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SESHADRI CONSTANTS ON
SYMMETRIC PRODUCTS OF CURVES

J. Ross

Abstract. Let Xg = C
(2)
g be the second symmetric product of a very general curve

of genus g. We reduce the problem of describing the ample cone on Xg to a problem
involving the Seshadri constant of a point on Xg−1. Using this we recover a result of

Ciliberto-Kouvidakis that reduces finding the ample cone of Xg to the Nagata conjecture

when g ≥ 9. We also give new bounds on the the ample cone of Xg when g = 5.

1. Introduction

Consider the second symmetric product C(2) of a smooth curve C of genus g ≥ 2.
This smooth surface comes with some naturally defined divisors. Given a point p ∈ C
there is the divisor xp = {p + q : q ∈ C} whose numerical class is independent
of p and will be denoted by x. Another divisor on C(2) is given by the diagonal
Δ = {p + p|p ∈ C} whose numerical class is denoted by δ.

We will be interested in describing the the intersection N of the ample cone with
the plane in N1(C(2))R spanned by x and δ. Note that when C is a very general
curve the classes x and δ/2 generate N1(C(2)) so in this case N is the entire ample
cone of C(2). Since N is a two dimensional cone it is described by two boundary rays.
The first boundary is easily given: since the diagonal Δ is an irreducible curve of
negative self-intersection it spans a boundary of the effective cone, so its dual ray is
one boundary. The more interesting boundary of N is characterised by the quantity

τ(C) = inf {s > 0 : (s + 1)x − (δ/2) is ample }.
There is the obvious universal bound

τ(C) ≥ √
g,

coming from the fact that if (s + 1)x − (δ/2) is ample then it has positive self-
intersection. The following conjecture governs the ample cone of a C(2) when C is
very general.

Conjecture 1.1. If C is a very general curve of genus g ≥ 4 then τ(C) =
√

g.

This conjecture asserts that for a very general curve C the other boundary of N
has zero-self intersection, and thus the ample cone of C(2) is as large as possible. It
is only known to hold when g is a perfect square [8].

Our aim is to give a lower bound for τ(C) in terms of the Seshadri constant of a
point in D(2) where D is a smooth curve of genus g− 1. If X is a smooth surface and
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L is the (numerical class of) a nef R-divisor on X the Seshadri constant at a collection
of distinct points p1, . . . , pm ∈ X is defined to be

ε(p1, . . . , pm;X, L) = infC

{
L.C∑

i multpi
C

}
,

where the infimum is over all reduced irreducible curves C ⊂ X passing through at
least one of the pi. We will prove the following connecting Seshadri constants and the
ample cone of second symmetric products of smooth curves.

Theorem 1.2. Let D be a smooth curve of genus g − 1. Suppose a, b > 0 are such
that a/b > τ(D) and for a very general point p ∈ D(2)

ε
(
p;D(2), (a + b)x − b(δ/2)

)
≥ b.

Then for a very general curve C of genus g,

τ(C) ≤ a

b
.

Thus Conjecture 1.1 is implied by the following conjecture about Seshadri con-
stants:

Conjecture 1.3. Let D be a very general curve of genus g − 1 with g ≥ 5 and p be
a very general point in D(2). Then

ε
(
p;D(2), (

√
g + 1)x − (δ/2)

)
= 1. (1.4)

We note that this conjecture is not easy to prove as the class L = (
√

g+1)x−(δ/2)
has degree L2 = 1 so the equality in (1.4) asserts that the Seshadri constant of this
R-divisor is maximal (see 2.5). There is a general lower bound due to Ein-Lazarsfeld
[6] for the Seshadri constant of very general points in surfaces with respect to integral
divisors but this does not extend to the case of R-divisors. However when g is a
perfect square we can apply [6] to deduce that ε(p;D(2), L) = 1 for a very general
p ∈ D(2) where D is a smooth curve of genus g − 1. Thus we get another proof that
if g ≥ 4 is a perfect square then τ(C) =

√
g for a very general curve C of genus g.

Remark 1.5. As pointed out by Lazarsfeld, it is not the case that the analogy of
Conjecture 1.3 holds for all polarised surfaces (X, L) such that L is an ample R-divisor
with L2 = 1 and L.E ≥ 1 for all but finitely many curves E ⊂ X. For example let X
be an abelian surface of type (1, d) with Picard number 1 generated by the ample line
bundle L′ and set L = L′/

√
2d. Then L2 = 1 and L.E ≥ 1 for all irreducible curves

E ⊂ X. But whenever
√

2d is irrational it is known that ε(p, X;L′) <
√

2d (in fact it
is rational [2]) so ε(p;X, L) < 1 for all p ∈ X.

