), G(d,k) is the unique normalized Radon measure on G(d, k) invariant
under O(d).

It will be necessary to use an alternate formulation of G(d,k). For each ξ in S
d−1

let Tξ : ξ⊥ → R
d−1 be an orthogonal linear transformation. Then T−1

ξ identifies
G(d − 1, k − 1) with the k − 1 dimensional subspaces of ξ⊥. Now, define T : S

d−1 ×
G(d − 1, k − 1) → G(d, k) by

T (ξ, M) = span(ξ, T−1
ξ (M)).

Choosing Tξ continuously on the upper and lower hemispheres of S
d−1, T−1 identifies

the Borel subsets of G(d, k) with the completion of the Borel subsets of S
d−1 ×G(d−

1, k − 1). Under this identification, by uniqueness of rotation invariant measure, we
have

(8) G(d,k)(F ) = σd−1 × G(d−1,k−1)(T−1(F ))

where σd−1 denotes normalized surface measure on the unit sphere.
For a function f on R

d, ξ ∈ S
d−1, and y ∈ ξ⊥, the x-ray transform of f is defined

fξ(y) =
∫

R

f(y + tξ) dt.

It is conjectured that the x-ray transform is bounded from Lp(Rd) to Lq
Sd−1(Lr

Rd−1)
when p, q, r satisfy

r < ∞
p =

rd

d + r − 1
(9)

q ≤ r′d.
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This was shown to hold in [5] for p < d+1
2 and in [4] for p = d+1

2 . Also, see [16] and
[8] for certain improvements.

In the following proposition we exploit the fact that r > p when r 	= 1 in (9), i.e.
that the x-ray transform is Lp-improving.

Proposition 2.1. Suppose that p ≤ d + 1 and k ≥ 2. Then a bound

‖Mk−1
δ f‖Lq(G(d−1,k−1)) � δ−

α
p ‖f‖Lp(Rd−1)

for all f ∈ Lp(Rd−1) implies the bound

‖Mk
δf‖Lq̃(G(d,k)) � δ−

α̃
p̃ ‖f‖Lp̃(Rd)

for all f ∈ Lp̃(Rd) with

p̃ = p
d

d + p − 1
, α̃ = α

p̃

p
= α

d

d + p − 1
, and q̃ = min(q, dp′).

Proof. Without loss of generality, we assume that f is positive. Let L ∈ G(d, k) and
suppose that L = span(ξ, T−1

ξ (M)) where M ∈ G(d − 1, k − 1). Let aL ∈ R
d and let

aM = Tξ(projξ⊥(aL)), where proj denotes orthogonal projection. Then∫
Lδ(aL)

f(y) dy ≤
∫

Mδ(aM )

∫
R

f(T−1
ξ (x) + tξ) dt dx

=
∫

Mδ(aM )

fξ(T−1
ξ (x)) dx

where Lδ(aL) and Mδ(aM ) are k and k − 1 plates respectively. Noting that d − k =
(d − 1) − (k − 1), it follows that

Mk
δ [f ](L) � Mk−1

δ [fξ ◦ T−1
ξ ](M).

By (8), Hölder’s inequality, and our hypothesized bound, we now have

‖Mk
δ [f ]‖Lq̃(G(d,k)) �

(∫
Sd−1

∫
G(d−1,k−1)

Mk−1
δ [fξ ◦ T−1

ξ ](M)q̃ dM dξ

) 1
q̃

�

⎛⎝∫
Sd−1

(∫
G(d−1,k−1)

Mk−1
δ [fξ ◦ T−1

ξ ](M)q dM

) q̃
q

dξ

⎞⎠
1
q̃

� δ−
α
p

(∫
Sd−1

(∫
Rd−1

(fξ ◦ T−1
ξ (x))p dx

) q̃
p

dξ

) 1
q̃

= δ−
α
p

(∫
Sd−1

(∫
ξ⊥

fξ(x)p dx

) q̃
p

dξ

) 1
q̃

.

Finally, by our restrictions on p and q̃, we may apply Drury and Christ’s bound
for the x-ray transform, obtaining(∫

Sd−1

(∫
ξ⊥

fξ(x)p dx

) q̃
p

dξ

) 1
q̃

� ‖f‖Lp̃(Rd)
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when p̃ = pd
d+p−1 .

�

One should note that if α = (d − 1) − (k − 1)p, then α̃ = d − kp̃. Hence, except
for a non-optimal q̃, Proposition 2.1 yields the conjectured bound on Lp̃(Rd) when
applied to the conjectured bound on Lp(Rd−1).