The proof of Theorem 1.2 uses a degeneration of the symmetric product that arises
from letting C degenerate to the nodal curve C0 obtained by gluing two points in D.
The same degeneration allows us to compare the multipoint Seshadri constants of
C(2) and D(2). We define εm(X, L) to be the Seshadri constant of a collection of m
very general points in X.
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Theorem 1.6. Let D be a smooth curve of genus g − 1 and fix an integer m ≥ 1.
Suppose that there are numbers a, b > 0 with a/b > τ(D) such that

εm+1

(
D(2), (a + b)x − b(δ/2)

)
≥ b.

Then for a very general curve C of genus g the class (a + b)x− b(δ/2) ∈ N1(C(2)) is
nef and

εm

(
C(2), (a + b)x − b(δ/2)

)
≥ b.

A more concise way to state this theorem is to let εm,g(s) be the Seshadri constant
of m very general points in C(2) with respect to the class (s + 1)x − δ/2, where C is
a very general curve of genus g ≥ 0. Then

εm,g(s) ≥ εm+1,g−1(s),

where this is to be interpreted as holding for all s, g such that the right hand makes
sense.

As the second symmetric product of P1 is P2, induction on g yields:

Corollary 1.7 (Ciliberto-Kouvidakis [4]). Let C be a very general curve of genus
g ≥ 1. Then

τ(C) ≤ 1
εg(P2,OP2(1))

.

As is well known, one formulation of the Nagata conjecture states that if g ≥ 9
then the Seshadri constant of g ≥ 9 very general points in P2 is maximal:

Conjecture 1.8 (Nagata Conjecture). If g ≥ 9 then

εg(P2,OP2(1)) =
1√
g
.

Thus, as proved in [4], the Nagata conjecture yields the ample cone of C(2) for a
very general curve of genus g ≥ 9. Currently the Nagata conjecture is only proved
when g is a perfect square. For other g there are several bounds on εg(P2,OP2(1))
(e.g. [7, 13, 14, 15]). For instance using (1.7) and results from [13] we get that for a
very general curve of genus g ≥ 10,

τ(C) ≤
√

g√
1 − 1

8g

. (1.9)

When g is not a perfect square this improves on the bound τ(C) ≤ g
[
√

g] from [8].

Remark 1.10. From the discussion above there are implications

Conjecture 1.8
(Nagata conjecture)

⇒ Conjecture 1.3
(Seshadri constants)

⇒ Conjecture 1.1
(Ample cone of C(2))

so Conjecture 1.3 concerning Seshadri constants sits between the Nagata conjecture
and the conjecture governing the ample cone of a general C(2). It is possible that Con-
jecture 1.3 is easier than the full Nagata conjecture but there is, of course, currently
no proof of this.
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Remark 1.11. The degeneration we use in the proofs of the above theorems is
related to the Franchetta degeneration used in [4] which arises from degenerating C
to a rational nodal curve. The main difference is that here we consider the case that
C develops one node at a time. Moreover rather than using a degeneration of C(2)

we find it easier to use a degeneration of C × C and only consider divisors that are
invariant under permuting the factors. A related degeneration of of C(2) coming from
letting C develop cusps is described in [12].

The values of τ(C) are known for a very general curve of genus g ≤ 4 (see Section
2.2) and from the discussion above the Nagata conjecture governs the case that g ≥ 9.
There appears to be little known in the intermediate range 5 ≤ g ≤ 8 and one
would imagine that one of the two extreme cases holds (namely that either τ(C) =
εg(P2,OP2(1))−1 or τ(C) =

√
g for a very general curve C of genus 5 ≤ g ≤ 8). In

Section 4 we apply Theorem 1.2 to show that the first case does not hold when g = 5;
more precisely we show that if C is a very general curve of genus 5 then τ(C) ≤ 16/7
which gives

2.236 �
√

5 ≤ τ(C) ≤ 16/7 � 2.286 < ε5(P2,OP2)−1 = 2.5.

To achieve this we use the techniques of Ein-Lazarsfeld [6] to get lower bounds of
Seshadri constants of points in D(2) where D is a curve of genus 4. This bound is
stronger than that obtained from Corollary 1.7 as ε5(P2,OP2(1)) = 2/5 [13]. The
number 16/7 is not expected to be optimal, but it is, as far as I am aware, the best
that is currently known.

Notation and conventions: We work throughout over C. The Néron-Severi space
of divisors (resp. R-divisors) on a variety V modulo numerical equivalence is denoted
N1(V ) (resp. N1(V )R). An R-divisor L on a variety V is ample (resp. nef) if it is
a formal sum

∑r
i=1 aiDi of ample (resp. nef) divisors where the ai ∈ R are positive

(resp. non-negative). Equivalently D ∈ N1(V )R is nef if and only if it has non-negative
self intersection with every irreducible curve C ⊂ V .

We say that p ∈ V is a very general point if there is a countable collection of
proper subvarieties (Vn)n≥1 of V such that p is not contained in the union

⋃
n≥1 Vn.

A collection p1, . . . , pm of points in V is very general if (p1, . . . , pm) ∈ V ×m is very
general. By a very general curve we mean a smooth curve whose corresponding point
in the moduli space Mg is very general.

2. Preliminaries

2.1. Divisors the second symmetric product. Let C be a smooth curve of genus
g ≥ 0. The product C×C has a natural involution and the second symmetric product
is the quotient σC : C × C → C(2) which is a smooth surface. We denote the image
of a point (p, q) ∈ C ×C by p+ q. In N1(C(2)) we have the classes x and δ as defined
in the introduction. (Of course these classes really depend on C but this will always
be clear from context.) It is well known that when C is a very general curve then
N1(C(2)) is spanned by x and δ/2 ([1] p.359) and when g ≥ 1 they are independent.
When g = 0, C(2) = P2 and both x and (δ/2) are the class of the hyperplane.

The intersection of these classes is given by x2 = 1, δ2 = 4 − 4g, and x.δ = 2, so

((n + γ)x − γ(δ/2)) · ((n′ + γ′)x − γ′(δ/2)) = nn′ − γγ′g.
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Notice that if (n + γ)x − γ(δ/2) is effective then intersecting with the ample class x
implies n > 0.

As in the introduction define

τ(C) = inf {s > 0 : (s + 1)x − (δ/2) is ample }
= min{s ≥ 0 : (s + 1)x − (δ/2) is nef }.

Since (τ(C) + 1)x − (δ/2) is nef, it has non-negative self-intersection which yields

τ(C) ≥ √
g.

Now as is standard in such situations, the function τ(C) is semicontinuous with respect
to C:

Lemma 2.1. Let X → T be a flat family of smooth curves over an irreducible base
T and for t ∈ T denote the fibre by Ct. If t0 ∈ T is fixed then

τ(Ct) ≤ τ(Ct0) for very general t ∈ T.

Proof. Let Y → T be the relative second symmetric product of X, and denote the
fibre of Y over t by Yt. Let D ⊂ Y be the diagonal and pick a divisor D on Y which
has class x on a each fibre Yt. If τ = τ(Ct0) then by hypothesis F = (τ +1)D− (D/2)
restricts to a nef divisor on Yt0 . Hence for very general t the restriction if F to Yt is
nef ([10] 1.4.14) which implies τ(Ct) ≤ τ . �

In particular by applying this to a complete family of smooth curves we see that
if τ(C) ≤ τ0 for some smooth curve C of genus g, then the same bound holds for
a very general curve of genus g. Moreover if C is a very general curve then τ(C) is
independent of the actual curve chosen.

A geometric interpretation of Conjecture 1.1 can be given in terms of the existence
of “exceptional” curves in C(2):

Lemma 2.2. Let C be a smooth curve of genus g ≥ 2.
(1) If τ(C) >

√
g then there exists a reduced irreducible curve D ⊂ C(2) with

numerical class (n+γ)x−γ(δ/2)+σ where σ.x = σ.δ = 0 such that τ(C) = γg
n .

(2) If C is a very general curve then τ(C) =
√

g if and only if Δ is the only
reduced irreducible curve in C(2) with negative self-intersection. Moreover
if there does exist another such curve of negative self intersection then it is
unique.

Proof. Suppose τ = τ(C) >
√

g. Then the R-divisor

F = (τ + 1)x − (δ/2)

has positive self-intersection and, by definition of τ , is nef but not ample. Thus by
the Nakai criterion for real divisors [3] there is a reduced irreducible curve D ⊂ C(2)

with D.F = 0. We can write the numerical class of D as (n + γ)x− γ(δ/2) + σ where
σ is a class orthogonal to x and δ so D.F = 0 implies τ = γg

n . We note that since
n > 0 this implies γ > 0.

Now suppose C is very general. Then the effective cone of C(2) is spanned by x
and δ/2. Thus if τ = τ(C) >

√
g the curve D above has class (n + γ)x − γ(δ/2) (i.e.
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σ = 0). Hence D2 = n2 − gγ2 = n2

g (g − τ2) < 0 so D has negative self intersection
and clearly D 
= Δ as γ > 0.