Proof of (5). Observing that if

(10) p =
d − 1

m
then p̃ =

(d + 1) − 1
m + 1

,

we start from the bound

(11) ‖M1
δf‖

L
(n−1)( 4n

7 )′ � δ−( 3
4+ε)‖f‖

L
4n
7 (Rn)

with n = d − (k − 1), which is weaker but more convenient for numerology than (2).
Since (11) satisfies the left side of (10) with m = 7

4 and d = n+1, we obtain (5) after
k − 1 iterations of Proposition 2.1. �

For a larger improvement in α, one may interpolate the known Lp bound for Mk−1
δ

with the trivial L∞ bound and apply Proposition 2.1 to the resulting Ld+1 bound.
This allows us to use the maximum value, 2, of r

p permitted by Drury and Christ’s
bound, and yields the following corollary.

Corollary 2.1. Under the assumptions of Proposition 2.1, we may also take p̃ = d+1
2 ,

α̃ = α
2 , and q̃ = min( (d+1)q

p , (d + 1)).

Due to the interpolation, Corollary 2.1 cannot yield a bound for which α is sharp
with respect to p as in Conjecture 1.2.

Proof of (6). Starting from (2) with n = d − (k − 1), we iteratively apply Corollary
2.1 (k − 1) times to obtain (6). �

We would like to point out that the proof of Proposition 2.1 and Corollary 2.1 is
similar in spirit to Bourgain’s recursive metric entropy estimate in the sense that a
more efficient version of his technique, namely the proof of Proposition 3.1 in [12],
could be used to derive the localized non-endpoint version of the L

d+1
2 → Ld+1 x-ray

transform bound. The idea of expressing an average over a k-plane as the average
over a k − 1-plane of the x-ray transform and then “unraveling” the integration over
G(d, k) into a product integral over S

d−1 and G(d− 1, k − 1) is also due to Bourgain,
as he used it in Propositions 3.3 and 3.20 of [2]. There, he gave bounds for N k with
(d, k) = (4, 2) and (d, k) = (7, 3). We state a generalization of these results below.

3. The L2 method

Reducing α by a factor of two, as in Corollary 2.1, is not a substantial gain for
small α. By using an L2 estimate of the x-ray transform which takes advantage of
cancellation, instead of the L

d+1
2 bound, we may take α̃ = α − 1 when α ≥ 1 and

obtain a bound for N k when α < 1.
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Proposition 3.1. Suppose k, p ≥ 2 and that a bound for Mk−1
δ on Lp(Rd−1) of the

form

(12) ‖Mk−1
δ f‖Lp(G(d−1,k−1)) � δ−

α
p ‖f‖Lp(Rd−1)

is known. Then if α ≥ 1 we have the bound

(13) ‖Mk
δf‖Lp(G(d,k)) � δ−

α−1
p ‖f‖Lp(Rd)

for f ∈ Lp(Rd). If α < 1 we have the bound

(14) ‖N kf‖Lp(G(d,k)) � ‖f‖Lp(Rd)

for f ∈ Lp(Rd) supported on B(0, 1).

Before proving the proposition, we give its applications.

Proof of Theorem 1.1. We start from the bound (6) with d0 = d − 2 − j and k0 =
k − 2 − j. This gives

(15) α0 =
3(d − k)
7 · 2k−3−j

+ ε, p0 =
d0 + 1

2
, and q0 = d0 + 1.

The condition k− j > kcr(d− j) ensures that α0 < 2, and so no further improvement
in α is necessary. Thus, we use our j “spare” iterations to improve p. We note that,
in Proposition 2.1, when m ≤ d,

(16) p ≤ d

m
implies that p̃ ≤ d + 1

m + 1
.

Since p0 satisfies the left inequality in (16) with m = 2 and d = d0 + 1, we see that
we may take

p1 =
d1 + 1

3
, q1 = d0 + 1, and α1 = α0,

where d1 = d0 +1 = d−2−(j−1) and k1 = k0−1 = k−2−(j−1). Above, we ignore
the improvement in α and, through interpolation, we ignore some slight additional
improvement in p. After j − 1 further iterations, we have

(17) pj =
dj + 1
2 + j

, qj = d0 + 1, and αj = α0,

where dj = d − 2 and kj = k − 2. Applying (13) to (17), and then applying (14) to
the result, we obtain (4). �

Proof of (7). We obtain (7) by starting from (6) with d0 = d− 1, and k0 = k − 1 (In
the case k = 2, we would simply start from (2)). We then apply (13) once. �

The main estimate needed to derive Proposition 3.1 was proven by Smith and
Solmon in [14].