Before proving the converse we deal with uniqueness. To this end suppose that
(n + γ)x − γ(δ/2) and (n′ + γ′)x − γ′(δ/2) are classes of distinct reduced irreducible
curves of negative self intersection. Then n2−γ2g < 0, n′2−γ′2 < 0 and nn′−γγ′g ≥ 0
which implies γ1 and γ2 have opposite sign. Hence any irreducible curve D 
= Δ in
C(2) with D2 < 0 must have numerical class (n + γ)x − γ(δ/2) with γ > 0, and
if it exists it is unique. Thus if there exists a reduced irreducible curve D 
= Δ
with negative self intersection it has numerical class (n + γ)x − γ(δ/2) with γ > 0
and D2 = n2 − gγ2 < 0. As F is nef we know 0 ≤ F.D = τn − gγ which implies
τ ≥ gγ

n >
√

g. �

Before proceeding with the main results of this paper we digress to discuss a finite-
ness result concerning the possible values of τ(C) as C ranges over all curves of fixed
genus g ≥ 2.

Proposition 2.3. Fix a real number α >
√

g. Then

{τ ≥ α : τ = τ(C) for some smooth curve C of genus g}
is a finite set. Equivalently the only possible accumulation point of the set given by
{τ(C) : C a smooth curve of genus g} is

√
g.

Proof. Fix a number s ∈ (
√

g, α) ∩ Q. We first prove that there exists an integer k

such that for any smooth curve C of genus g the divisor k[(s + 1)x − (δ/2)] on C(2)

is effective.
To this end let C be any smooth curve of genus g and fix a Q-divisor F on C(2)

whose numerical class is (s + 1)x − (δ/2). We note that the canonical class of C(2)

is K = (2g − 2)x − (δ/2) ([9] Prop. 2.6). Thus if k ∈ N is sufficiently large (with
ks ∈ N) then x.(K − kF ) < 0. So by Serre duality h2(O(kF )) = h0(O(K − kF )) = 0
as x is ample. Hence for such k,

h0(O(kF )) ≥ h0(O(kF )) − h1(O(kF )) = χ(kF ) = p(k)

where by the Riemann-Roch theorem p(k) is a polynomial whose coefficients depend
only on s and g (and not on the specific curve C or choice of F ). The leading order
coefficient of p(k) is F 2/2 = (s2 − g)/2 > 0 so there exists a k (independent of C)
such that h0(O(kF )) > 0 as claimed.

Now suppose C is chosen so that τ(C) ≥ α. By Lemma 2.2(a) there exists a
reduced irreducible curve D ⊂ C(2) with numerical class (n + γ)x− γ(δ/2) + σ where
σ.x = σ.δ = 0 and τ(C) = gγ

n . With k, F as above there is a divisor E ⊂ |kF |. But
as s < α ≤ τ(C) we have D.F = (ns − γg) < 0 so D ⊂ E. Since D is reduced this
implies that n = x.D ≤ x.E = ks. Thus letting N := ks we have n ≤ N . To complete
the proof note that the divisor G = (g− 1)x+(δ/2) is always nef as it is the pullback
of the theta divisor under the Abel-Jacobi map u : C(2) → Jac(C). Hence D ⊂ E also
implies D.G ≤ E.G which yields gn + γg ≤ k(gs + g) so γ ≤ k(s + 1) =: M . Thus
τ(C) lies in the set

{τ : τ =
gγ

n
with n, γ ∈ N and n ≤ N, γ ≤ M}

which is finite. �
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Remark 2.4. A similar finiteness result for Seshadri constants in families of surfaces
can be found in [11]. It would be interesting to know if the finiteness from Proposition
2.3 still holds when α =

√
g.

2.2. The case of low genus. For low genus it is possible to describe the intersection
of the ample cone with the plane spanned by x and δ by finding explicit irreducible
curves of negative self intersection. For details see [4, 8] (or [10] Section 1.5.B).

• g = 0: Here C(2) = P2 and (s + 1)x − (δ/2) = sh where h is the class of the
hyperplane, so trivially τ(P1) = 0.

• g = 1: In this case it is well known that if C is a very general genus 1 curve
then the closure of the effective cone of C(2) is the nef cone. It is a closed
circular cone described by the equations α2 ≥ 0, α.h ≥ 0 where h is an ample
class ([10] Lemma 1.5.4). Thus τ(C) = 1.

• g = 2: Any curve C of genus 2 is hyperelliptic. Using the g2
1 one can produce

an irreducible curve in C(2) of negative self intersection whose class is 2x −
(δ/2), and thus τ(C) = 2.