Lemma 3.1. For d ≥ 3

‖fξ(y)‖L2
ξ,y(Sd−1×Rd−1) = Cd‖f‖

Ḣ− 1
2 (Rd)

where Cd is a fixed constant depending only on d and Ḣ denotes the homogeneous L2

Sobolev space.
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It immediately follows that if the Fourier transform ĝ of a function g is identically
0 on B(0, R) then

(18) ‖gξ(y)‖L2
ξ,y(Sd−1×Rd−1) � R− 1

2 ‖g‖L2(Rd).

To effectively apply (18), we use a Littlewood-Paley decomposition. Let φ0 be
a Schwartz function with φ̂0 ≡ 1 on B(0, 1) and with φ̂0 supported on B(0, 2). For
j > 0, define φj = 2jdφ0(2j ·)−2(j−1)dφ0(2j−1·) so that φ̂j is supported on B(0, 2j+1)\
B(0, 2j−1). Functions are decomposed

f =
∞∑

j=0

fj

where fj = f ∗ φj .
Our last ingredients are two Schwartz-tail estimates needed to reconcile the local-

ization properties of the space and frequency variables.

Lemma 3.2. Suppose g ≥ 0 and ˆ̃g = ĝ on B(0, 1
δ ). Then

(19) Mk−1
δ [g] � Mk−1

δ [|g̃|].
Proof. For 1 ≤ n ≤ d let Φn be a nonnegative Schwartz function on R

n such that
Φn ≥ 1 on B(0, 1) and Φ̂n is supported on B

(
0, 1√

2

)
. For L ∈ G(d, k) let

πL,δ(x) = Φk(projL(x))δ−(d−k)Φd−k
(
projL⊥

(x

δ

))
.

Now, define

M̃k
δ [f ](L) = sup

a∈Rd

∫
Rd

πL,δ(x − a)f(x)dx.

By construction, πL,δ(· − a) � χLδ(a)

Ld(Lδ(a))
and π̂L,δ is supported on B(0, 1

δ ). Thus

Mk
δ [g] � M̃k

δ [g] = M̃k
δ [g̃].

Since Φk and Φd−k are Schwartz functions, we have

Φk ≤
∞∑

j=1

cjχB(yj , 1
2 )

and

Φd−k ≤
∞∑

j=1

djχB(zj , 1
2 )

for some {cj}, {dj} ∈ l1(N), {yj} ⊂ R
k, and {zj} ⊂ R

d−k. Then, for an appropriately
chosen {aj,l}

πL,δ(x) ≤
∞∑

j,l=1

cjdlχB(yj , 1
2 )(projL(x))δ−(d−k)χB(zl,

1
2 )

(
projL⊥

(x

δ

))
�

∞∑
j,l=1

cjdl

χLδ(aj,l)

Ld(Lδ(aj,l))
.
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Thus,

M̃k
δ [g̃] �

∞∑
j,l=1

cj , dlMk
δ [|g̃|] � Mk

δ [|g̃|].

�

Lemma 3.3. Define

N k−1
loc [g](L) = sup

a∈Rd

∫
a+(L∩B(0, 1

2 ))

g(x)dx.

Suppose ĝ is supported on B(0, 1
δ ). Then

N k−1
loc [|g|] � Mk−1

δ [|g|].
Proof. Since ĝ is supported on B(0, 1

δ ),

g = g ∗ δ−dφ0

( ·
δ

)
and so ∫

a+(L∩B(0, 1
2 )

|g(x)|dx ≤
∫

Rd

∣∣∣δ−dφ0

(y

δ

)∣∣∣ ∫
a+y+(L∩B(0, 1

2 ))

|g(x)|dx dy.

Since φ0 is a Schwartz function,

|φ0| ≤
∞∑

j=1

cjχB(yj , 1
2 )

for some {cj} ∈ l1(N) and {yj} ⊂ R
d. Thus∫

Rd

∣∣∣δ−dφ0

(y

δ

)∣∣∣ ∫
a+y+(L∩B(0, 1

2 ))

|g(x)|dx dy

≤
∞∑

j=1

cjδ
−d

∫
B(δyj , δ

2 )

∫
a+y+(L∩B(0, 1

2 ))

|g(x)|dx dy

�
∞∑

j=1

cjMk−1
δ [|g|](L)

� Mk−1
δ [|g|](L).

�

Proof of Proposition 3.1. We begin by proving (13). Averaging over each Lδ(a) is
local and we are proving an Lp → Lq(Lr) bound where p ≤ q ≤ r, so we may assume
that f is supported on the unit ball. Additionally, assume that f is nonnegative.