• g = 3: If C is a very general curve of genus 2 then it is possible to construct
an irreducible curve in C(2) whose class is 16x − 6(δ/2) and thus has self-
intersection -8 [4, 8]. Using this one deduces that τ(C) = 9/5.

• g = 4: If C is a very general curve of genus 4 then τ(C) = 2. In fact any
such curve admits two g3

1 , and the associated Γ3 is an irreducible curve whose
class is 3x − (δ/2) spans one boundary of the effective cone. (This can also
be obtained from Corollary 1.7).

2.3. Seshadri constants. We record some basic definitions and properties of Se-
shadri constant and refer the reader to [2, 10] for a comprehensive treatment. Let X
be a smooth variety of dimension n and L be a nef numerical class in N1(X)R. If
p1, . . . , pm are points in X define

ε(p1, . . . , pm;X, L) = infC

{
L.C∑r

i=1 multpi
C

}
,

where the infimum is over all reduced irreducible curves C in X that pass through at
least one of the pi. Equivalently if π : B → X is the blowup of X at these points with
exceptional divisor E then

ε(p1, . . . , pm;X, L) = max{s ≥ 0 : π∗L − sE is nef}.
By a standard semicontinuity argument similar to (2.1) the Seshadri constant of m
very general points does not depend on the actual points chosen. Thus we can set

εm(X, L) = ε(p1, . . . , pm;X, L) where p1, . . . , pm are in very general position.

Notice that if π∗L − cE is nef then (π∗L − cE)n ≥ 0 which implies

ε(p1, . . . , pm;X, L) ≤ n

√
Ln

m
. (2.5)

It is an interesting and difficult problem to get non-trivial bounds for Seshadri con-
stants in general [5, 6] or even to calculate them in examples (see [10] and the reference
therein).

We will make use of the following simple lemma which says that Seshadri constants
of a collection of points in C(2) can be calculated by looking at their preimage in C×2.
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Lemma 2.6. Let D be a smooth curve and σD : D×2 → D(2) be the quotient map. Let
p1, . . . , pm be general points in D(2) and suppose for each i that σ−1

D (pi) = {q1
i , q2

i }.
Then for any nef class L ∈ N1(D(2))R,

ε(p1, . . . , pm;D(2), L) = ε(q1
1 , q2

1 , . . . , q1
m, q2

m;D×2, σ∗
DL).

Proof. Let pX : X → D(2) be the blowup of D(2) at p1, . . . , pm with exceptional divisor
E, and pY : Y → D×2 be the blowup of D×2 at q1

1 , q2
2 , . . . , q1

m, q2
m with exceptional

divisor F . Then under the induced map σ̃D : Y → X that lifts σD we have for any
c > 0 that σ̃∗

D(p∗XL − cE) = p∗Y L − cF . Since σ̃D is surjective this implies p∗XL − cE
is nef if and only if p∗Y L − cF is nef, which proves the lemma. �

3. Proofs

Let C → T be a family of smooth curves of genus g over a disc T that develops a
node. By this we mean that the family is proper and flat, the fibre Ct over t ∈ T is a
smooth curve for t 
= 0 and that the fibre C0 over 0 ∈ T is an irreducible curve that has
a single node. We assume further that C has a smooth total space. Taking the relative
second symmetric product of C gives a degeneration of C(2) which when suitably blown
up is essentially the Franchetta degeneration used in [4]. Instead of using this we find
it easier to consider the fibred product C ×T C (and thus a degeneration of C × C)
and only deal with divisors that are invariant under permuting the factors.

To this end suppose p is the node in C0 and let Y → C ×T C be the blowup of
C ×T C at (p, p) with exceptional divisor E. One can easily check by working in local
analytic coordinates that Y has smooth total space. Clearly the fibre of Y over t 
= 0
is Yt = Ct × Ct and the next two lemmas describe the central fibre of Y. Denote the
normalisation of C0 by D and let q, r ∈ D be the preimage of the node p ∈ C0.

Lemma 3.1.

(1) The central fibre Y0 has two irreducible components namely the exceptional
divisor E which is isomorphic to P1 × P1 and another we denote by F .

(2) The normalisation F̃ of F is the blowup π : F̃ → D × D at the four points
(q, q), (q, r), (r, q), (r, r) making the natural diagram

F̃ −−−−→ F

π

⏐⏐� ⏐⏐�
D × D −−−−→ C0 × C0

commute. We denote the exceptional curve in F̃ that sits over the point (s, t)
by ẽst and the corresponding curve in F by est.

(3) The two components of Y0 are glued along the four rational curves {eqq, err}
and {eqr, erq} in F . Each set consists of a pair of lines in one of the two
rulings of E.