Following the proof of Proposition 2.1, we observe that for L = span(ξ, T−1
ξ (M))

we have

(20) Mk
δ [f ](L) � Mk−1

δ [fξ ◦ T−1
ξ ](M).

Since f is supported on the unit ball, we may switch the order of integration
between convolution and the x-ray transform to obtain

‖(fj)ξ(y)‖L∞
ξ,y

� ‖f‖L∞(Rd)
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uniformly in j. Hence, interpolation with (18) gives

(21) ‖(fj)ξ(y)‖Lp
ξ,y

� (2−j)
1
p ‖f‖Lp(Rd)

for any p ≥ 2.
From Lemma 3.2, we obtain

(22) Mk−1
δ [fξ ◦ T−1

ξ ](M) �
| log(δ)|+1∑

j=0

Mk−1
δ [|(fj)ξ ◦ T−1

ξ |](M).

Averaging Lemma 3.3 gives, for each j,

(23) Mk−1
δ [|(fj)ξ ◦ T−1

ξ |](M) � Mk−1
2−j [|(fj)ξ ◦ T−1

ξ |](M).

Integrating over G(d, k) and combining the bounds (12) and (21) as in the proof
of Proposition 2.1, we obtain

‖Mk
δf‖Lp(G(d,k)) �

| log δ|+1∑
j=0

(2j)
α−1

p ‖f‖Lp(Rd) � δ−
α−1

p ‖f‖Lp(Rd)

from (20), (22), and (23), when α ≥ 1.
Proceeding to the proof of (14), we have f supported on the unit ball and we

assume that f is nonnegative, giving

N k[f ] � N k
loc[f ].

As before,
N k

loc[f ](L) � N k−1
loc [fξ ◦ T−1

ξ ](M)
and

N k−1
loc [|(fj)ξ ◦ T−1

ξ |](M) � Mk−1
2−j [|(fj)ξ ◦ T−1

ξ |](M),
giving

‖N kf‖Lp(G(d,k)) �
∞∑

j=0

(2j)
α−1

p ‖f‖Lp(Rd) � ‖f‖Lp(Rd)

when α < 1. �

Acknowledgements

I would like to thank my advisor Andreas Seeger for mathematical guidance and
for his suggestion of the topics considered in this article. I would also like to thank
Dan Oberlin for carefully reading several of the previous drafts, and the anonymous
referee for suggesting a reference.

References

[1] D. Alvarez, Bounds for some Kakeya-type maximal functions, Berkeley thesis (1997) 24-55.
[2] J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom.

Funct. Anal. 1 (1991), no. 2, 147-187.

[3] J. Bueti, An incidence bound for k-planes in F n and a planar variant of the Kakeya maximal
function, preprint.

[4] M. Christ, Estimates for the k-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891-

910.
[5] S. Drury, Lp estimates for the X-ray transform, Illinois J. Math. 27 (1983), no. 1, 125-129.



BOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS 97

[6] K.J. Falconer, Continuity properties of k-plane integrals and Besicovitch sets, Math. Proc.
Cambridge Philos. Soc. 87 (1980), no. 2, 221-226.

[7] N. Katz and T. Tao, New bounds for Kakeya problems, J. Anal. Math. 87 (2002) 231-263.

[8] I. Laba and T. Tao, An x-ray estimate in Rn, Rev Mat. Iberoamericana 17 (2001), no. 2,
375-407.

[9] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press,
Cambridge, (1995)

[10] T. Mitsis, Corrigenda: “(n, 2) sets have full Hausdorff dimension”, Rev. Mat. Iberoamericana

21 (2005), no. 2, 689-692.
[11] , Norm estimates for a Kakeya-type maximal operator, Math. Nachr. 278 (2005), no. 9,

1054-1060.

[12] R. Oberlin, A recursive bound for a Kakeya-type maximal operator, arXiv:math.CA/0511646.
[13] K. Rogers, On a planar variant of the Kakeya problem, Math. Res. Lett. 13 (2006), no. 2-3,

199-213.

[14] K. Smith and D. Solmon, Lower dimensional integrability of L2 functions, J. Math. Anal. Appl.
51 (1975), no. 3, 539-549.

[15] T. Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana

11 (1995), no. 3, 651-674.
[16] T. Wolff, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998),

no. 3, 561-600.

Mathematics Department, University of Wisconsin-Madison, 480 Lincoln Dr, Madison
WI 53706

E-mail address: oberlin@math.wisc.edu