Proof. In local analytic coordinates around the node p ∈ C0 the family C has the
form xy = t in C2 × T where t is the parameter on T . Hence locally C ×T C is given
by x1y1 = x2y2 = t in C4 × T . Thus a local model for Y is given by the proper



SESHADRI CONSTANTS ON SYMMETRIC PRODUCTS OF CURVES 71

transform in the blowup B → C4 × T at the origin. On the exceptional P4 in B we
pick coordinates λ1, λ2, μ1, μ2, σ such that for t 
= 0

λi

xi
=

μj

yj
=

σ

t
i, j = 1, 2.

Then E is the intersection of Y with P4 and is given by

λ1μ1 = λ2μ2 and σ = 0

which is a quadric hypersurface in P3, and thus E � P1 × P1.
Now let U and V be the two components of the normalisation of xy = t corre-

sponding to x = 0 and y = 0 respectively. Then locally the other components of Y
are the proper transform of U × U,U × V, V × U and V × V given by x1 = x2 = 0,
x1 = y2 = 0, y1 = x2 = 0 and y1 = y2 = 0 respectively. These are glued along normal
crossing curves and the normalisation F̃ is obtained by pulling them apart. Thus F̃
is the blowup of D × D in the four points as claimed.

Now the proper transform of U ×U is the blowup at the point (p, p) and meets E
in the line given by λ1 = λ2 = 0. Similarly V × V meets E in the line μ1 = μ2 which
is easily seen to be in the same ruling. A completely analogous analysis applies to
U × V and V × U . �

For simplicity denote the numerical class of the curves ẽst by the same letter. Then

N1(F̃ ) = π∗N1(D × D) ⊕ Z[ẽqq, ẽrr, ẽqr, ẽrq].

Moreover N1(E) is a free group of rank 2 with two generators α and β. We declare
that α is the class of the curve eqq (equivalently of err) inside E and β is the class of
eqr (equivalently of erq).

Consider now the proper transform D ⊂ Y of the diagonal in C ×T C.

Lemma 3.2. The restriction of D to E has class α ∈ N1(E). The pullback of
D|F to F̃ is the proper transform of the diagonal ΔD ⊂ D × D and thus has class
π∗ΔD − ẽqq − ẽrr ∈ N1(F̃ ).

Proof. We continue to use the local coordinates introduced in the proof of Lemma
3.1. For t 
= 0 the diagonal is given by x1 = y1 and x2 = y2 and thus meets E in the
line λ1 = μ1 and λ2 = μ2. As is easily checked this line has class α.

Now clearly the proper transform of D|U×U is, locally, the proper transform of the
diagonal y1 = y2 in U ×U and similarly for V × V . Moreover for ΔD is disjoint from
U ×V and V ×U for t 
= 0 and thus the pullback of D|F to F̃ has the numerical class
as claimed. �

With these preliminaries we are ready to give the proofs of the theorems stated in
the introduction.

Proof of Theorem 1.2. By hypothesis there is a smooth curve D of genus g − 1 and
distinct points q, r ∈ D such that

ε(q + r;D(2), (a + b)x − b(δ/2)) ≥ b. (3.3)

By gluing q and r we get a curve C0 with a single node p whose arithmetic genus
is g and whose normalisation is D. Let C → T be a proper flat family of curves
of genus g which has a smooth total space, smooth general fibre and whose central
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fibre is C0. Let Y → C ×T C be the blowup at (p, p). We will use the notation
introduced in Lemmas 3.1 and 3.2 so the central fibre Y0 has two components E and
F , and the normalisation F̃ of F is the blowup π : F̃ → D × D at the four points
(q, q), (q, r), (r, q), (r, r).

Fix a line bundle L on C/C0 that has degree 1 on each of the fibres. As C is assumed
to be smooth and C0 is irreducible, L extends uniquely to a line bundle L′ on all of
C. Take a meromorphic section of L′ whose support does not contain the node p of
C0. By shrinking T if necessary we may assume furthermore that the support of s
does not contain any fibre Ct, and we write this support as

∑
i aiDi for some divisors

Di ⊂ C that do not contain p. For each i define a divisor on Y by

Gi = {(u, v) ∈ Yt for some t and either u ∈ Di or v ∈ Di},
and set

G =
∑

i

aiGi.

Clearly G is invariant under the natural involution on Y. In fact for for all t 
= 0
the numerical class of G|Yt

is the pullback of x under σCt
: Ct ×Ct → C

(2)
t . Moreover

G is trivial along E and and the numerical class of the pullback of G|F to F̃ has class
π∗σ∗

Dx.
Let D ⊂ Y be the proper transform of the diagonal in C ×T C as in Lemma 3.2 and

define an R-divisor on Y by

H = (a + b)G − b(D + E). (3.4)

We claim that H|Y0 is nef. To see this note first from (3.1, 3.2) that E|E has class
−(2α + 2β) and D|E has class α. Thus H|E has class b(α + 2β) which is clearly nef
as both α and β are nef and b > 0. To show that H|F is nef consider its pullback to
F̃ which using (3.1,3.2) has numerical class

(a + b)π∗σ∗
Dx − b(π∗ΔD − ẽqq − ẽrr) − b(ẽqq + ẽrr + ẽrq + ẽrq)

= π∗σ∗
D ((a + b)x − b(δ/2)) − b(ẽrq + ẽrq) (3.5)

since σ∗
D(δ/2) = ΔD. Now σ−1

D (q + r) = {(q, r), (r, q)} so (3.3) and Lemma 2.6 imply

ε((q, r), (r, q);D × D,σ∗
D((a + b)x − b(δ/2))) ≥ b.

But by (3.5) this means exactly that the pullback of H|F to F̃ is nef and thus H|F is
nef as well.

Hence H|Y0 is nef and by semicontinuity so is H|Yt for very general t. But HYt

has class σ∗
Ct

((a+ b)x− b(δ/2)) so (a+ b)x− (δ/2) ∈ N1(C(2)
t ) is nef for very general t

which proves that τ(Ct) ≤ a
b . By (2.1) the same inequality holds for any very general

curve of genus g. �

Proof of Theorem 1.6. The fact that (a + b)x − b(δ/2) ∈ N1(D(2)) is nef comes from
Theorem 1.2 since εr(·) ≤ ε1(·). Essentially the result we want comes from the
degeneration Y described in the proof of Theorem 1.2 and semicontinuity of Seshadri
constants in families.

To describe this more explicitly we continue the notation from the above proof.
Pick m sections s1, . . . , sm of C×T C → T that meet C0×C0 at m very general points
(so in particular these points are not equal to (p, p)). Let Vi be the image of si and
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V ′
i be the image of Vi under the involution. We denote the proper transform of Vi

and V ′
i in Y by Wi and W ′

i and let W =
⋃

i Wi ∪ W ′
i . By shrinking T if necessary

we may assume that W meets each fibre Yt = Ct × Ct at a collection of 2m distinct
points. Note that in the central fibre Y0 these points are all in the component F .

Now let π : Y ′ → Y be the blowup along W with exceptional divisor E′. The
central fibre of Y ′ has components E and F ′ where the normalisation F̃ ′ of F ′ is the
blowup of F̃ at m very general points and their image under the involution. Thus
F̃ ′ is the blowup of D × D at the points (q, q), (q, r), (r, q), (r, r) and at a further 2m
points.

Set c = εm(D(2), (a + b)x − (δ/2)) and consider the R-divisor

H ′ = π∗H − cE′

where H is the divisor defined in (3.4). Then exactly as in the proof of Theorem 1.2,
H ′|E is nef and the hypothesis on the Seshadri constant and Lemma 2.6 imply that
the pullback of H ′|F ′ to F̃ ′ is also nef. Thus H ′|Y′

t
is nef for very general t and using

(2.6) once again proves the theorem. �

Proof of Corollary 1.7. Fix g ≥ 1. Let h be the class of the hyperplane in P2 and set
b = εg(P2, h). The second symmetric product of a genus 0 curve is P2 and under this
identification x = (δ/2) = h. We have

εg((P1)(2), (1 + b)x − b(δ/2)) = εg(P2, h) = b.

Thus repeated use of Theorem 1.6 yields for a very general curve D of genus g − 1

ε1(C(2), (1 + b)x − b(δ/2)) ≥ b,

and so the result follows from Theorem 1.2. �

4. Application to the case g = 5

We now prove that if C is a very general curve of genus 5 then τ(C) ≤ 16/7. This
is done by estimating the Seshadri constant at a very general point p of D(2) where D
is a very general curve of genus 4. By (2.2) we know that τ(D) = 2. Set a = 16, b = 7
and L = (a+ b)x− b(δ/2) ∈ N1(D(2)) which is ample. By (1.2) it is sufficient to show
the following

Claim: If p is a very general point in D(2) then

ε(p;D(2), L) ≥ b = 7. (4.1)

The proof of the claim will use the ideas of Ein-Lazarsfeld [6]. Rather than using the
main result of that paper we get an improvement by using their techniques and special
properties of the particular surface D(2). In particular we will need the following
lemma.

Lemma 4.2 (Ein-Lazarsfeld [6]). Let X be a smooth surface and L be an integral
ample line bundle (or class) on X. Suppose {pt ∈ Et}t∈T is a one-parameter family
consisting of a point pt in a curve Et ⊂ X such that multpt

Et ≥ m for all t. Suppose
in addition that E = E0 is reduced and irreducible and moreover that the Kodaira-
Spencer class of this family is non-zero. Then E2 ≥ m(m − 1).
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Now suppose E ⊂ D(2) is a reduced irreducible curve passing through a very
general point p with numerical class (n + γ)x − γ(δ/2).

Claim: We have L.E ≥ 7 and if (n, γ) /∈ {(1, 0), (3, 1), (5, 2)} then L.E ≥ 4b = 28.

To see this note that L.E = an − 4bγ = 16n − 28γ so certainly if γ ≤ 0 then
L.E ≥ 28 unless (n, γ) = (1, 0). So suppose that γ > 0. As τ(D) = 2 we must have
n ≥ 2γ with equality if and only if E has zero self intersection.

Now for each fixed γ ≥ 0 there are at most finitely many irreducible curves E with
numerical class (n + γ)x − γ(δ/2) and self-intersection zero. Since p is assumed to
be very general we may assume there is no irreducible curve of zero self-intersection
through p, and so we in fact have n ≥ 2γ + 1. Then it is easily checked that L.E ≥ 7
and L.E ≥ 28 except when (n, γ) ∈ {(3, 1), (5, 2)}.

We now finish the proof of (4.1). Suppose for contradiction that ε(p;D(2), L) < 7 for
a very general p ∈ D(2). Then through a very general point p there exists a reduced
irreducible curve E with m = multp E and

L.E

m
< b = 7. (4.3)

As in [6] the collection of pairs (p,E) consisting of a point p in an irreducible curve
E such that multp(E) > L.E/7 consists of a countable collection of algebraic families
and the proof will be completed by showing that any such family with p a very general
point is discrete.

To this end suppose for contradiction that there is a family {pt ∈ Et}t∈T with Et

reduced and irreducible and multpt Et > L.Et/7 for all t. Set (p, E) = (p0, E0). Since
p is assumed to be very general we have from the above that L.E0 ≥ 7 so multpt

> 1.
Since multy Et = 1 for a general point y of Et we deduce that the curves Et are
moving in a non-trivial family and thus from (4.2) we have that E2 ≥ m(m − 1).

Case 1: (n, γ) = (1, 0). If E is not the irreducible curve xp = {p + q|q ∈ C} then
m ≤ E.x = 1 so m = 1 which is impossible by (4.3). On the other hand if E = xp

then m = 1 and L.E = a which again is absurd.

Case 2: (n, γ) = (3, 1) (resp. (n, γ) = (5, 2)). As m(m−1) ≤ E2 = 5 (resp. m(m−1) ≤
E2 = 9) we have m ≤ 2 (resp. m ≤ 3). But this implies L.E

m ≥ 3a−4b
2 = 10 ≥ b (resp.

L.E
m ≥ 5a−8b

3 = 8 ≥ b) which in both cases is impossible by (4.3).

Case 3: (n, γ) 
= (1, 0), (3, 1), (5, 2). Here we follow [6] but first note that by the
previous claim in this case L.E ≥ 4b which by (4.3) implies that m ≥ 5. Again from
(4.3) we have L.E < 7m so L.E ≤ 7m − 1. Thus by the Hodge index theorem

m(m − 1) ≤ E2 ≤ (L.E)2

L2
≤ (7m − 1)2

60

which is impossible for m ≥ 5.
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[7] B. Harbourne and J. Roé, Multipoint Seshadri constants on P

2, Rend. Sem. Mat. Univ. Politec.

Torino 63 (2005), no. 1, 99–102.

[8] A. Kouvidakis, Divisors on symmetric products of curves, Trans. Amer. Math. Soc. 337 (1993),
no. 1, 117–128.

[9] ———, On some results of Morita and their application to questions of ampleness, Math. Z.

241 (2002), no. 1, 17–33.
[10] R. Lazarsfeld, Positivity in algebraic geometry. I., Ergebnisse der Mathematik und ihrer Gren-

zgebiete. 3. Folge, Springer-Verlag, Berlin (2004)

[11] K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann. 323 (2002), no. 4, 625–631.
[12] G. Pacienza and F. Polizzi, On a degeneration of the symmetric product of a curve with gen-

eral moduli, Matematiche (Catania) 56 (2001), no. 2, 297–307 (2003). PRAGMATIC, 2001
(Catania).

[13] B. Strycharz-Szemberg and T. Szemberg, Remarks on the Nagata conjecture, Serdica Math. J.

30 (2004), no. 2-3, 405–430.
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